Empower. Partner. Lead,

Ohio Supercomputer Center

Module 1: X10 Overview

Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

* Workshop goals

 Partitioned Global Address Space (PGAS)
Programming Model

« X10 Project Overview

* My motivation for examining X10
« X10DT (briefly)

H _H Vel _\\l/’_
3w v |

Empower. Partner. Lead 5 Ohio Supercomputer Center

Workshop Goals and Prerequisites

* Provide rudimentary programming ability in X10

— You won’t be an expert, but you won'’t be baffled when
presented with code

* Describe X10 approaches for multilevel parallelism
through code reuse

J \\IQ/,
-

Empower. Partner. Lead 3 Ohio Supercomputer Center

Workshop Prerequisites

* Experience with parallel programming, either MPI
or OpenMP.

« Basic knowledge of Java (e.g., objects, messages,
classes, inheritance).

— Online tutorials are available at
http://java.sun.com/docs/books/tutorial/

— The “Getting Started” and “Learning the Java
Language” tutorials are recommended.

» Familiarity with basic linear algebra and matrix
operations.

&> \\l //
-

Empower. Partner. Lead 4 Ohio Supercomputer Center

PGAS Background: Global and Local Views

A parallel program consists of a set of threads and at least
one address space

* A p_roqram Is said to have a global view if all threads share
a single address space (e.g., OpenMP)
— Tough to see when threads share same data

— Bad data sharing causes race conditions (incorrect answers) and
communication overhead (poor performance)

» A program is said to have a local view if the threads have
distinct address spaces and pass messages to
communicate (e.g., MPI)

— Message passing code introduces a lot of bookkeeping to
applications

— Threads need individual copies of all data required to do their
computations (which can lead to replicated data)

Empower. Partner. Lead 5 Ohio Supercomputer Center

PGAS Overview

e “Partitioned Global
View” (or PGAS)

— Global Address Space:
Every thread sees
entire data set, so no
need for replicated data

— Partitioned: Divide
global address space
SO programmer is
aware of data sharing
among threads

Empower. Partner. Lead

* Implementations
— GA Library from PNNL

— Unified Parallel C (UPC),
FORTRAN 2009

— X10, Chapel

« Concepts
— Memories and structures
— Partition and mapping
— Threads and affinity

— Local and non-local
accesses

— Collective operations and
Owner computes

&> \\I //
-

Ohio Supercomputer Center

Software Memory Examples

« Executable Image at

right
— “Program linked, loaded high stack
and ready to run” l
* Memories

« Static memory
 data segment T

« Heap memory
* Holds allocated structures heap
¢ EXpllCItIy managed by bss unitinialized variables

programmer (malloc, free) . _

. StaCk memory data initialized variables

* Holds function call records 0 — instruction

* Implicitly managed by
runtime during eéxecution

\/, @

Empower. Partner. Lead 7 Ohio Supercomputer Center

Memories and Distributions

Software Memory

— Distinct logical storage area in a computer program
(e.g., heap or stack)

— For parallel software, we use multiple memories
* In X10, a memory is called a place

o Structure

— Collection of data created by program execution
(arrays, trees, graphs, etc.)

» Partition
— Division of structure into parts

« Mapping

— Assignment of structure parts to memories

* In X10, partitioning and m_a{)pin information for
an array are stored in a distribution

Empower. Partner. Lead

Memory

QS
=) |5

Ohio Supercomputer Center

Threads ¢

* Units of execution

 Structured threading

— Dynamic threads: program \ \ \ }
creates threads during N/ 1 y Y.

execution (e.g., OpenMP
parallel loop)

— Static threads: same
number of threads running
for duration of program

« Single program, multiple data
(SPMD)

e Threads in X10 (activities)
are created with async and
at

> \\I //
-

Empower. Partner. Lead 9 Ohio Supercomputer Center

Affinity and Nonlocal Access

« Affinity is the association of a
thread to a memory

— If a thread has affinity with a
memory, it can access its
structures

— Such a memory is called a
local memory

* Nonlocal access
— Thread 0 wants part B
— Part B in Memory 1

— Thread 0 does not have
affinity to memory 1

* Nonlocal accesses often
Implemented via interprocess
communication — which is
expensive!

Empower. Partner. Lead s

iy ¥
1 il
8 E E'TS
1 r
~ I

1 il
T E E'Ts
1 y

\/, @

Ohio Supercomputer Center

Collective operations and “Owner computes”

 Collective operations are performed by a set of
threads to accomplish a single global activity

— For example, allocation of a distributed array across
multiple places

* “Owner computes” rule
— Distributions map data to (or across) memories
— Affinity binds each thread to a memory

— Assign computations to threads with “owner computes”
rule
« Data must be updated (written) by a thread with affinity to the

memory holding that data
e

1 Ohio Supercomputer Center

Empower. Partner. Lead

Threads and Memories for Different
Programming Methods

Thread Memory Nonlocal Access
Count Count

Sequential

OpenMP Either 1 or p 1 N/A

MPI P P No. Message required.
CUDA ; ((2232;') 2 d((;'/‘i’i)* No. DMA required.
UPC, FORTRAN p P Supported.

X10 n P Supported.

\/, @

Empower. Partner. Lead 12 Ohio Supercomputer Center

X10 Overview

« X10 is an instance of the Asynchronous PGAS model
in the Java family

— Threads can be dynamically created under programmer
control (as opposed to SPMD execution of MPI, UPC,
FORTRAN)

— n distinct threads, p distinct memories (n <> p)
« PGAS memories are called places in X10
 PGAS threads are called activities in X10

* Asynchronous extensions for other PGAS languages
(UPC, FORTRAN 2009) entirely possible...

H _H Vel _\\I/’_
3w v |

Empower. Partner. Lead 13 Ohio Supercomputer Center

X10 Project Status

« X10 is developed by the IBM PERCS project as part of the

DARPA program on High Productivity Computing Systems
(HPCS)

« Target markets: Scientific computing, business analytics

« X10 is an open source project (Eclipse Public License)

— Documentation, releases, mailing lists, code, etc. all publicly
available via http://x10-lang.org

e« X10 2.1.0 released October 19, 2010

— Java back end: Single process (all places in 1 JVM)
« any platform with Java 5

— C++ back end: Multi-process (1 place per SMP node)
* aix, linux, cygwin, MacOS X
» x86, x86 64, PowerPC, Sparc

Empower. Partner. Lead 14 Ohio Supercomputer Center

X10 Goals
« Simple

— Start with a well-accepted
programming model, build
on strong technical
foundations, add few core
constructs

o Safe

— Eliminate possibility of
errors by design, and
through static checking

 Powerful

— Permit easy expression of
high-level idioms

— And permit expression of

high-performance programs

From “An Overview of X10 2.0”, SCO09 Tutorial

Empower. Partner. Lead

15

e Scalable

— Support high-end
computing with millions
of concurrent tasks

e Universal

— Present one core
programming model to
abstract from the
current plethora of
architectures.

il | Wy | -
noBa

Ohio Supercomputer Center

X10 Motivation

 Modern HPC architectures combine products
— From desktop/enterprise market: processors, motherboards

— HPC market: interconnects (IB, Myrinet), storage,
packaging, cooling

« Computing dominated by power consumption

— In desktop/enterprise market emergence of multicore
« HPC will retain common processor architecture with enterprise
— In HPC, we seek even higher flops/watt. Manycore is
leading candidate
* nVidia Fermi: 512 CUDA cores

* Intel Knights Corner: >50 Cores, (Many Integrated Core) MIC
Architecture (pronounced “Mike™)

Empower. Partner. Lead 16 Ohio Supercomputer Center

X10 Motivation

« HPC node architectures will be increasingly

— Complicated (e.g., multicore, multilevel caches, RAM
and |I/O contention, communication offload)

— Heterogenous (e.g, parallelism across nodes, between

motherboard and devices (GPUs, IB cards), among
CPU cores)

* Programming Challenges
— exhibit multiple levels of parallelism
— synchronize data motion across multiple memories
— regularly overlap computation with communication

H _H Vel _\\I/’_
3w v |

17 Ohio Supercomputer Center

Empower. Partner. Lead

Every parallel architecture has a dominant
programming model

Parallel Programming e Software Options
Architecture Model

— Pick existing model

z/ggor1l;/lachine I(_Isl%pE\I/:e)ctorization (|\/|P|, OpenMP)

y - Kathy Yelick has
SIMD Machine Data parallel (C*) interesting summary of
(CM-2) challenges here

SMP Machine Threads (OpenMP) — Hybrid software

(SGI Origin) MPI at node level
Clusters Message Passing * OpenMP at core level
(IBM 1350) (MPI) « CUDA at accelerator
GPGPU Data parallel — Find a higher-level
(nVidia Fermi) (CUDA) abstraction, map it to
Accelerated Asynchronous hardware

Clusters PGAS?

\’, @

Empower. Partner. Lead 18 Ohio Supercomputer Center

Conclusions

* PGAS fundamental concepts:
— Data: Memory, partitioning and mapping
— Threads: Static/Dynamic, affinity, nonlocal access

« PGAS models expose remote accesses to the
programmer

« X10 is a general-purpose language providing
asynchronous PGAS

* Asynchronous PGAS may be a unified model to
address the upcoming changes in petascale and
exascale architectures

J \\IQ/,
-

Empower. Partner. Lead 19 Ohio Supercomputer Center

Empower. Partner. Lead,

Ohio Supercomputer Center

Module 2: X10 Base Language

Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

 How this tutorial is different

 X10 Basics, Hello World, mathematical functions

» Classes and objects
* Functions and closures
* Arrays

 Putting it all together: Prefix Sum example

H _H Vel _\\l/’_
3w v |

Empower. Partner. Lead 21 Ohio Supercomputer Center

How this tutorial is different

* Lots of other X10 materials online
— Mostly language overviews and project summaries

* Best way to learn a language is to use it

— Focus on working code examples and introduce language
topics and constructs as they arise

* Focus on HPC-style numeric computing

* Won't exhaustively cover features of the language
— Interfaces, exceptions, inheritance, type constraints, ...

* Won’t exhaustively cover implementations
— Java back end, CUDA interface, BlueGene support, ...

H _H Vel _\\I/’_
3w v |

29 Ohio Supercomputer Center

Empower. Partner. Lead

X10 Basics

« X10 is an object-oriented language based on Java

- Base data types
— Non-numeric: Boolean, Byte, Char and String
— Fixed point: Short, Int and Long
— Floating point: Float, Double and Complex

* Top level containers: classes and interfaces,
grouped into packages

* Objects are instantiated from classes

&> \\I //
-

Empower. Partner. Lead 23 Ohio Supercomputer Center

public class Hello {
public static def main(var args: Array[String](1)):Void {

C le.OUT.println("Hello X10 1d");
}} onsole println("Hello world™) Hello W()I'ld

* Program execution starts with main() method
— Only one class can have a main method

 Method declaration
— Methods declared with def

— Objects fields either methods (function) or members
(data):
» Access modifiers: public, private (like Java)

 static declaration: field is contained in class and is
immutable

— Function return type here is void

* |/O provided by library x10.i0.Console

Empower. Partner. Lead o4 Ohio Supercomputer Center

public class Hello {
public static def main(var args: Array[String](1)):Void {

C le.OUT.println("Hello X10 1d");
}} onsole println("Hello world™) Hello W()I'ld

* Variable Declarations: var <name> : <type>, like
var x:Int

« Example of generic types (similar to templates)

— Array (and other data structures) take a base type
parameter

— For example Array[String], Array[Int],
Array[Double], ...

 Also, we provide dimension of Array, so Array
[String](1) is a single-dimensional array of strings

il | Wy | -
noBa

Empower. Partner. Lead o5 Ohio Supercomputer Center

public class MathTest {
public static def main(Cargs: Array[String](1)):Void {

val w = 5; .

val x = w as Double; Types in X10
val y = 3.0;

val z = y as Int;

Console.OUT.printlnC'w = " +w+ ", x =" +x+ ", y =" 4y+ ", z = " +z);

val dl1 = (Math.log(8.0)/Math.log(2.02)) as Int;
val d2 = Math.pow(Z2, dl1) as Int;
Console.OUT.println("dl = " +d1 + ", d2 = " + d2);

« X10 type casting (coercion) using as
Calculate log, of a number using log,,

X10 math functions provided by Math library
val — declares a value (immutable)

— Type inference used to deduce type, no declaration needed

— X10 community says var/val = Java’'s non-final/final

Declare everything val unless you explicitly need var
— Let the type system infer types whenever possible

Empower. Partner. Lead

, @

26 Ohio Supercomputer Center

public class Counter {
var counterValue:Int;

public def this(Q {
counterValue = 0;

}

public def this(initValue:Int) {
counterValue = initValue;

}

public def count() {
counterValue++;

}

public def getCount():Int {
return counterValue;

¥
¥

Empower. Partner. Lead

Classes

* Instance declarations
allocated with each object
(e.g., counterValue)

* Class declarations allocated
once per class
— static

* this
— val containing reference to
lexically enclosing class

* Here, it is Counter

— Constructors automatically
called on object instantiation

* In Java, use Counter(), in X10,

use this()

Ohio Supercomputer Center

27

class Driver {
public static def main(args:Array[String](1)):Void {
val firstCounter = new Counter(); .
val secondCounter = new Counter(5); Ob]eCtS
for (var 1:Int=0; 1<10; 1++) {
firstCounter.count();
secondCounter.count();

}
val firstValue = firstCounter.getCount();

val secondValue = secondCounter.getCount(); -
Console.OUT.println("First value = "+firstValue); Glass Defintons
Console.OUT.println("Second value = "+secondValue); (statio)
} } | counterValue | | 10 1
* Object instantiation with new | —=t0— ——
— firstCounter uses default | o) | |
constructor, secondCounter [oG] | |
uses initialization constructor
— X10 has garbage collection, so | —=t==e— ——
no malloc/free. Object GC'ed |—m | |
when it leaves scope | Gountg | | |
| getCount():Int | | }
« Example of C-style for loop

— Modifying i, so use var

Empower. Partner. Lead

A
=

28 Ohio Supercomputer Center

public class Driver {
public static def main(args: Array[String](1)): Void {
val arraySize = 17;
val regionTest = 1..arraySize; Arrays
val testArray = new Array[Int](regionTest, (Point)=>0);
for ([1] in testArray) {
testArray(i) = 1;
Console.OUT.println("testArray("+1i+") = " + testArray(i));

¥
val p = [22, 55];

val [i, j1 = p;
» Points — used to access arrays, e.g., [9], [1,2]
— iand j assigned using pattern matching (i = 22, j = 55)

* Regions — collection of points
— One-dimensional 1..arraySize, Two-dimensional [1..100, 1..100]

e Array constructor requires:
— Region (1..arraySize)
— Initialization function to be called for each point in array (Point)=>0

* For loop runs over region of array
— [i] is a pattern match so that i has type Int

Empower. Partner. Lead 29 Ohio Supercomputer Center

public class Driver {

public static def main(args: Array[String](1)): Void {
val arraySize = 17;

val regionTest = 1..arraySize; Functions
val testArray = new Array[Int](regionTest, (Point)=>0);
for ([1] in testArray) {

testArray(i) = 1;

Console.OUT.println("testArray("+1+") = " + testArray(i));

}

« Anonymous function: (Point)=>0

— Function with no name, just input type and return expression
— Also called a function literal

* Functions are first-class data — they can be stored in lists,
passed between activities, etc.

— val square = (i:Int) => i*i;
« Anonymous functions implemented by creation and

evaluation of a closure

— An expression to be evaluated along with all necessary values
— Closures very important under the hood of X10!

, @

Empower. Partner. Lead 30 Ohio Supercomputer Center

public class Driver {
public static def main(args: Array[String](1)): Void {
val arraySize = 5;

Console.OUT.println("PrefixSum test:"); PfeﬁX Sum Object

val psObject = new PrefixSum(arraySize);

val beforePS = psObject.str();
Console.OUT.println("Initial array: "+beforePS);
psObject.computeSum();

val afterPS = psObject.str();
Console.OUT.println("After prefix sum: "+afterPS);

1 PrefixSum test:
_ o Initial array: 1, 2, 3, 4, 5
* Prefix Sum definition After prefix sum: 1, 3, 6, 10, 15

— Given a[1], a[2], a[3], ... a[n]
— Return a[1], a[1]+a[2], a[1]+a[2]+a[3], ..., a[1]+...+a[n]

« Example: PrefixSum object
— Object holds an array
— Methods include constructor, computeSum and str

» Used as an educational example only
— In real life, you'd use X10’s built-in Array.scan() method

Empower. Partner. Lead

\/, @

31 Ohio Supercomputer Center

public class PrefixSum {

val prefixSumArray: Array[Int](1);

public def this(length:Int) { PfeﬁX Sum Class

prefixSumArray = (new Array[Int](l..length, (Point)=>0));
for ([1] in prefixSumArray) {
prefixSumArray(i) = 1;

¥
¥
public def computeSum()
{
for ([1] in prefixSumArray) {
1if (1 '= 1) {
prefixSumArray(i) = prefixSumArray(i) + prefixSumArray(i-1);
}
¥

Y« Full code in example

* prefixSumArray is an instantiation variable, and local to
each PrefixSum object

* this —initialization constructor creates array
« computeSum method — runs the algorithm

\/, @

Empower. Partner. Lead 392 Ohio Supercomputer Center

Conclusions

« X10 has a lot of ideas from OO languages
— Classes, objects, inheritance, generic types

« X10 has a lot of ideas from functional languages

— Type inference, anonymous functions, closures, pattern
matching

« X10 is a lot like Java
— Math functions, garbage collection

* Regions and points provide mechanisms to
declare and access arrays

J \\IQ/,
-

Empower. Partner. Lead 33 Ohio Supercomputer Center

Empower. Partner. Lead,

Ohio Supercomputer Center

Module 3: X10 Intra-Place Parallelism

Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

» Parallelism = Activities + Places
 Basic parallel constructs (async, at, finish, atomic)
* Trivial parallel example: Pi approximation

« Shared memory (single place) Prefix Sum

&> \\l //
-

Empower. Partner. Lead 35 Ohio Supercomputer Center

Parallelism in X10

 Activities .
— All X10 programs begin with a single Activity
activity executing main in place 0O v
— Create/control with at, async, finish, Place 0 Place 1

atomic (and many others!)

 Places hold activities and objects

— class x10.1ang.Place

* Number of places fixed at launch time,
available at Place .MAX_PLACES

* Place.FIRST_PLACE is place O

— Launch an X10 app with mpirun
 mpirun —np 4 HelloWholeWorld
* Places numbered 0..3

Place 2 Place 3

\/, @

Empower. Partner. Lead 36 Ohio Supercomputer Center

async

e asyncS

¢ Creates a new child activity that
evaluates expression S
asynchronously

4 Evaluation returns immediately

¢ S may reference vals in enclosing
blocks

& Activities cannot be named

4 Activity cannot be aborted or
cancelled

Based on “An Overview of X10 2.0”, SC09 Tutorial

Empower. Partner. Lead g

Stmt ::= async(p,l) Stmt

cf Cilk's spawn

// Compute the Fibonacci
// sequence in parallel.
def run() {
if (r < 2) return;
val f1 = new Fib(r-1),
val £2 = new Fib(r-2);
finish {
async fl.run();
async f2.run();

}
r = fl.r + £2.r;

Ohio Supercomputer Center

finish

e L:finish S Stmt ::= finish Stmt

¢ Evaluate S, but wait until all (transitively) cf Cilk's sync

spawned asyncs have terminated.
// Compute the Fibonacci

// sequence in parallel.

¢ implicit finish at main activity def run() ({
if (r < 2) return;

val f1 = new Fib(r-1),
finish is useful for expressing val £2 = new Fib(r-2);
“synchronous” operations on finish {
(local or) remote data. async fl.run();

async f2.run();

}
r = fl.r + £2.r;

Based on “An Overview of X10 2.0, SCO09 Tutorial

Empower. Partner. Lead

\ , @

38 Ohio Supercomputer Center

at

. at(p) S Stmt ::= at(p) Stmt
& Evaluate expression S at place p
& Parent activity is blocked until S // Copy field f from a to b
completes // a and b are GlobalRefs
def copyRemoteFields(a, b) {
¢ Can be used to at (b.home) b.f =
¢ Read remote value at (a.home) a.f;

}
¢ \Write remote value

¢ Invoke method on remote object // Invoke method m on obj
// m is a GlobalRef
¢ As of X10 2.1.0, manipulating def invoke(obj, arg) {
objects between places requires at (obj.home) obj().m(arg);
a GlobalRef (more on that next }
module)

Based on “An Overview of X10 2.0, SCO09 Tutorial

Empower. Partner. Lead

39 Ohio Supercomputer Center

atomic

e atomic S
& Evaluate expression S atomically

& Atomic blocks are conceptually
executed in a single step while other
activities are suspended: isolation
and atomicity.

¢ An atomic block body (S) ...
0 must be nonblocking
0 must not create concurrent
activities (sequential)

0 must not access remote data
(local)

Based on “An Overview of X10 2.0”,
SCO09 Tutorial

Empower. Partner. Lead o

Stmt ::= atomic Statement
MethodModifier ::= atomic

// target defined in lexically
// enclosing scope.
atomic def CAS(old:Object,
n:0Object) {
if (target.equals(old)) {
target = n;
return true;

}

return false;

}

// push data onto concurrent
// list-stack
val node = new Node (data) ;
atomic {

node.next = head;

head = node;

Ohio Supercomputer Center

Single Place Example

* Monte Carlo approximation of 7t

* Algorithm
— Consider a circle of radius 1
— Let N = some large number (say 10000) and count =0

— Repeat the following procedure N times

» Generate two random numbers x and y between 0 and 1
(use the rand function)

» Check whether (x,y) lie inside the circle
* Increment count if they do

— Pi =4 *count/N

Empower. Partner. Lead

Ohio Supercomputer Center

public class AsyncPi {
public static def main(s: Array[String](!)):Void {

val samplesPerActivity = 10000;]?i-JALI)I)I‘)’(itllflti()Il
val numActivities = 8&;
val activityCounts = new Array[Double](l..numActivities, (Point)=>0.0);

finish for (activityID in 1..numActivities) {

async {
val [ActivityIndex] = activityID; * Array element per
val r = new Random(activityIndex); /i
for (1 in 1..samplesPerActivity) { aCtIVIty tO hOId Count
val x = r.nextDouble();
val y = r.nextDouble(); o AsynC creates
LI IRav A LU activities, finish for
activityCounts(CactivityID)++; (3()r]tr()|
}
} - .
} * Individual totals
! .
var globalCount:Double = 0.0; added Up by main
for (activityID in 1..numActivities) { aCtIVIty
globalCount += activityCounts(activityID);

}
val p1 = 4*(globalCount/(samplesPerActivity*numActivities as Double));

Console.OUT.println("With ”+<snip>+" points, the value of pi is " + pi);

A
=

42 Ohio Supercomputer Center

Empower. Partner. Lead

Prefix Sum: Shared Memory Algorithm

* Implemented in X10 using a single place

» Use doubling technique (similar to tree-based
reduction). Log,(n) steps, where

— Step 1: All i>1, a[i] = a[i] + ai-1:

— Step 2: All i>2, a[i] = a[i] + a[i-2]

— Step 3: All i>4, a[i] = a[i] + a[i-4], and so on...

* AsyncPrefixSum class inherits from PrefixSum
— Only have to update computeSum method!

4 S 6 7 8

7 9 11 13 15

10 14 18 22 26

> \\I //
-

U U [) (N W - N

WIW IWN
oo [0 W

10 15 21 28 36

Ohio Supercomputer Center

a9

public def computeSum()
{
val chunkSize = 4;
val tempArray = new Array[Int](l..prefixSumArray.size(), (Point)=>0);
val numSteps = <snip> as Int;
for ([stepNumber] in 1..numSteps) {
val stepWidth = Math.pow(2, (stepNumber - 1)) as Int;
val numActivities = Math.ceil(numChunks) as Int;

Console.OUT.println("numActivities = "+numActivities);
finish {
for ([activityId] in 1..numActivities) {
async {

for ((3) in low..h1i) {
tempArray(j) = prefixSumArray(j) + prefixSumArray(j-stepWidth);

Y //for j
} //async
¥ //for activityld
} //finish

« Example parallel implementation (not the best, but illustrative...)

* Fixed chunk size
— At each step, spawn an activity to update each chunk

» tempArray used to avoid race conditions
— Copied back to prefixSumArray at end of each step

A
=

44 Ohio Supercomputer Center

Empower. Partner. Lead

Conclusion

 Activities and places
« async, finish, at, atomic

« Examples of single place programs
— P1 approximation
— Prefix Sum

J \\IQ/,
-

Empower. Partner. Lead 45 Ohio Supercomputer Center

Empower. Partner. Lead,

Ohio Supercomputer Center

Module 4: X10 Places and DistArrays

Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

 Parallel Hello and Place objects
« Referencing objects in different places
 DistArrays (distributed arrays)

* Distributed memory (multi-place) Prefix Sum

H _H Vel _\\l/’_
3w v |

Empower. Partner. Lead 47 Ohio Supercomputer Center

class HelloWholeWorld {
public static def main(args:Array[String](1)):void {

for (var i:Int=0; i<Place.MAX_PLACES; i++) {
val val = 1 0 o Parallel Hello

async at (Place.places(iVal)) {
Console.OUT.println("Hello World from place "+here.id);
by

} Hello World from place ©

} Hello World from place 2

} Hello World from place 3
Hello World from place 1

® at — place shift
— Shift current activity to a place to evaluate an expression, then return
— Copy necessary values from calling place to callee place, discard when done

e async
— start new activity and don’t wait for it to complete

* Note that async at != at async

® async and at should be thought of as executing via closure

— We bundle up the values referenced in its code and create an anonymous
function (in at statement, the bundle is copied to the other place!)
— Can'’t reference external var in async or at, only val

— For example, iVal is a val copy of i for use in at. iis a var and would generate an
error

Empower. Partner. Lead 48 Ohio Supercomputer Center

class HelloWholeWorld {
public static def main(args:Array[String](1)):void {

for (var 1:Int=0; i<Place.MAX_PLACES; i++) { .
val iVl = i; " Place Objects

async at (Place.places(iVal)) {
Console.OUT.println("Hello World from place "+here.id);
by

} Hello World from place ©

} Hello World from place 2

} Hello World from place 3
Hello World from place 1

 Place objects have a field called id that contains
the place number

 here — Place object always bound to current
place

id: 0 id: 1
|_> here here 4_,
Place 0 Place 1
id: 2 id: 3
|_> here here <J
Place 2 Place 3 = @

Empower. Partner. Lead 49 Ohio Supercomputer Center

class Driver { .
public static def main(args:Array[String](1)):Void { Ob]eCtS
val firstCounter = new Counter(); .
val secondCounter = new Counter(5); (RCVICW ff()m MOdUle 2)
for (var 1:Int=0; 1<10; 1++) {

firstCounter.count();
secondCounter.count();

}
val firstValue = firstCounter.getCount();

val secondValue = secondCounter.getCount();

Counter

Console.OUT.println("First value = "+firstValue); Class Definitions
Console.OUT.println("Second value = "+secondValue); (static)
} } | counterValue | | 10 1
* Object instantiation with : Ee :: :
neW | count() | | |
I | etCount():In | | |
— firstCounter uses default R

constructor, secondCounter
uses initialization

counterValue 15

this(Void)

| |
| |
this(Int) | |
| |
| |

constructor ,

. count() I

- X1O haS garbage CO”eCt|On, getCount():Int I
so no malloc/free. Object

GC’ed when it leaves scope

il | [y | -

Empower. Partner. Lead 50 Ohio Supercomputer Center

public static def main(args:Array[String](1)):Void {
val secondCtr = (at (Place.places(1)) GlobalRef[Counter](new Counter(5)));
for (var 1:Int=0; 1<10; 1++) {

at (secondCtr.home) { . .
secondCtr().count(); Ob]eCtS 1n PlaCCS
}
¥
val secondValue = (at (secondCtr.home) secondCtr().getCount());
Console.OUT.println("Second value = "+secondValue); G unter
} (static)

* Objects instantiated in a place

— Access objects across places via
global references

« secondCtr example
— Object at Place 1, GlobalRef at Place 0 frstCourter

. I home | |
« GlobalRef object, say g o

— Contains home member: place

where original object is instantiated :

— Contains a serialized reference to the
original object

— Supplies reference to original object
through g.apply() method, often
abbreviate g(y

* g.apply() can only be called when Place 1
g.home == here

counterValue

this(Void)

count()

I | |
I | |
| this(Int) |
I | |
I | |

counterValue

this(Void)

count()

I | |
I | |
[this(Int) | |
I | |
I | |

getCount():Int

Empower. Partner. Lead 51 Ohio Supercomputer Center

public static def main(args:Array[String](1)):Void {
val arraySize = 12;

val R

: Region = 1..arraySize;
show("Dist.makeUnique() ", Dist.makeUnique());
show("Dist.makeBlock(R) ", Dist.makeBlock(R));

DistArray

show("Dist.makeBlock(R) lhere", Dist.makeBlock(R)Ilhere);
val testArray = DistArray.make[Int](Dist.makeBlock(R), ([1]:Point)=>1);
val localSum = DistArray.make[Int](Dist.makeUnique(), ((Point)=>0));

dhudak@dhudak-macbook-

Dist.makeUnique()
Dist.makeBlock(R)
Dist.makeBlock(R) lhere =

p
0
0

ro
1
0

47%> mpirun -np 4 Driver
2 3

0111222333
000

Distributions map regions to places

Dist factory methods — makeUnique, makeBlock
— Cyclic, block-cyclic distributions also supported

Dist (and range) restrictions using | operator
DistArray similar to Array instantiation

— Dist object must be provided in addition to base type and initialization function

DistArray name is visible at all places

ocaisum | [[o | || [o| [} [o] [] To
itestArrayI“1 o3| [[4]5]6|||[7[8]o]] 101112
Place 0 Place 1 Place 2 Place 3

Empower. Partner. Lead

52

A
=

Ohio Supercomputer Center

finish {
for (p in testArray.dist.places()) {

t) { .
as¥gﬁ 2locglPoint in testArraylhere) { DlstArray Example

localSum(p.id) += testArray(localPoint);

}
) ¥ ocaisum | | [6] || [15] || [2a] [] T[s3
} [testarray | | [1T2[3]||[4]s]e]||[7]8] o] [[10]11]12
var globalSum:Int = 0; Place 0 Place 1 Place 2 Place 3

for (p in localSum.dist.places()) {
globalSum += (at (p) localSum(p.id));

}
}

» Let’'s compute the global sum of testArray

« Step 1: sum the subarray at each place

— Every DistArray object has a member called dist

— Every dist object has a method called places that returns an Array
of Place objects

— Create an activity at each place using async

« Step 2: main activity at place 0
— retrieves local sum from each place and adds them together

Empower. Partner. Lead 53 Ohio Supercomputer Center

val counterArray = DistArray.make[Counter](Dist.makeUnique());
val counterArrayPlaces = counterArray.dist.places();
for (p 1n counterArrayPlaces) {

at (p) { . .
counterArray(p.id) = new Counter(p.1id); DlStAfl'ay Of Ob]eCtS

}
¥

for (p 1n counterArrayPlaces) {

at (p) {

val myCounter = counterArray(p.id);

val myCounterValue = myCounter.getCount();

Console.OUT.println("Start "+p.id+": myCounter = "+myCounterValue);
}

'« Allocate a DistArray of Counters

* [terate over all places of the DistArray,
constructing a Counter object at each place

\/, @

Empower. Partner. Lead 54 Ohio Supercomputer Center

Prefix Sum: Distributed Memory Algorithm

« Step 1: compute
prefix sum and total
at each place

« Step 2: each place
calculates its global
update (sum of
preceding totals)

. Stecjo 3: each place
ates its elements
W|th its global update

L1]2]3]4]

Total |I|
Global Update E
— —

|5 1678 |

Total |I|

Global Update E’
e —

[9 [10| 11 [12]

Total E

Global Update |I|
R —

Lt [3]e6 0]
Total
Global Update |I|
R —

| 5 | 11 [18 [26 |

Total

Global Update El
S —

| 9 [19[30] 42|

Total
Global Update E
— —

L1136 [10]
Total
Global Update |I|
e —

| 5 [11 [18] 26 |

Total
Global Update

| 9 |19 [30| 42 |

Total

Global Update

|13]6 |10]

Total

Global Update |I|
e —

[15 | 21 [28 | 36 |

Total

Global Update

| 45 | 55 | 66 | 78 |

Total

Global Update

o | A1/
:I:m: ¥ | S0

Empower. Partner. Lead 55 Ohio Supercomputer Center

public def computeSum()

{
finish {
for (p i1n prefixSumArray.dist.places()) {
async at (p) { Step 1
localSums(Chere.id) = 0;
var first : Boolean = true;
for ([1] in prefixSumArraylhere) {
localSums(Chere.i1d) += prefixSumArray(i);
1f (first) {
first = false;
¥
else {
prefixSumArray(i) = prefixSumArray(i) + prefixSumArray(i-1);

h
Yy //for 1

} //at

« Step 1 — compute prefix sum (and total) at each
place

* Two distributed arrays in object, prefixSumArray
and localSums

\/, @

56 Ohio Supercomputer Center

Empower. Partner. Lead

finish {
for (p in prefixSumArray.dist.places()) {

async at (p) {
val placeld = here.id;

var globalUpdate: Int = 0; Steps 2 and 3
for (var j:Int=0;j<placeld;j++) {
val valj = j;

globalUpdate += (at (Place.places()(valj)) localSums(Chere.id));
¥

for ((1) in prefixSumArray.distlhere) {
prefixSumArray(i) += globalUpdate;
¥ //for 1

« Step 2 — calculate global offset

— Place 3 needs to add totals from Place 0, 1 and 2

* Place.places methods used to obtain place
® at expression retrieves value

® valj needed for closure created at expression

« Step 3 — update array with global offset

\/, @

Empower. Partner. Lead 57 Ohio Supercomputer Center

Conclusion

 Place objects and here for multi-place
programming

* Global references
* Distributions map regions to places
 DistArray construction and access

* Distributed Prefix Sum algorithm

J \\IQ/,
-

Empower. Partner. Lead 58 Ohio Supercomputer Center

