
Module 1: X10 Overview
Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

• Workshop goals

• Partitioned Global Address Space (PGAS)
Programming Model

• X10 Project Overview

• My motivation for examining X10

• X10DT (briefly)

2

Workshop Goals and Prerequisites

• Provide rudimentary programming ability in X10
–  You won’t be an expert, but you won’t be baffled when

presented with code

• Describe X10 approaches for multilevel parallelism
through code reuse

3

Workshop Prerequisites

• Experience with parallel programming, either MPI
or OpenMP.

• Basic knowledge of Java (e.g., objects, messages,
classes, inheritance).

–  Online tutorials are available at
http://java.sun.com/docs/books/tutorial/

–  The “Getting Started” and “Learning the Java
Language” tutorials are recommended.

• Familiarity with basic linear algebra and matrix
operations.

4

PGAS Background: Global and Local Views

•  A parallel program consists of a set of threads and at least
one address space

•  A program is said to have a global view if all threads share
a single address space (e.g., OpenMP)

–  Tough to see when threads share same data
–  Bad data sharing causes race conditions (incorrect answers) and

communication overhead (poor performance)

•  A program is said to have a local view if the threads have
distinct address spaces and pass messages to
communicate (e.g., MPI)

–  Message passing code introduces a lot of bookkeeping to
applications

–  Threads need individual copies of all data required to do their
computations (which can lead to replicated data)

5

PGAS Overview

•  “Partitioned Global
View” (or PGAS)

–  Global Address Space:
Every thread sees
entire data set, so no
need for replicated data

–  Partitioned: Divide
global address space
so programmer is
aware of data sharing
among threads

•  Implementations
–  GA Library from PNNL
–  Unified Parallel C (UPC),

FORTRAN 2009
–  X10, Chapel

•  Concepts
–  Memories and structures
–  Partition and mapping
–  Threads and affinity
–  Local and non-local

accesses
–  Collective operations and

“Owner computes”

6

Software Memory Examples

•  Executable Image at
right

–  “Program linked, loaded
and ready to run”

• Memories
•  Static memory

•  data segment
•  Heap memory

•  Holds allocated structures
•  Explicitly managed by

programmer (malloc, free)
•  Stack memory

•  Holds function call records
•  Implicitly managed by

runtime during execution

7

Memories and Distributions
•  Software Memory

–  Distinct logical storage area in a computer program
(e.g., heap or stack)

–  For parallel software, we use multiple memories

•  In X10, a memory is called a place
•  Structure

–  Collection of data created by program execution
(arrays, trees, graphs, etc.)

•  Partition
–  Division of structure into parts

•  Mapping
–  Assignment of structure parts to memories

•  In X10, partitioning and mapping information for
an array are stored in a distribution

!"#$%&

!"#$%&'(%)*()%"

!

"

#

$

! "

$

8

Threads

•  Units of execution
•  Structured threading

–  Dynamic threads: program
creates threads during
execution (e.g., OpenMP
parallel loop)

–  Static threads: same
number of threads running
for duration of program

•  Single program, multiple data
(SPMD)

•  Threads in X10 (activities)
are created with async and
at

!"#$%&

9

Affinity and Nonlocal Access

•  Affinity is the association of a
thread to a memory

–  If a thread has affinity with a
memory, it can access its
structures

–  Such a memory is called a
local memory

•  Nonlocal access
–  Thread 0 wants part B
–  Part B in Memory 1
–  Thread 0 does not have

affinity to memory 1
•  Nonlocal accesses often

implemented via interprocess
communication – which is
expensive!

! "

$

%& %'

%(%)

! "

$

%& %'

%(%)

10

Collective operations and “Owner computes”

• Collective operations are performed by a set of
threads to accomplish a single global activity

–  For example, allocation of a distributed array across
multiple places

•  “Owner computes” rule
–  Distributions map data to (or across) memories
–  Affinity binds each thread to a memory
–  Assign computations to threads with “owner computes”

rule
•  Data must be updated (written) by a thread with affinity to the

memory holding that data

11

Threads and Memories for Different
Programming Methods

Thread
Count

Memory
Count

Nonlocal Access

Sequential 1 1 N/A
OpenMP Either 1 or p 1 N/A
MPI p p No. Message required.

CUDA 1 (host) +
p (device)

2 (Host +
device) No. DMA required.

UPC, FORTRAN p p Supported.
X10 n p Supported.

12

X10 Overview

•  X10 is an instance of the Asynchronous PGAS model
in the Java family

–  Threads can be dynamically created under programmer
control (as opposed to SPMD execution of MPI, UPC,
FORTRAN)

–  n distinct threads, p distinct memories (n <> p)

•  PGAS memories are called places in X10
•  PGAS threads are called activities in X10

•  Asynchronous extensions for other PGAS languages
(UPC, FORTRAN 2009) entirely possible…

13

X10 Project Status

•  X10 is developed by the IBM PERCS project as part of the
DARPA program on High Productivity Computing Systems
(HPCS)

•  Target markets: Scientific computing, business analytics
•  X10 is an open source project (Eclipse Public License)

–  Documentation, releases, mailing lists, code, etc. all publicly
available via http://x10-lang.org

•  X10 2.1.0 released October 19, 2010
–  Java back end: Single process (all places in 1 JVM)

•  any platform with Java 5
–  C++ back end: Multi-process (1 place per SMP node)

•  aix, linux, cygwin, MacOS X
•  x86, x86_64, PowerPC, Sparc

14

X10 Goals

•  Simple
–  Start with a well-accepted

programming model, build
on strong technical
foundations, add few core
constructs

•  Safe
–  Eliminate possibility of

errors by design, and
through static checking

•  Powerful
–  Permit easy expression of

high-level idioms
–  And permit expression of

high-performance programs

• Scalable
–  Support high-end

computing with millions
of concurrent tasks

• Universal
–  Present one core

programming model to
abstract from the
current plethora of
architectures.

From “An Overview of X10 2.0”, SC09 Tutorial

15

X10 Motivation

• Modern HPC architectures combine products
–  From desktop/enterprise market: processors, motherboards
–  HPC market: interconnects (IB, Myrinet), storage,

packaging, cooling

•  Computing dominated by power consumption
–  In desktop/enterprise market emergence of multicore

•  HPC will retain common processor architecture with enterprise
–  In HPC, we seek even higher flops/watt. Manycore is

leading candidate
•  nVidia Fermi: 512 CUDA cores
•  Intel Knights Corner: >50 Cores, (Many Integrated Core) MIC

Architecture (pronounced “Mike”)

16

X10 Motivation

• HPC node architectures will be increasingly
–  Complicated (e.g., multicore, multilevel caches, RAM

and I/O contention, communication offload)
–  Heterogenous (e.g, parallelism across nodes, between

motherboard and devices (GPUs, IB cards), among
CPU cores)

• Programming Challenges
–  exhibit multiple levels of parallelism
–  synchronize data motion across multiple memories
–  regularly overlap computation with communication

17

Every parallel architecture has a dominant
programming model

Parallel
Architecture

Programming
Model

Vector Machine
(Cray 1)

Loop vectorization
(IVDEP)

SIMD Machine
(CM-2)

Data parallel (C*)

SMP Machine
(SGI Origin)

Threads (OpenMP)

Clusters
(IBM 1350)

Message Passing
(MPI)

GPGPU
(nVidia Fermi)

Data parallel
(CUDA)

Accelerated
Clusters

Asynchronous
PGAS?

• Software Options
–  Pick existing model

(MPI, OpenMP)
•  Kathy Yelick has

interesting summary of
challenges here

–  Hybrid software
•  MPI at node level
•  OpenMP at core level
•  CUDA at accelerator

–  Find a higher-level
abstraction, map it to
hardware

18

Conclusions

• PGAS fundamental concepts:
–  Data: Memory, partitioning and mapping
–  Threads: Static/Dynamic, affinity, nonlocal access

• PGAS models expose remote accesses to the
programmer

• X10 is a general-purpose language providing
asynchronous PGAS

• Asynchronous PGAS may be a unified model to
address the upcoming changes in petascale and
exascale architectures

19

Module 2: X10 Base Language
Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

• How this tutorial is different

• X10 Basics, Hello World, mathematical functions

• Classes and objects

• Functions and closures

• Arrays

• Putting it all together: Prefix Sum example

21

How this tutorial is different

•  Lots of other X10 materials online
–  Mostly language overviews and project summaries

•  Best way to learn a language is to use it
–  Focus on working code examples and introduce language

topics and constructs as they arise

•  Focus on HPC-style numeric computing
• Won’t exhaustively cover features of the language

–  Interfaces, exceptions, inheritance, type constraints, …

• Won’t exhaustively cover implementations
–  Java back end, CUDA interface, BlueGene support, …

22

X10 Basics

• X10 is an object-oriented language based on Java

• Base data types
–  Non-numeric: Boolean, Byte, Char and String
–  Fixed point: Short, Int and Long
–  Floating point: Float, Double and Complex

• Top level containers: classes and interfaces,
grouped into packages

• Objects are instantiated from classes

23

Hello World

• Program execution starts with main() method
–  Only one class can have a main method

• Method declaration
–  Methods declared with def	
–  Objects fields either methods (function) or members

(data):
•  Access modifiers: public, private (like Java)
•  static declaration: field is contained in class and is

immutable
–  Function return type here is Void

•  I/O provided by library x10.io.Console

24

public class Hello {	
 public static def main(var args: Array[String](1)):Void {	
 Console.OUT.println("Hello X10 world");	
 }	
}

Hello World

• Variable Declarations: var <name> : <type>, like
var x:Int	

• Example of generic types (similar to templates)
–  Array (and other data structures) take a base type

parameter
–  For example Array[String], Array[Int],
Array[Double], …

• Also, we provide dimension of Array, so Array
[String](1) is a single-dimensional array of strings

25

public class Hello {	
 public static def main(var args: Array[String](1)):Void {	
 Console.OUT.println("Hello X10 world");	
 }	
}

•  X10 type casting (coercion) using as	
•  Calculate log2 of a number using log10

•  X10 math functions provided by Math library
•  val – declares a value (immutable)

–  Type inference used to deduce type, no declaration needed
–  X10 community says var/val = Java’s non‐final/final

•  Declare everything val unless you explicitly need var
–  Let the type system infer types whenever possible

26

public class MathTest {	
 public static def main(args: Array[String](1)):Void {	
 val w = 5;	
 val x = w as Double;	
 val y = 3.0;	
 val z = y as Int;	
 Console.OUT.println("w = " +w+ ", x = " +x+ ", y = " +y+ ", z = " +z);	
 val d1 = (Math.log(8.0)/Math.log(2.0)) as Int;	
 val d2 = Math.pow(2, d1) as Int;	
 Console.OUT.println("d1 = " + d1 + ", d2 = " + d2); 	
 }	
}

Types in X10

Classes

•  Instance declarations
allocated with each object
(e.g., counterValue)

•  Class declarations allocated
once per class
–  static	

•  this
–  val containing reference to

lexically enclosing class
•  Here, it is Counter

–  Constructors automatically
called on object instantiation

•  In Java, use Counter(), in X10,
use this()

27

public class Counter {	
 var counterValue:Int;	

 public def this() {	
 counterValue = 0;	
 }	

 public def this(initValue:Int) {	
 counterValue = initValue;	
 }	

 public def count() {	
 counterValue++;	
 }	

 public def getCount():Int {	
 return counterValue;	
 }	
}

!"#$%&'($)"

*&'($)"+,-') ./

$01#2+&134

$01#25($4

*&'($24

6)$%&'($2475($

%&'($)"
%-,##89)!(1$1&(#

2#$,$1*4

#)*&(3%&'($)"

*&'($)"+,-') .:

$01#2+&134

$01#25($4

*&'($24

6)$%&'($2475($

Objects

• Object instantiation with new	
–  firstCounter uses default

constructor, secondCounter
uses initialization constructor

–  X10 has garbage collection, so
no malloc/free. Object GC’ed
when it leaves scope

•  Example of C-style for loop
–  Modifying i, so use var

28

class Driver {	
 public static def main(args:Array[String](1)):Void {	
 val firstCounter = new Counter();	
 val secondCounter = new Counter(5);	
 for (var i:Int=0; i<10; i++) {	
 firstCounter.count();	
 secondCounter.count();	
 }	
 val firstValue = firstCounter.getCount();	
 val secondValue = secondCounter.getCount();	
 Console.OUT.println("First value = "+firstValue);	
 Console.OUT.println("Second value = "+secondValue);	
 }	
}

Arrays

•  Points – used to access arrays, e.g., [5], [1,2]
–  i and j assigned using pattern matching (i = 22, j = 55)

•  Regions – collection of points
–  One-dimensional 1..arraySize, Two-dimensional [1..100, 1..100]

•  Array constructor requires:
–  Region (1..arraySize)
–  Initialization function to be called for each point in array (Point)=>0

•  For loop runs over region of array
–  [i] is a pattern match so that i has type Int

29

public class Driver {	
 public static def main(args: Array[String](1)): Void {	
 val arraySize = 12; 	 	 	 	 	 	 		
 val regionTest = 1..arraySize;	 	 	 	 	 		
 val testArray = new Array[Int](regionTest, (Point)=>0);		
 for ([i] in testArray) {	
 testArray(i) = i; 	 	 	 	 	 		
 Console.OUT.println("testArray("+i+") = " + testArray(i)); 	 	

	 		
 }	
 val p = [22, 55];	
 val [i, j] = p;	

Functions

•  Anonymous function: (Point)=>0
–  Function with no name, just input type and return expression
–  Also called a function literal

•  Functions are first-class data – they can be stored in lists,
passed between activities, etc.
–  val square = (i:Int) => i*i;

•  Anonymous functions implemented by creation and
evaluation of a closure

–  An expression to be evaluated along with all necessary values
–  Closures very important under the hood of X10!

30

public class Driver {	
 public static def main(args: Array[String](1)): Void {	
 val arraySize = 12; 	 	 	 	 	 	 		
 val regionTest = 1..arraySize;	 	 	 	 	 		
 val testArray = new Array[Int](regionTest, (Point)=>0);		
 for ([i] in testArray) {	
 testArray(i) = i; 	 	 	 	 	 		
 Console.OUT.println("testArray("+i+") = " + testArray(i)); 	 	

	 		
 }	

Prefix Sum Object

•  Prefix Sum definition
–  Given a[1], a[2], a[3], … a[n]
–  Return a[1], a[1]+a[2], a[1]+a[2]+a[3], …, a[1]+...+a[n]

•  Example: PrefixSum object
–  Object holds an array
–  Methods include constructor, computeSum and str

•  Used as an educational example only
–  In real life, you’d use X10’s built-in Array.scan() method

31

public class Driver {	
 public static def main(args: Array[String](1)): Void {	
 val arraySize = 5; 	 	 	 	 	 	 		
 Console.OUT.println("PrefixSum test:");	
 val psObject = new PrefixSum(arraySize);	
 val beforePS = psObject.str();	
 Console.OUT.println("Initial array: "+beforePS);	
 psObject.computeSum();	
 val afterPS = psObject.str();	
 Console.OUT.println("After prefix sum: "+afterPS);	
 }	
} PrefixSum test:	

Initial array: 1, 2, 3, 4, 5	
After prefix sum: 1, 3, 6, 10, 15	

Prefix Sum Class

•  Full code in example
•  prefixSumArray is an instantiation variable, and local to

each PrefixSum object
•  this – initialization constructor creates array
•  computeSum method – runs the algorithm

32

public class PrefixSum {	

 val prefixSumArray: Array[Int](1);	

 public def this(length:Int) {	
 prefixSumArray = (new Array[Int](1..length, (Point)=>0));	
 for ([i] in prefixSumArray) {	
 prefixSumArray(i) = i;	
 }	
 }	
 public def computeSum()	
 {	
 for ([i] in prefixSumArray) {	
 if (i != 1) {	
 prefixSumArray(i) = prefixSumArray(i) + prefixSumArray(i-1);	
 }	
 }	
 }	

Conclusions

• X10 has a lot of ideas from OO languages
–  Classes, objects, inheritance, generic types

• X10 has a lot of ideas from functional languages
–  Type inference, anonymous functions, closures, pattern

matching

• X10 is a lot like Java
–  Math functions, garbage collection

• Regions and points provide mechanisms to
declare and access arrays

33

Module 3: X10 Intra-Place Parallelism
Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

• Parallelism = Activities + Places

• Basic parallel constructs (async, at, finish, atomic)

• Trivial parallel example: Pi approximation

• Shared memory (single place) Prefix Sum

35

Parallelism in X10

•  Activities
–  All X10 programs begin with a single

activity executing main in place 0
–  Create/control with at, async, finish,

atomic (and many others!)

•  Places hold activities and objects
–  class x10.lang.Place

•  Number of places fixed at launch time,
available at Place.MAX_PLACES	

•  Place.FIRST_PLACE is place 0
–  Launch an X10 app with mpirun

•  mpirun –np 4 HelloWholeWorld
•  Places numbered 0..3

36

!"#$%&' !"#$%&(

!"#$%&) !"#$%&*

+$,-.-,/

async

•  async S

  Creates a new child activity that
evaluates expression S
asynchronously

  Evaluation returns immediately

  S may reference vals in enclosing
blocks

  Activities cannot be named

  Activity cannot be aborted or
cancelled

Stmt ::= async(p,l) Stmt

cf Cilk’s spawn

// Compute the Fibonacci
// sequence in parallel.
def run() {
 if (r < 2) return;
 val f1 = new Fib(r-1),
 val f2 = new Fib(r-2);
 finish {
 async f1.run();
 async f2.run();
 }
 r = f1.r + f2.r;
}

Based on “An Overview of X10 2.0”, SC09 Tutorial

37

// Compute the Fibonacci
// sequence in parallel.
def run() {
 if (r < 2) return;
 val f1 = new Fib(r-1),
 val f2 = new Fib(r-2);
 finish {
 async f1.run();
 async f2.run();
 }
 r = f1.r + f2.r;
}

finish

•  L: finish S

  Evaluate S, but wait until all (transitively)
spawned asyncs have terminated.

  implicit finish at main activity

finish is useful for expressing
“synchronous” operations on
(local or) remote data.

Stmt ::= finish Stmt

cf Cilk’s sync

Based on “An Overview of X10 2.0”, SC09 Tutorial

38

at

•  at(p) S

  Evaluate expression S at place p

  Parent activity is blocked until S
completes

  Can be used to
  Read remote value

  Write remote value

  Invoke method on remote object

  As of X10 2.1.0, manipulating
objects between places requires
a GlobalRef (more on that next
module)

Stmt ::= at(p) Stmt

// Copy field f from a to b
// a and b are GlobalRefs
def copyRemoteFields(a, b) {
 at (b.home) b.f =
 at (a.home) a.f;
}

// Invoke method m on obj
// m is a GlobalRef
def invoke(obj, arg) {
 at (obj.home) obj().m(arg);
}

39

Based on “An Overview of X10 2.0”, SC09 Tutorial

// push data onto concurrent
// list-stack
val node = new Node(data);
atomic {
 node.next = head;
 head = node;
}

atomic

•  atomic S

  Evaluate expression S atomically

  Atomic blocks are conceptually
executed in a single step while other
activities are suspended: isolation
and atomicity.

  An atomic block body (S) ...
0  must be nonblocking
0  must not create concurrent

activities (sequential)
0  must not access remote data

(local)

// target defined in lexically
// enclosing scope.
atomic def CAS(old:Object,
 n:Object) {
 if (target.equals(old)) {
 target = n;
 return true;
 }
 return false;
}

Stmt ::= atomic Statement
MethodModifier ::= atomic

40

Based on “An Overview of X10 2.0”,
SC09 Tutorial

Single Place Example

• Monte Carlo approximation of

• Algorithm
–  Consider a circle of radius 1
–  Let N = some large number (say 10000) and count = 0
–  Repeat the following procedure N times

•  Generate two random numbers x and y between 0 and 1
(use the rand function)

•  Check whether (x,y) lie inside the circle
•  Increment count if they do

–  Pi ≈ 4 * count / N

Pi Approximation

• Array element per
activity to hold count

• Async creates
activities, finish for
control

•  Individual totals
added up by main
activity

42

public class AsyncPi {	
 public static def main(s: Array[String](!)):Void {	
 val samplesPerActivity = 10000;	
 val numActivities = 8;	
 val activityCounts = new Array[Double](1..numActivities, (Point)=>0.0);	
 finish for (activityID in 1..numActivities) {	
 async {	
 val [ActivityIndex] = activityID;	
 val r = new Random(activityIndex);	
 for (i in 1..samplesPerActivity) {	
 val x = r.nextDouble();	
 val y = r.nextDouble();	
 val z = x*x+y*y;	
 if ((x*x + y*y) <= 1.0) {	
 activityCounts(activityID)++;	
 }	
 }	
 }	
 }	
 var globalCount:Double = 0.0;	
 for (activityID in 1..numActivities) {	
 globalCount += activityCounts(activityID);	
 }	
 val pi = 4*(globalCount/(samplesPerActivity*numActivities as Double)); 	
 Console.OUT.println("With ”+<snip>+" points, the value of pi is " + pi);	
 }	
}

Prefix Sum: Shared Memory Algorithm

•  Implemented in X10 using a single place

• Use doubling technique (similar to tree-based
reduction). Log2(n) steps, where

–  Step 1: All i>1, a[i] = a[i] + a[i-1]
–  Step 2: All i>2, a[i] = a[i] + a[i-2]
–  Step 3: All i>4, a[i] = a[i] + a[i-4], and so on…

• AsyncPrefixSum class inherits from PrefixSum
–  Only have to update computeSum method!

43

1 2 3 4 5 6 7 8
1 3 5 7 9 11 13 15
1 3 6 10 14 18 22 26
1 3 6 10 15 21 28 36

•  Example parallel implementation (not the best, but illustrative…)
•  Fixed chunk size

–  At each step, spawn an activity to update each chunk

•  tempArray used to avoid race conditions
–  Copied back to prefixSumArray at end of each step

44

 public def computeSum()	
 {	
 val chunkSize = 4;	
 val tempArray = new Array[Int](1..prefixSumArray.size(), (Point)=>0);	
 val numSteps = <snip> as Int;	
 for ([stepNumber] in 1..numSteps) {	
 val stepWidth = Math.pow(2, (stepNumber - 1)) as Int;	
 val numActivities = Math.ceil(numChunks) as Int;	
 Console.OUT.println("numActivities = "+numActivities);	
 finish {	
 for ([activityId] in 1..numActivities) {	
 async {	
 for ((j) in low..hi) {	
 tempArray(j) = prefixSumArray(j) + prefixSumArray(j-stepWidth);	
 } //for j	
 } //async	
 } //for activityId	
 } //finish	

Conclusion

• Activities and places

•  async, finish, at, atomic

• Examples of single place programs
–  Pi approximation
–  Prefix Sum

45

Module 4: X10 Places and DistArrays
Dave Hudak
Ohio Supercomputer Center
“The X10 Language and Methods for Advanced HPC Programming”

Module Overview

• Parallel Hello and Place objects

• Referencing objects in different places

• DistArrays (distributed arrays)

• Distributed memory (multi-place) Prefix Sum

47

Parallel Hello

•  at – place shift
–  Shift current activity to a place to evaluate an expression, then return
–  Copy necessary values from calling place to callee place, discard when done

•  async
–  start new activity and don’t wait for it to complete

•  Note that async at != at async 	
•  async and at should be thought of as executing via closure

–  We bundle up the values referenced in its code and create an anonymous
function (in at statement, the bundle is copied to the other place!)

–  Can’t reference external var in async or at, only val	
–  For example, iVal is a val copy of i for use in at. i is a var and would generate an

error

48

class HelloWholeWorld { 	
 public static def main(args:Array[String](1)):void {	
 for (var i:Int=0; i<Place.MAX_PLACES; i++) {	
 val iVal = i;	
 async at (Place.places(iVal)) {	
 Console.OUT.println("Hello World from place "+here.id);	
 }	
 }	
 }	
}

Hello World from place 0	
Hello World from place 2	
Hello World from place 3	
Hello World from place 1

Place Objects

• Place objects have a field called id that contains
the place number

•  here – Place object always bound to current
place

49

class HelloWholeWorld { 	
 public static def main(args:Array[String](1)):void {	
 for (var i:Int=0; i<Place.MAX_PLACES; i++) {	
 val iVal = i;	
 async at (Place.places(iVal)) {	
 Console.OUT.println("Hello World from place "+here.id);	
 }	
 }	
 }	
}

Hello World from place 0	
Hello World from place 2	
Hello World from place 3	
Hello World from place 1

!"#$%&' !"#$%&(

!"#$%&) !"#$%&*

+,-&&)

.%/%

+,-&&'

.%/%

+,-&&(

.%/%

+,-&&*

.%/%

!"#$%&'($)"

*&'($)"+,-') ./

$01#2+&134

$01#25($4

*&'($24

6)$%&'($2475($

%&'($)"
%-,##89)!(1$1&(#

2#$,$1*4

#)*&(3%&'($)"

*&'($)"+,-') .:

$01#2+&134

$01#25($4

*&'($24

6)$%&'($2475($

Objects
(Review from Module 2)

• Object instantiation with
new	

–  firstCounter uses default
constructor, secondCounter
uses initialization
constructor

–  X10 has garbage collection,
so no malloc/free. Object
GC’ed when it leaves scope

50

class Driver {	
 public static def main(args:Array[String](1)):Void {	
 val firstCounter = new Counter();	
 val secondCounter = new Counter(5);	
 for (var i:Int=0; i<10; i++) {	
 firstCounter.count();	
 secondCounter.count();	
 }	
 val firstValue = firstCounter.getCount();	
 val secondValue = secondCounter.getCount();	
 Console.OUT.println("First value = "+firstValue);	
 Console.OUT.println("Second value = "+secondValue);	
 }	
}

!"#$%&'

!"#$%&(

!)*+,-./+%)

$-./+%)0#".% '(

+12*30-245

+12*36/+5

$-./+35

7%+,-./+3586/+

,-./+%)
,"#**&9%!/2+2-/*

3*+#+2$5

$-./+%)0#".% ':

+12*30-245

+12*36/+5

$-./+35

7%+,-./+3586/+

*%$-/4,+)
1-;%

Objects in Places

•  Objects instantiated in a place
–  Access objects across places via

global references

•  secondCtr example
–  Object at Place 1, GlobalRef at Place 0

•  GlobalRef object, say g
–  Contains home member: place

where original object is instantiated
–  Contains a serialized reference to the

original object
–  Supplies reference to original object

through g.apply() method, often
abbreviated g()

•  g.apply() can only be called when
g.home == here

51

public static def main(args:Array[String](1)):Void {	
 val secondCtr = (at (Place.places(1)) GlobalRef[Counter](new Counter(5)));	
 for (var i:Int=0; i<10; i++) {	
 at (secondCtr.home) {	
 secondCtr().count();	
 }	
 }	
 val secondValue = (at (secondCtr.home) secondCtr().getCount());	
 Console.OUT.println("Second value = "+secondValue);	
}	

DistArray

•  Distributions map regions to places
•  Dist factory methods – makeUnique, makeBlock	

–  Cyclic, block-cyclic distributions also supported
•  Dist (and range) restrictions using | operator
•  DistArray similar to Array instantiation

–  Dist object must be provided in addition to base type and initialization function
•  DistArray name is visible at all places

52

 public static def main(args:Array[String](1)):Void {	
 val arraySize = 12;	
 val R : Region = 1..arraySize;	
 show("Dist.makeUnique() ", Dist.makeUnique());	
 show("Dist.makeBlock(R) ", Dist.makeBlock(R));	
 show("Dist.makeBlock(R)|here", Dist.makeBlock(R)|here);	
 val testArray = DistArray.make[Int](Dist.makeBlock(R), ([i]:Point)=>i);	
 val localSum = DistArray.make[Int](Dist.makeUnique(), ((Point)=>0));	

dhudak@dhudak-macbook-pro 47%> mpirun -np 4 Driver	
Dist.makeUnique() = 0 1 2 3	
Dist.makeBlock(R) = 0 0 0 1 1 1 2 2 2 3 3 3	
Dist.makeBlock(R)|here = 0 0 0

!"#$%&' !"#$%&(!"#$%&) !"#$%&*

"+$#",-. '

/%0/122#3

' ' '

() * 4 5 6 7 8 9 (' ((()

DistArray Example

•  Let’s compute the global sum of testArray
•  Step 1: sum the subarray at each place

–  Every DistArray object has a member called dist
–  Every dist object has a method called places that returns an Array

of Place objects
–  Create an activity at each place using async	

•  Step 2: main activity at place 0
–  retrieves local sum from each place and adds them together

53

 finish {	
 for (p in testArray.dist.places()) {	
 async at (p) {	
 for (localPoint in testArray|here) {	
 localSum(p.id) += testArray(localPoint);	
 }	
 }	
 }	
 }	
 var globalSum:Int = 0;	
 for (p in localSum.dist.places()) {	
 globalSum += (at (p) localSum(p.id));	
 }	
 }

!"#$%&' !"#$%&(!"#$%&) !"#$%&*

"+$#",-. /

0%10233#4

(5)6 **

() * 6 5 / 7 8 9 (' ((()

DistArray of Objects

• Allocate a DistArray of Counters

•  Iterate over all places of the DistArray,
constructing a Counter object at each place

54

val counterArray = DistArray.make[Counter](Dist.makeUnique());	
val counterArrayPlaces = counterArray.dist.places();	
for (p in counterArrayPlaces) {	
 at (p) {	
 counterArray(p.id) = new Counter(p.id);	
 }	
}	
for (p in counterArrayPlaces) {	
 at (p) {	
 val myCounter = counterArray(p.id); 	 	 	 		
 val myCounterValue = myCounter.getCount();	
 Console.OUT.println("Start "+p.id+": myCounter = "+myCounterValue);	
 }	
}

Prefix Sum: Distributed Memory Algorithm

•  Step 1: compute
prefix sum and total
at each place

•  Step 2: each place
calculates its global
update (sum of
preceding totals)

•  Step 3: each place
updates its elements
with its global update

55

! " # $

%&'()*

%+*',)*-./0)(1

2 3 4 5

%&'()*

%+*',)*-./0)(1

6 !% !! !"

%&'()*

%+*',)*-./0)(1

! # 3 !%

!%&'()*

%+*',)*-./0)(1

2 !! !5 "3

"3&'()*

%+*',)*-./0)(1

6 !6 #% $"

$"&'()*

%+*',)*-./0)(1

! # 3 !%

!%&'()*

%+*',)*-./0)(1

!2 "! "5 #3

"3&'()*

!%+*',)*-./0)(1

$2 22 33 45

$"&'()*

#3+*',)*-./0)(1

! # 3 !%

!%&'()*

%+*',)*-./0)(1

2 !! !5 "3

"3&'()*

!%+*',)*-./0)(1

6 !6 #% $"

$"&'()*

#3+*',)*-./0)(1

Step 1

• Step 1 – compute prefix sum (and total) at each
place

• Two distributed arrays in object, prefixSumArray
and localSums

56

public def computeSum()	
{	
 finish {	
 for (p in prefixSumArray.dist.places()) {	
 async at (p) {	
 localSums(here.id) = 0;	
 var first : Boolean = true; 	 	 	 	 		
 for ([i] in prefixSumArray|here) {	
 localSums(here.id) += prefixSumArray(i);	
 if (first) {	
 first = false;	
 }	
 else {	
 prefixSumArray(i) = prefixSumArray(i) + prefixSumArray(i-1);	
 }	
 } //for i	
 } //at	

Steps 2 and 3

• Step 2 – calculate global offset
–  Place 3 needs to add totals from Place 0, 1 and 2

•  Place.places methods used to obtain place
•  at expression retrieves value
•  valj needed for closure created at expression

• Step 3 – update array with global offset

57

finish {	
 for (p in prefixSumArray.dist.places()) {	
 async at (p) {	
 val placeId = here.id;	
 var globalUpdate: Int = 0;	
 for (var j:Int=0;j<placeId;j++) {	
 val valj = j;	
 globalUpdate += (at (Place.places()(valj)) localSums(here.id));	
 }	
 for ((i) in prefixSumArray.dist|here) {	
 prefixSumArray(i) += globalUpdate;	
 } //for i	

Conclusion

• Place objects and here for multi-place
programming

• Global references

• Distributions map regions to places

• DistArray construction and access

• Distributed Prefix Sum algorithm

58

