Impact of Router Queuing Disciplines on Multimedia QoE in IPTV Deployments

Prashanth Chandrasekaran
Microsoft

Joint work with:
Prasad Calyam, Ph.D., Gregg Trueb, Nathan Howes, Rajiv Ramnath, Ph.D.
Ohio Supercomputer Center
Ying Liu, Delei Yu, Lixia Xiong, Qi Wang, Daoyan Yang
Huawei Technologies

IEEE QoMEX Workshop, July 30th, 2009
Topics of Discussion

• Background and Motivation
• Testbed Setup and Methodology
• Performance Analysis
• Conclusion and Future Work
IPTV Background

• Internet TV (IPTV) is starting to be widely deployed on the Internet
 – Subscribers: France (4 Million), Korea (1.8 Million); Gartner estimates 49 Million world-wide subscribers by 2010
 – Will replace the Television technology established for the past 60 years
 • Cost savings (VoIP, IPTV and Internet bundles)
 • Increased accessibility (e.g. hand-holds)
 • Compatible with modern content distribution (e.g., social networks, online movie rentals)

• Challenge is to provide same if not better QoE than traditional TV
 – Providers need to understand user, application, and network factors to ensure their services satisfy end users’ expectations of quality
Study Motivation

• Many earlier studies have studied factors that affect multimedia QoE
 – [Muntean, et. al.] [Lu, et. al.,] High activity level video more sensitive to network congestion by 1 to 10% compared to Low activity level video
 – [Ghanbari, et. al.] Performance of MPEG and H.26x codecs for multi-resolution video

• This paper has early results of our IPTV multimedia QoE study
 – We show the impact of network QoS on multimedia QoE for router queuing disciplines: (i) Packet-ordered FIFO, and (ii) Time-ordered FIFO
 – We develop two novel metrics: “perceptible impairment rate” (User-level), and “frame packet loss” (Network-level)
 – For PFIFO and TFIFO paths, we use the metrics to develop mappings of Good, Acceptable and Poor user QoE grades to network QoS levels
 – Within the GAP network levels, we present analysis of the interplay of user and application factors under PFIFO and TFIFO queuing disciplines

• Our findings will help content/network providers, and app. developers
Router Queuing Disciplines

- **PFIFO** – packet egress of a flow is ordered based on packet sequence numbers
- **TFIFO** – packet egress is ordered based on packet timestamps
- Major difference is in the handling of inter-packet jitter
 - Iperf (10 Mbps UDP mode) and Ping experiments with Netem network emulator

<table>
<thead>
<tr>
<th>Netem Configured</th>
<th>Iperf Measured</th>
<th>Ping Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ms</td>
<td>6 ms</td>
<td>6 ms</td>
</tr>
<tr>
<td>18 ms</td>
<td>18 ms</td>
<td>17 ms</td>
</tr>
<tr>
<td>75 ms</td>
<td>75 ms</td>
<td>69 ms</td>
</tr>
<tr>
<td>120 ms</td>
<td>120 ms</td>
<td>110 ms</td>
</tr>
</tbody>
</table>

Table 2. End-to-end jitter measurements under PFIFO

<table>
<thead>
<tr>
<th>Netem Configured</th>
<th>Iperf Measured</th>
<th>Ping Measured</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 ms</td>
<td>1.861 ms</td>
<td>6 ms</td>
</tr>
<tr>
<td>18 ms</td>
<td>1.891 ms</td>
<td>16 ms</td>
</tr>
<tr>
<td>75 ms</td>
<td>1.494 ms</td>
<td>61 ms</td>
</tr>
<tr>
<td>120 ms</td>
<td>1.056 ms</td>
<td>105 ms</td>
</tr>
</tbody>
</table>
Topics of Discussion

• Background and Motivation
• Testbed Setup and Methodology
• Performance Analysis
• Conclusion and Future Work
IPTV Testbed Components
Component Configurations in our Study

Codec Combinations
- MPEG2 Video – MPEG2 Audio
- MPEG4 Video – AAC Audio
- H.264 – AAC Audio

Video Resolutions
- QCIF (177X140), QVGA (340X240), SD (720X480), HD (1280X720)

Peak Encoding Bit Rates

<table>
<thead>
<tr>
<th>Resolution</th>
<th>Peak Encoding Bit Rates (bps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCIF (177 X 140)</td>
<td>32K, 64K, 128K, 256K, 512K</td>
</tr>
<tr>
<td>QVGA (340 X 240)</td>
<td>128K, 192K, 256K, 512K, 768K</td>
</tr>
<tr>
<td>SD (720 X 480)</td>
<td>512K, 1M, 2M, 3M, 5M</td>
</tr>
<tr>
<td>HD (1280 X 720)</td>
<td>1M, 2M, 5M, 8M, 12M</td>
</tr>
</tbody>
</table>

Video Sequences

- **Low Activity Level:** Talking-head (e.g. *Kelly*);
- **Medium Activity Level:** Talking-head with sudden changes (e.g. *Wanted*);
- **High Activity Level:** Rapid scene changes (e.g. *Timelapse*)

NOTE: Video sequences produced by us with audio + video and ~16 seconds duration

Protocols
- UDP/RTP transport with MPEG-TS container format

Caching/Buffering at Client
- 0 seconds i.e., no caching/buffering
Objective QoE Metrics

• Perceptible Impairment Rate (PIR) events/sec
 – Sum of the audio impairment events (e.g., dropouts, echoes) and video impairment events (e.g., tiling, frame freezing, jerkiness, blur) counted by two human observers at the receiver-end (one ‘listener’ for audio and one ‘viewer’ for video) divided by the length of the video clip

• Frame Packet Loss (FPL) %
 – Percentage of the number of packets lost (audio and video combined) in a frame
 – Calculated from the traffic traces as a ratio of number of packets lost to the number of frames in a video clip

• We used both FPL and PIR metrics interchangeably to support our analysis of the factors that impact multimedia QoE
Topics of Discussion

• Background and Motivation
• Testbed Setup and Methodology
• Performance Analysis
• Conclusion and Future Work
QoE Grades Mapping to QoS Levels

• For systematically analyzing multimedia QoE, major challenge is to deal with the large sample space of network health conditions
 – [Claypool, et. al.] [Calyam, et. al.] and other empirical studies have shown multimedia QoE tends to be in Good, Acceptable or Poor (GAP) grades of subjective user perception for certain ranges of network QoS levels

• We determined GAP ranges of jitter and loss for the various resolutions
 – Gradually increased one of the QoS metric (i.e., jitter or loss) levels till PIR measurements crossed thresholds for GAP QoE grades.
 – Threshold values: PIR ≤ 0.2 for Good grade, ≤ 1.2 for Acceptable grade, and >1.2 for Poor grade
 – We found that loss characteristics were independent of the queuing discipline (i.e., loss GAP ranges are the same for PFIFO and TFIFO)

Fig: Loss GAP levels for SD resolution
GAP Ranges under PFIFO and TFIFO

Table: Jitter and Loss GAP ranges under PFIFO resolution

<table>
<thead>
<tr>
<th>Display</th>
<th>Metric</th>
<th>Good</th>
<th>Acceptable</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCIF</td>
<td>Jitter (ms)</td>
<td>[0 - 200)</td>
<td>(200 - 400)</td>
<td>(> 400]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 2)</td>
<td>(2 - 4.4)</td>
<td>(> 4.4]</td>
</tr>
<tr>
<td>QVGA</td>
<td>Jitter (ms)</td>
<td>[0 - 200)</td>
<td>(200 - 350)</td>
<td>(> 350]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 1.4)</td>
<td>(1.4 - 2.8)</td>
<td>(> 2.8]</td>
</tr>
<tr>
<td>SD</td>
<td>Jitter (ms)</td>
<td>[0 - 175)</td>
<td>(175 - 300)</td>
<td>(> 300]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 0.6)</td>
<td>(0.6 - 2.5)</td>
<td>(> 2.5]</td>
</tr>
<tr>
<td>HD</td>
<td>Jitter (ms)</td>
<td>[0 - 125)</td>
<td>(125 - 225)</td>
<td>(> 225]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 0.3)</td>
<td>(0.3 - 1.3)</td>
<td>(> 1.3]</td>
</tr>
</tbody>
</table>

Table: Jitter and Loss GAP ranges under TFIFO resolution

<table>
<thead>
<tr>
<th>Display</th>
<th>Metric</th>
<th>Good</th>
<th>Acceptable</th>
<th>Poor</th>
</tr>
</thead>
<tbody>
<tr>
<td>QCIF</td>
<td>Jitter (ms)</td>
<td>[0 - 50)</td>
<td>(50 - 80)</td>
<td>(> 80]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 2)</td>
<td>(2 - 4.4)</td>
<td>(> 4.4]</td>
</tr>
<tr>
<td>QVGA</td>
<td>Jitter (ms)</td>
<td>[0 - 40)</td>
<td>(40 - 70)</td>
<td>(> 70]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 1.4)</td>
<td>(1.4 - 2.8)</td>
<td>(> 2.8]</td>
</tr>
<tr>
<td>SD</td>
<td>Jitter (ms)</td>
<td>[0 - 30)</td>
<td>(30 - 60)</td>
<td>(> 60]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 0.6)</td>
<td>(0.6 - 2.5)</td>
<td>(> 2.5]</td>
</tr>
<tr>
<td>HD</td>
<td>Jitter (ms)</td>
<td>[0 - 20)</td>
<td>(20 - 50)</td>
<td>(> 50]</td>
</tr>
<tr>
<td></td>
<td>Loss (%)</td>
<td>[0 - 0.3)</td>
<td>(0.3 - 1.3)</td>
<td>(> 1.3]</td>
</tr>
</tbody>
</table>
Salient Observations Discussion

• Higher resolutions are more sensitive to degrading network QoS
 – Evident from the narrow ranges of jitter and loss when compared to lower resolutions
 – E.g., the loss range for Good grade is [0 - 0.3) for HD, whereas the same for QCIF is [0 - 2)
 – Conclusion: Higher resolution streams in IPTV deployments demand notably higher QoS levels than lower resolution streams

• PFIFO queuing makes the IPTV streams more tolerant to network jitter compared to TFIFO
 – Evident from the higher ranges of jitter at all resolutions
 – E.g., the jitter range for Good grade is [0 - 175) for SD under PFIFO, whereas the same for TFIFO is [0 - 30)
 – Conclusion: Having PFIFO in routers at congestion points in the network or at the edges of access networks can:
 • Reduce the burden of ordering packets for media player playback at the consumer sites
 • Significantly increases the multimedia QoE resilience at the consumer sites towards higher network jitter levels
User and Application Factors Interplay

- PIR increases as the bit rate increases under both PFIFO and TFIFO.
- For a given bit rate, PIR increases as the activity level increases.
- Impact of activity level and bit rate on the PIR is similar under PFIFO and TFIFO (i.e., independent of the queuing discipline).
- PIR has direct correlation with the corresponding FPL under both PFIFO and TFIFO.

![Fig: Under PFIFO; MPEG-2 audio and video; AA Network Condition](image1)

![Fig: Under TFIFO; AAC audio and MPEG-4 video; AA Network Condition](image2)
Salient Observations Discussion

• Activity level is a more dominant factor than bit rate under both PFIFO and TFIFO
 – ‘Low Bit Rate with High Activity Level’ clips have greater PIR and FPL than ‘High Bit Rate with Low Activity Level’ clips under same network condition
 – **Conclusion:** For streaming a high activity level clip, choose a lower peak encoding rate rather than a higher rate under adverse network conditions

Fig: PIR Comparison under TFIFO; AAC audio and MPEG-4 video; AA Network Condition

Fig: FPL Comparison under TFIFO; AAC audio and MPEG-4 video; AA Network Condition
Topics of Discussion

• Background and Motivation
• Testbed Setup and Methodology
• Performance Analysis
• Conclusion and Future Work
Conclusion and Future Work

• Paper Contributions
 – Studied the impact of network QoS on multimedia QoE for: (i) Packet-ordered FIFO, and (ii) Time-ordered FIFO router queuing disciplines
 – Used novel metrics: (i) PIR, and (ii) FPL to develop mappings of GAP user QoE grades to network QoS levels, for both PFIFO and TFIFO
 – Within the GAP network levels, analyzed the interplay of user and application factors under PFIFO and TFIFO

• Future Work
 – Develop an online multimedia QoE estimation model that can be used to monitor and adapt system and network resources in IPTV deployments
 – Contribute findings to IPTV industry forums such as Video Quality Experts Group (VQEG), International Telecommunications Union (ITU-T), Alliance for Telecommunications Industry Solutions (ATIS)
Thank you for your attention!