
2007-12-18 OSC NEWS: Stocking the Toolbox: Tools No Cluster Admi... https://staff.osc.edu/cms/book/export/html/2096

1 of 6 12/18/2007 3:07 PM

2007-12-18 OSC NEWS: Stocking the Toolbox:
Tools No Cluster Admin Should Be Without
(Linux Magazine)

Stocking the Toolbox: Tools No Cluster Admin
Should Be Without
Tuesday, December 18th, 2007
By Troy Baer

Congratulations, you have your shiny brand new cluster installed! You've got your nodes and interconnect
up, your file systems mounted, your resource manager running jobs, and your third-party applications
ready. Users are chomping at the bit to get on the machine. Now comes the hard part: keeping the whole
thing running smoothly.

Setting up a cluster can be trying enough, and maintaining it can be even more difficult. The sheer number
of nodes involved in a large cluster can be daunting, as can users' expectations for quality of service.
However, cluster admins have a wealth of tools available to make life easier.

Remote Access

Unless you enjoy hanging out in your machine room with a keyboard and monitor on a crash cart, being
able to control your cluster nodes remotely is critical to keeping your sanity as a cluster admin.

Ideally, you should be able to run commands on your nodes, connect to their consoles, and even
power-cycle them, all from the comfort of your own office. A little time spent configuring these facilities
early on in your cluster's life cycle can save you considerable grief down the road.

Distributed Shell

Obviously, one of the most important things in administering a cluster is the ability to run commands on
many or all of the nodes in the cluster at once, which is usually called a distributed shell. You'll find a
huge number of distributed shell projects out there. They tend to overlap somewhat, but each one has its
own distinctive set of features. Here's a small sample of the projects that are available:

all: from the Ohio Supercomputer Center.
cexec: from Oak Ridge National Lab's Project C3.
dsh: from IBM's Cluster Systems Management (CSM) product.
Numerous dsh clones, including:

dsh: from the ClusterIt project.
dsh from Junichi Uekawa.

gexec: from the Ganglia project.
pbsdsh: from OpenPBS, PBS Pro, and TORQUE.
psh: from the xCAT project.

2007-12-18 OSC NEWS: Stocking the Toolbox: Tools No Cluster Admi... https://staff.osc.edu/cms/book/export/html/2096

2 of 6 12/18/2007 3:07 PM

Even though most distributed shells share the bulk of their features, many have distinguishing features that
may be of interest -- depending on the size and requirements of your system.

Parallelism

A good distributed shell should have options to execute a command either on one node at a time (so
you can watch the output for errors) or on all nodes in parallel (to save time).

Scalability

When you are running a command in parallel on hundreds of nodes, fast start-up is a very good
thing. A distributed shell that uses a binary tree structure to contact the nodes will outperform one
that contacts the nodes using a simple list; the binary tree should have an O(log2(n)) start-up time,
while the simple list will have an O(n) start up time.

Another scalability consideration is the maximum number of nodes on which you can run a
command concurrently. This is particularly an issue with rsh based distributed shells, as rsh tries to
use ports below 1024; this can limit it to operating on groups of 150-200 nodes at a time in parallel.

The flip side of scalability is that in many situations, you don't need to run a command on all the
nodes in your cluster, just some of them. A good distributed shell will give you a way to do that with
a simple, concise syntax.

Resource Manager Integration

It is often useful to have a distributed shell that has a certain level of integration with your resource
manager or batch system of choice. For instance, having the ability to run a command on all the
nodes assigned to a particular job can be extremely useful for diagnostic or monitoring purposes.

However, resource manager integration can also go too far; you don't want to have to rely on the
batch system to spawn administrative or diagnostic processes on nodes if that batch system gets into
a bad state.

Simplicity

The advanced functionality available in a distributed shell package should be weighed against the
complexity of its build and configuration process. If a distributed shell requires elaborate
configuration or multiple daemons running on all the nodes, you may want to consider using a
different package.

Serial Console Access

Sometimes you need to connect to a node out of band, without using its network interface -- for instance, if
a switch in the cluster's network infrastructure takes a dive, or if a node's network interface develops a
hardware problem.

The most common way of handling this is connect to the node's console over a serial line, using a device
called a serial console server. In the past, these were simply commodity computers with special
high-density serial port devices, but increasingly they are purpose-built embedded systems built into
rack-mount packaging.

In large clusters, you can end up with many serial console servers and a complex node-to-console-server
mapping. A common way to simplify this is to use a package called Conserver, which allows many serial

2007-12-18 OSC NEWS: Stocking the Toolbox: Tools No Cluster Admi... https://staff.osc.edu/cms/book/export/html/2096

3 of 6 12/18/2007 3:07 PM

concentrators to be accessed transparently from a single host. Conserver can manage who has read-only or
read-write access to the individual consoles, and it can also be used to log all the traffic going over a serial
line to a file.

Power Control

In some instances, all you can do for a node is reboot it or turn it off. To do that, you need some form of
remote power control, which generally comes in one of two flavors. One flavor of remote power control is
the service processor, which is a small embedded system built into the node that is accessible over the
serial line and can control power for the rest of the node as well as do diagnostics on it. Service processors
tend to be found in higher end server systems, and increasingly they support standardized access methods
like OpenIPMI.

The second flavor of remote power control is a network power controller, basically a power strip with a
small embedded system attached to it that can turn individual receptacles on the strip on or off. These are
usually accessible over the network using an SNMP interface.

However, not all hope is lost if the nodes in a cluster have neither service processors nor network power
controllers. So long as a node's serial console is available and the Linux kernel's "Alt-SysRq" functionality
is enabled, the node can be rebooted over the serial line.

Logging and Monitoring

Being able to control nodes remotely is half the battle, but the other half is knowing what is happening on
the nodes, both from a historical perspective and in real time. You can obtain this information via analysis
of log files and active monitoring of systems.

While most Linux distributions include some basic logging and monitoring tools like syslog, sysstat, and
psacct, these tools do not scale well to clusters with hundreds of nodes. However, other open source tools
are available that exhibit better scalability on large systems.

Logging and Log Analysis

The standard UNIX syslog facility can be configured to send log messages to a remote host. A common
practice is to designate one host as a syslog server for the cluster; in fact, a few vendors even have
purpose-built syslog server appliances that advertise much higher log message rates than commodity
solutions.

The larger problem is often analyzing the resulting logs to look for patterns and correlations. A number of
open source log analysis tools exist, such as Epylog, Loghound, Logwatch, and Sisyphus.

Of these, Sisyphus is probably the most interesting for large clusters, as it was designed specifically with
HPC environments in mind.

System Monitoring

An important part of system administration is system monitoring; that is, the ability to detect unusual
behavior on the system by regularly querying the state of the nodes. Much of this is repetitive and can be
automated, but eventually the information must be examined by an actual human being. The main
difficulty in system monitoring for large systems is in finding a balance between too little information and
too much.

Two of the leading open source system monitoring projects are Ganglia and Nagios. While these two

2007-12-18 OSC NEWS: Stocking the Toolbox: Tools No Cluster Admi... https://staff.osc.edu/cms/book/export/html/2096

4 of 6 12/18/2007 3:07 PM

projects have significant amounts of feature overlap, they have very different goals and approaches, and as
a result they complement each other well. Smaller clusters will be able to get by with one or the other, but
larger systems in particular can benefit from having both available.

Ganglia's major strength is its ability to collect and display metrics from large numbers of nodes over time.
Ganglia metrics can have either string or numeric (integer or floating point) values; for numeric metrics,
Ganglia can also produce plots of the metrics' time history over various ranges. Using this capability, an
administrator can often identify host-level issues such as CPU over-commitment, excessive swap, or full
file systems by simple visual inspection.

On the other hand, the major strength of Nagios is in monitoring not metrics but services. Like many
extensible systems, Nagios is built on the plugin model, with plugins that implement service tests such as
network connectivity or the existence of a process.

Nagios plugins can display one of four return statuses: OK, Warning, Critical, and Unknown. Unlike
Ganglia however, Nagios can be configured to provide notification via email if a service has been in the
Warning or Critical state for too long.

Nagios also has the concept of service dependencies, so that a service check can specify low-level services
upon which it depends. Careful configuration of Nagios service dependencies is critical to avoid being
deluged with extraneous notifications during problems with core system-wide services like network
connectivity or file system servers.

Job Monitoring

The vast majority of clusters are scheduled shared resource accessed through a resource manager (also
known as a batch system) such as TORQUE, Grid Engine, or LSF. These resource managers generally
include some level of job monitoring capabilities, with the commercial solutions often having slicker or
more sophisticated tools than the open source offerings. However, it is also not uncommon for sites to
implement additional job monitoring tools that reflect the realities of their environment.

For instance, the Ohio Supercomputer Center has a set of administrative tools for PBS and TORQUE
systems called pbstools. Included in these tools are two job monitoring tools: qps, which displays all the
processes associated with a job; and reaver, which identifies (and optionally terminates) user processes
which cannot be associated with a running job.

Application Performance Monitoring

Another important aspect of monitoring that has historically been difficult on Linux clusters is the ability
to measure hardware-level performance for arbitrary applications using the hardware performance counters
available on virtually all modern microprocessors.

This is something that traditional supercomputer vendors like Cray have done well for years, but Linux
finally is starting to catch up thanks to a portable standard interface for performance monitoring from the
University of Tennessee at Knoxville's Innovative Computing Lab called the Performance API (PAPI).

A number of portable performance measurement tools have been built on top of PAPI, perhaps most
notably PerfSuite
from the National Center for Supercomputing Applications. PAPI and friends are currently supported out
of the box for Linux on the IA64, PPC, and SPARC architectures.

On x86 and x86_64 systems however, using PAPI and friends is complicated by the fact that there is no
standard interface for hardware performance counter access in Linux for these architectures. In fact, there

2007-12-18 OSC NEWS: Stocking the Toolbox: Tools No Cluster Admi... https://staff.osc.edu/cms/book/export/html/2096

5 of 6 12/18/2007 3:07 PM

are two competing interfaces, perfctr and perfmon2, and neither is included with vanilla kernel.org kernels
or the kernel builds distributed by the various distributions. If you wish to use PAPI-based applications on
these systems, you will have to patch and recompile the kernel for your nodes.

However, there is still hope for hardware-level performance monitoring in situations where patching the
kernel to support PAPI is impossible or impractical. Most modern distributions include a system-wide
profiling tool called oprofile, which also has the ability to access hardware performance counters on a
system-wide basis.

Normally oprofile requires root access to start up and shut down profiling; however, since the job prologue
and epilogue run by most resource managers are also run as root, these processes can be used to perform
the requisite operations. The following examples are designed for TORQUE on a cluster of Opterons, but
they can be adapted to virtually any batch system or Linux architecture.

Example 1: TORQUE prologue/prologue.parallel fragment for configuring oprofile:

#!/bin/bash
Note: the event list will change depending on what processor family
you're on and what performance metrics you want to measure.
eventlist="
 --event=DISPATCHED_FPU_OPS:1000000:0x3f:0:1
 --event=L2_CACHE_MISS:1000000:0x07:0:1
 --event=L2_CACHE_FILL_WRITEBACK:1000000:0x03:0:1
 --event=DATA_PREFETCHES:1000000:0x02:0:1
 "
options="--separate=all"
opcontrol --start-daemon 2>/dev/null
opcontrol --setup $eventlist $options 2>/dev/null
opcontrol --reset 2>/dev/null
opcontrol --start 2>/dev/null

Example 2: TORQUE epilogue.parallel/epilogue fragment for shutting down oprofile:

#!/bin/bash
opcontrol --dump 2>/dev/null
opcontrol --stop 2>/dev/null
The performance counter data will be stored in an oprofile "session"
with the same name as the full PBS/TORQUE job id.
opcontrol --save=$1

Example 3: TORQUE epilogue fragment for processing job accounting and oprofile results:

#!/bin/bash
compute job walltime in seconds
walltime=$(echo $7 | tr , "\n" | grep walltime | \
 sed 's/^walltime=//' | awk -F : '{print 3600*$1+60*$2+$3}')
echo "----------"
echo $1 performance results:
echo $7 | tr , "\n"
/usr/local/sbin/perfreport -a $1 $walltime

2007-12-18 OSC NEWS: Stocking the Toolbox: Tools No Cluster Admi... https://staff.osc.edu/cms/book/export/html/2096

6 of 6 12/18/2007 3:07 PM

Here /usr/local/sbin/perfreport is a site-specific program that analyzes the performance data generated by
oprofile on all the nodes assigned to the job; it is necessarily dependent on which hardware performance
events are being counted, their overflow bucket sizes, and the desired metrics.

It should also be noted that oprofile will measure all activity on a node, so it is best to do this only in
situations where the nodes allocated to a job are exclusively for that job's use.

Conclusion

Obviously, a universe of choices are available for many of the types of tools discussed here, up to and
including rolling your own. Selecting the right set of tools for your system depends as much on your (and
your users') requirements as it does on the various packages' feature sets. In many cases, the best approach
is to narrow the list of candidates down to two or three packages and then evaluate those on your system.
Before you know it, you will have a Toolbox of that makes your job easier and your users happy!

Troy Baer has been a systems engineer at the Ohio Supercomputer Center since 1998.

http://www.linux-mag.com/microsites.php?site=business-class-hpc&sid=build&p=4658

