
OnTimeDetect: Dynamic Network Anomaly
Notification in perfSONAR Deployments

Prasad Calyam, Jialu Pu, Weiping Mandrawa, Ashok Krishnamurthy

Ohio Supercomputer Center/OARnet, The Ohio State University,
{pcalyam, jpu, ashok}@osc.edu; mandrawa@oar.net

Abstract—To monitor and diagnose bottlenecks on network
paths used for large-scale data transfers, there is an increasing
trend to deploy measurement frameworks such as perfSONAR.
These deployments use web-services to expose vast data archives
of current and historic measurements, which can be queried
across end-to-end multi-domain network paths. Consequently,
there has arisen a need to develop automated techniques and
intuitive tools that help analyze these measurements for detecting
and notifying prominent network anomalies such as plateaus in
both real-time and offline manner. In this paper, we present a
dynamically adaptive plateau-detection (APD) scheme and its
implementation in our “OnTimeDetect” tool to enable consumers
of perfSONAR measurements within the data-intensive scientific
communities in overcoming their existing limitations of network
anomaly detection and notification. We empirically evaluate our
APD scheme in terms of accuracy, agility and scalability by
using measurement traces collected by OnTimeDetect tool from
worldwide perfSONAR deployments in HPC communities.

I. I NTRODUCTION

Scientific communities involved in major simulation and
experimental activities involving the Teragrid [1] and Large
Hadron Collider (LHC) [2] are generating massive data sets on
a regular basis. These data sets are being transferred to various
labs and universities at several Gbps speeds on networks
that span across continents. Given the real-time consumption
demands of the data and the substantial investments made
for the network infrastructure to support the data transfers,
there is a rapidly increasing trend to deploy instrumentation
and measurement frameworks such as perfSONAR [3]. These
frameworks assist in measurement data collection, storageand
dissemination for monitoring and diagnosing bottlenecks that
hinder end-to-end data transfer speeds. In addition, the frame-
works help in provisioning end-to-end network measurements
that can be used to understand how network performance
changes due to end-user behavioral patterns (e.g., high volume
flows, flash crowds), network fault events (e.g., misconfigura-
tions, outages, malicious attacks) and cross-traffic congestion
impact end-application and protocol behavior [4].

The emergence of perfSONAR deployments in the scien-
tific communities that rely on high performance computing
(HPC) resources is recent and revolutionary in the area of
network troubleshooting. This is because the deployments
support web-services to publish and subscribemulti-domain
network measurements of various network health metrics such

This material is based upon work supported by the Department
of Energy under Award Number: DE-SC0001331. The views and
opinions of authors expressed herein do not necessarily state or reflect
those of the United States Government or any agency thereof.

as bandwidth, delay, jitter and loss. The web-service schemas
have been standardized in the Open Grid Forum [5] and have
been adopted in frameworks such as OSCARS [6], Cricket-
SNMP [7], and PingER [8].

Numerous perfSONAR deployments are sampling both ac-
tive and passive measurements of various metrics several times
a day. They are exposing these collected measurements via
web-services in the form of vast data archives of current and
historic measurements on national and international backbones
(e.g., ESnet, Internet2, GEANT, SWITCH). The consumers of
these measurements (e.g., network operators, researchersin
scientific disciplines) are faced with the challenge to analyze
and interpret the vast measurement data sets across end-to-end
multi-domain network paths with minimal human inspection.
They direly need automated techniques and intuitive tools to
query, analyze, detect and notify prominent network perfor-
mance anomalies such as plateaus that hinder data transfer
speeds. Timely and accurate anomaly notification can lead to
quicker resolution of network faults, and thus proactivelypre-
vents end-users experiencing annoyingly slow data transfers on
well-provisioned high-speed networks. In addition, they need
effective techniques and tools to support network anomaly
detection and notification in both real-time and offline manner
at multi-resolution timescales.

There have been several recent network anomaly detection
studies that utilize various statistical and machine learning
techniques such as: principal component analysis [9], wavelet
analysis [10], Kalman filter [11], covariance matrix analy-
sis [12], and online change-point detection [13] [14]. Of these
schemes, a plateau-detector scheme [13] that belongs in the
change-point detection category has been found to be relatively
more effective [15] for routine network performance monitor-
ing due to its low complexity, ease of implementation and
effectiveness. It has been adopted by large-scale monitoring
deployments such as NLANR AMP [13] and SLAC IEPM-
BW [14], which can be considered as predecessors to the
perfSONAR deployments.

However, faithful adoption of the plateau-detectors used
in the predecessors has limitations for perfSONAR users.
The NLANR AMP and SLAC IEPM-BW deployments used
static configurations of the salient threshold parameters in
the variants of the plateau-detection schemes they employed.
Specifically, they used static configuration of “sensitivity”
and “trigger elevation” threshold parameters for increasing
the probability of anomaly event detection while at the same
time, decreasing the probability of false alarms. The sensitivity
parameter is used to specify the magnitude of plateau change

that may result when an anomaly event on a network path is
to be triggered. The trigger elevation parameters are used to
temporarily increase the thresholds to avoid repeated triggers
for a brief period after an anomaly event has been detected.
Due to the static configurations in earlier frameworks, the
sensitivity and trigger elevation threshold parameters ofthe
static plateau-detection(SPD) schemes need to be manually
calibrated toaccuratelydetect plateaus in different measure-
ment sample profiles on network paths. Such a laborious
process for accurate anomaly detection is impractical for large-
scale monitoring infrastructures involving large numbersof
end-to-end network paths with dynamically changing traffic
characteristics. Another anomaly detection short-comingin
earlier large-scale monitoring deployments is that the SPD
scheme implementations wereembeddedwithin their deploy-
ment software. Hence, SPD implementations are not amenable
for network paths monitoring customization and drill-down
analysis of anomaly events by consumers of web-service
enabled perfSONAR measurement data sets.

In this paper, we presenta novel, dynamically adaptive
plateau-detection (APD) scheme and its implementation in
our “OnTimeDetect” tool to enable the rapidly growing con-
sumers of perfSONAR measurements (e.g., network operators,
researchers in scientific disciplines) within the data-intensive
scientific communities in overcoming the existing limitations
of network anomaly detection and notification. To dynamically
configure thresholds for the “sensitivity” and “trigger eleva-
tion” parameters in our APD scheme, we applyreinforcement
learning that guides the learning process based on partially
available Markov Decision Processes [12]. Our premise is that
the raw measurements just after an anomaly event provide di-
rect intelligence about the anomaly event itself, and leveraging
them for reinforcement of the machine learning (to compare
statistics of historic and current measurement samples for
detecting change points) can make the anomaly detection more
robust and accurate. Based on a systematic study of anomaly
events in real and synthetic measurement traffic traces, we
observe thatvariance of the network performance just after
an anomaly event is the critical statistic that can be used for
reinforcement to accurately trigger an anomaly. Leveraging
this observation, we derive closed-form expressions using
statistical curve-fitting principles for dynamically determining
thresholds of sensitivity and trigger elevation parameters in our
APD scheme. Thus, our APD scheme avoids manual calibra-
tion of sensitivity and trigger elevation threshold parameters
used in SPD schemes for different profiles of measurement
samples on network paths. It achieves low false alarm rates
at the cost of a fractional increase in detection time that is
needed for the reinforcement learning.

We empirically evaluate our APD scheme using an imple-
mentation of the “OnTimeDetect” tool that we have developed
as an added contribution of this paper. The OnTimeDetect tool
capabilities include: (i) anomaly monitoring customization of
large measurement topologies, and (ii) drill-down analysis of
anomaly events in vast measurement archives in both real-time
and offline manner at multi-resolution timescales. We remark
that the OnTimeDetect tool is the first to perform a large-
scale network performance anomaly detection analysis lever-

aging perfSONAR web-services. We use the OnTimeDetect
tool to query vast measurement data archives of current and
historic measurements from several worldwide perfSONAR
deployments. More specifically,the real-network measurement
data in this paper has been queried by our OnTimeDetect tool
from 65 sites that monitor approximately 480 network paths
connecting various HPC communities (i.e., universities, labs,
HPC centers) over high-speed network backbones that include
ESnet, Internet2, GEANT, CENIC, KREONET, LHCOPN and
many others. Our evaluation metrics include anomaly detection
accuracy, agility andscalability.

Through our accuracy evaluations, we show that our APD
scheme outperforms the SPD scheme in detecting anomaly
events and avoiding false alarms. We compare the APD and
SPD scheme accuracy results in terms of the three metrics:
success ratio, false positive ratio, and false negative ratio.
Note that a false-positive trigger is one that gets reportedwhen
there is no actual anomaly event, whereas, a false-negative
trigger is one that does not get reported when in fact there is
an actual anomaly event.

Next, through our agility evaluations, we show how the
anomaly detection timesusing our APD scheme varies across
perfSONAR deployments, and is on the order of one or
more days. The reason for these variations and long detection
times is mainly due to the currently chosen average periodic
(a.k.a. stratified random) sampling patterns and frequencies in
the perfSONAR deployments. We demonstrate that by using
adaptive sampling in perfSONAR deployments, we can reduce
the anomaly detection times to be on the order of a few hours,
and inturn lessen the detection time tradeoff that is neededfor
reinforcement learning in our APD scheme.

Lastly, through our scalability evaluations, we calculatethe
averageanalysis timeper-site to sequentially detect anomalies
on a large number of perfSONAR monitored paths. We ob-
serve that the analysis times are on the order of tens of seconds
for multi-resolution timescale queries. We define analysis
time for a measurement archive as the sum of the times
taken for perfSONAR web-service processing, measurement
archive transfer and run time of the APD scheme on the
measurement archive. We demonstrate that by using a parallel-
query mechanism in the OnTimeDetect tool, we can speedup
the average analysis time per-site by (40 - 60)%, and inturn
improve the OnTimeDetect tool user experience during online
drill-down analysis.

The remainder paper organization is as follows: Section 2
describes related work. Section 3 explains the SPD scheme and
illustrates its limitations. Section 4 details our APD scheme.
Section 5 discusses our OnTimeDetect tool implementation
of the APD scheme and the performance evaluation with
perfSONAR datasets. Section 6 concludes the paper.

II. RELATED WORK

It is common practice even today to rely on user-defined
monitor thresholds to detect and notify anomalies [7]. The
thresholds can be exact values (e.g., notify anomaly if de-
lay exceeds 50ms on a network path) or relations that use
differences between temporally distinct values for the same
data source or a secondary data source (e.g., notify anomaly

if difference in TCP throughput changes by 25%). Obviously,
such user-defined threshold based methods do not consider any
network path’s inherent behavior, which has unique variability
at any given time instant. Hence, they are prone to high
false alarm rates. To adapt the anomaly detection to handle
the unique variability on a network path, mean± standard
deviation (MSD) methods have been employed, where the
thresholds are determined based on a moving window sum-
mary of raw measurements. However, such anomaly detec-
tion methods are not robust to outliers that are common in
network measurements. The outliers are typically caused by
intermittent spikes, intermittent dips, and bursts in network
performance, which are typically not of interest as anomaly
events.

The authors in [9] use principal component analysis princi-
ples and the authors in [10] uses wavelet analysis for detecting
network performance anomalies. Both these studies involve
offline analysis and focus on detecting anomalies in passive
measurements at a network link basis. Hence, they are not suit-
able for real-time monitoring of anomalies pertaining to active
measurements across end-to-end network paths, which are of
greater interest in the context of bulk-data transfer application
flows that traverse multiple links. The authors in [11] attempt
to overcome the link basis limitation by creating a traffic
matrix of all links within an enterprise network domain. They
employ a Kalman-filter based anomaly detection scheme that
filters out the network norm by comparing future predictions
of the traffic matrix state to an inference of the actual traffic
matrix obtained from recent measurements. The limitation of
employing such a scheme in data-intensive communities arises
due to the fact that bulk-data transfer application flows traverse
multiple links across multiple domains. Hence, the traffic
matrix sizes can become unwieldy very quickly. Moreover,
it is not generally feasible to obtain link-level information in
multi-domain scenarios due to policy limitations.

In [17], an adaptive fault detector algorithm is proposed
that determines the baseline for network norm in local area
networks using a stochastic approximation of the maximum
likelihood function of recent performance samples. Abrupt
jumps in means of local area network metrics (e.g., ARP
broadcast packets, TCP connections to a web-server) are
treated as anomalies. This scheme that is based on online
change-point detection is not suitable for wide area network
monitoring because it assumes that the data sets comprise
of k-variate Gaussian distributions that are common in local
area network data sets. Authors in [18] also use sequential
change point detection principles to detect anomalies when
correlated changes occur in various network health metrics
collected along a network path.

There are also several related studies that use ma-
chine learning techniques for unsupervised anomaly detec-
tion [19] [20] [13] [14]. Frameworks such as NLANR
AMP [13] and SLAC IEPM-BW [14] have used variants of
the plateau-detector because it is well suited for real-time
monitoring of anomalies pertaining to active measurements
across end-to-end network paths. Specifically, it uses unsuper-
vised machine learning that relies on raw measurements and
dynamic network norm estimation. It also has low complexity,

Fig. 1. Plateau-detector block diagram

and is relatively easy to implement in large-scale network
monitoring frameworks. Moreover, it has been shown to be
reasonably effective for monitoring anomalies of active mea-
surements comprising of end-to-end paths across multi-domain
paths in the NLANR AMP and SLAC IEPM-BW frameworks
for measurements collected over several years.

III. PLATEAU ANOMALY DETECTION

A. Plateau-Detector Overview

The description of the basic plateau-detector algorithm
implemented in [13] and [14] is as follows. The algorithm
is an enhanced version of the MSD method. In the MSD
method, the first step is to determine the network health norm
by calculating the meanµ for a set of measurements sampled
recently into a “summary buffer”. The sampled measurements
correspond to network health metrics such as throughput,
delay, loss on a network path. The number of samples in
the summary buffer is user-defined and is specified using a
“summary window count”swc. In the next step, an anomaly
is triggered if the value of the most recent measurement sample
xt crosses either of theµ±σ thresholds of the summary
buffer measurements; note thatσ corresponds to standard
deviation of the measurements in the summary buffer. In
comparison to the MSD method, the plateau-detector requires
two additional user-defined inputs called “trigger duration”
td and “sensitivity” s. The trigger durationtd specifies the
duration of the anomaly event before a trigger is signaled. The
sensitivitys specifies the magnitude of the plateau change that
may result when an anomaly event on a network path is to be
triggered.

Figure 1 shows the different components of a plateau-
detector. The values ofxt are first input to a “checker” which
compares whether the most recentxt value lies within the
upper and lower threshold setts(.) = {TSU , TQU , TSL, TQL}
of the: (i) “summary buffer”sumbuffi.e.,TSU andTSL or (ii)
“quarantine buffer”qbuff i.e.,TQU andTQL. These thresholds
are illustrated in Figure 3 and are calculated using meanµ

and standard deviationσ of the summary window as shown
in Equations (1) - (4).

TSU = µ+ s ∗ σ (1)

TQU = µ+ 2 ∗ s ∗ σ (2)

TSL = µ− s ∗ σ (3)

TQL = µ− 2 ∗ s ∗ σ (4)

Fig. 2. Plateau detector states and state-transitions

0 10 20 30 40 50 60
6

8

10

12

14

16

18

20

22

Sample Number

R
ou

nd
−

tr
ip

 D
el

ay
 (

m
s)

Impending Anomaly Event Anomaly Event Detected

QUT

TSU

TSL

TQL

Fig. 3. Plateau-detector thresholds illustration

If xt values lie within these thresholds, the plateau-detector
will be in the no event (NE) state shown in Figure 2. In this
state,xt values are put into thesumbuff. If xt values go below
TQL or exceedTQU , they are put into the quarantine buffer
qbuff. Similarly, if xt values crossTSL andTSU , they are put
into the “sample buffer”sampbuff. If xt is put into eitherqbuff
or sampbuff, a trigger counttrig cnt counter is incremented.
Whereas, ifxt is put intosumbuff, trig cnt is decremented as
long astrig cnt is non-zero. Iftrig cnt exceeds 0.75*td due
to increasing number ofxt values going intoqbuffor sampbuff,
then the plateau-detector enters into an event impending (EI)
state. If thetrig cnt drops below 0.75*td, then the plateau-
detector returns to NE state. Otherwise, the plateau-detector
stays in the EI state untiltrig cnt equals td, after which
it enters into an event detected (ED) state. Figure 3 shows
an anomaly event being triggered afterxt crosses thets(.)
thresholds. The EI statext values are marked as triangles,
and the triggered event in the ED state is marked by the cross
mark. At this point, thetrig cnt is reset, and atimer is turned
ON. The plateau-detector now goes into a trigger elevated (TE)
state, where the values in the upper and lower threshold set
ts′(.) = {T ′

SU , T ′

QU , T ′

SL, T ′

QL} are calculated as shown in
Equations (5) - (8).

T ′

SU = 1.2 ∗max(xt) in trigbuff (5)

T ′

QU = 1.4 ∗max(xt) in trigbuff (6)

T ′

SL = 0.8 ∗min(xt) in trigbuff (7)

T ′

QL = 0.6 ∗min(xt) in trigbuff (8)

Until the timer equalsswc, the elevated thresholds are used
for comparingxt. The reason for the trigger elevation is to
avoid reporting of repeated triggers for the already detected
anomaly. It is relevant to note that the plateau-detector can
transition from TE state to EI state if another anomaly occurs
due toxt crossing the elevated thresholds. Oncetimer equals
swc, andxt does not cross the elevated thresholds, the plateau-
detector returns to the NE state. Referring back to the Figure 1,
we can see that the “solver” tracks the plateau-detector state
transitions and outputs theNo Event, Event Impending, and
Event Detectedsignals.

B. Plateau Detector Parameters

We now discuss selection of values used for the following
plateau-detector parameters: summary window countswc,
trigger durationtd, sensitivitys, NE state threshold setts(.),
and TE state threshold setts′(.). Based on this discussion, we
motivate the need for dynamically adaptive determination of
s, ts(.), andts′(.).

The value ofswc is chosen depending upon the number
of recent history samples that are sufficient to obtain a rough
yet reliable estimate of the network norm. Choosing a small
value for swc has the risk of allowing network noise such
as intermittent spikes, intermittent dips, or bursts that distort
the network norm estimation. Alternately, choosing a large
value for swc has the risk of smoothening out trends of
impending anomalies that inturn increases detection time or
leads to false negatives. Both the earlier plateau-detector
implementations [13] and [14] have used a setting ofswc =
20. This value assumes average inter-sampling periods to be
in the range of 3 to 8 hrs on any given network path, which
is typically equivalent to the network status in the most recent
1 to 3 days in history, respectively.

The value oftd is chosen to be relatively smaller than the
swc. The smaller the value oftd compared toswc, the faster a
trigger will be signaled in the event of an anomaly. However,
thetd must be chosen to be large-enough such that intermittent
spikes, intermittent dips, or bursts i.e., noise events in network
health do not influence the trigger signaling and cause false
alarms. Given the fact that samples that don’t cross thets(.)
thresholds reduce thetrig cnt, values on the order oftd 5 to
10 are suitable. In the earlier plateau-detector implementations,
the td is assumed to be approximately 1/3rdswc (i.e., td =
7). Based on our systematic study of anomaly events in real
and synthetic measurement traffic traces (we provide detailed
descriptions of the trace sources in Section IV), we have
found that the assumptions ofswc = 20 and td = 7 are
reasonable, and minor modifications to these settings have
negligible influence in triggered false alarms.

However, we found that thes, ts(.), and ts′(.) parameters
are relatively more salient, and minor modifications in their
values selection significantly influences the anomaly detection
accuracy. Chosing thes value needs consideration of trade-
offs i.e., a smalls value results in triggers for slight variations
in network performance magnitudes, whereas a larges value
could overlook actual anomalies that should be detected. Both
the NLANR AMP [13] and SLAC IEPM-BW [14] frameworks
chooses = 2, and analysis with a large number of real

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3
x 10

9

Sample Number

T
C

P
 T

hr
ou

gh
pu

t (
bp

s)

Persistent Decrease

 Intermittent
 Bursts

Legend

False Positive

Persistent Increase Persistent
Variations

 Intermittent
 Dips

(a) s = 2

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3
x 10

9

Sample Number

T
C

P
 T

hr
ou

gh
pu

t (
bp

s)

Legend:

False Negative

False Positive

(b) s = 3

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3
x 10

9

Sample Number

T
C

P
 T

hr
ou

gh
pu

t (
bp

s)

Legend:

False Negative

(c) s = 4

Fig. 4. Impact of choosing statics values on anomaly detection accuracy

0 20 40 60 80 100 120 140 160
15

20

25

30

35

40

45

Sample Number

R
ou

nd
−

tr
ip

 D
el

ay
 (

m
s)

Legend:

False Negative

Fig. 5. Impact of choosing staticts′(.) settings on anomaly detection
accuracy

measurement traces in [15] has shown thats settings in the
range of 2 to 3 is effective. In fact, even in grid environment
monitoring of resources such as CPU, a variant of the MSD
method with thresholds ofµ ± 2 ∗ σ, has been found to be
effective [20]. In essence, setting of the threshold valuesto
µ±2*σ is based on an inherent assumption that network norm
data follows normal distribution. It is known that if any data
follows normal distribution, approximately 95% of the data
points fall within thisµ±2*σ range. Since this assumption is
not completely true, static setting ofs = 2, which also directly
impacts ts(.) settings (see Equations (1) - (4)) causes false
alarms. In our analysis of anomaly events in real and synthetic
measurement traffic traces, we observed in some traces that
minor changes in thes setting (e.g.,s set to either 1.9, 2, 2.1,
or 2.3) can result in a notable difference in false alarms.

Figures 4(a) - (c) show the impact of choosing statics values
of 2, 3 or 4 for detecting anomaly events on a conjoined set
of real-network traces. We conjoined the traces to illustrate
how the anomaly detection accuracy is affected by the statics

values for different kinds of network events such as persistent
increase/decrease, persistent variations, intermittentspikes,
intermittent dips, and bursts. As we can see, increasing the
sensitivity from 2 to 3 reduces the number of false positives,
and causes a false negative. Increasing the sensitivity to 4
can avoid the triggering of all false positives but the false

negative remains. These observations motivate us to develop
an adaptive scheme (described in detail in Section IV) for
dynamically configurings values, which avoids triggering
such false alarms that occur when using the SPD scheme.

Similarly, we found that choosing staticts′(.) settings as
shown in Equations (5) - (8) can result in false alarms.
Recall from Section III-A that thets′(.) settings use elevated
thresholds based on themax(xt) andmin(xt) values in the
trigbuff until the timer equalsswc. Figure 5 shows how the
static ts′(.) settings do not detect consecutive anomalies of
the same magnitude of either the persistent increase/decrease
kinds when thetimer is lesser thanswc. These observations
motivate us to develop an adaptive scheme (described in detail
in Section IV) for dynamically configuringts′(.) values, which
avoids triggering false negatives in consecutive anomaly event
scenarios when using the SPD scheme.

IV. DYNAMICALLY ADAPTIVE PLATEAU -DETECTOR

SCHEME

In this section, we describe the trace sources and our
systematic study of anomaly events in real and synthetic mea-
surements of network performance. In addition, we present our
novel, dynamically adaptive plateau-detection (APD) scheme
based on reinforcement learning to overcome the SPD scheme
limitations described in Section III-B.

A. Trace Data

The real-network measurement trace sources for study-
ing anomaly events referred in this paper are from several
worldwide perfSONAR deployments [3]. Using customized
perfSONAR web-service client scripts, we queried current
and historic measurement data archives from 65 sites that
monitor approximately 480 network paths connecting various
HPC communities (i.e., universities, labs, HPC centers) over
high-speed network backbones that include ESnet, Internet2,
GEANT, CENIC, KREONET, LHCOPN and many others.
Although we had the option to query a number of active and
passive metrics, we queried only the active measurements of
TCP throughput pertaining to the BWCTL tool [3] used in
perfSONAR deployments. The BWCTL tool is a scheduling
and policy daemon that wraps popular data throughput testing
tools such as Iperf [21], Thrulay [22] and Nuttcp [23]. We

chose only to query BWCTL tool measurements of TCP
throughput as an exemplar metric in this paper because: (a)
it is commonly-used by consumers of perfSONAR meaure-
ments, and (b) it has direct relevance to monitoring end-
to-end network path performance affecting large-scale file
transfers. Other measurements such as SNMP [7] only provide
hop-status that is useful to know general network equipment
health status. However, we remark that our observations and
conclusions presented in this paper can be generally applied
to any time-series of active or passive measurements.

To obtain greater flexibility in studying how plateau-detector
parameters are affected by a wide-range of characteristicsof
anomaly events, we also use synthetic measurement traces.
For generating the synthetic traces that mimic the behavior
of real active measurement traffic traces, we leverage results
from our earlier study on modeling real-network active mea-
surement traces [24]. In this study, we analyzed large data
volumes of active and passive measurements collected over
campus, regional and national network backbones with time
series trends that are: (i) routine, and (ii) event-laden [25],
[26]. Our modeling was based on the Box-Jenkins method
for time-series analysis [27]. Using diagnostics, 95% confi-
dence interval checking, and prediction, we showed that it
is reasonable to characterize active measurements on wide
area network paths using Auto-Regressive Integrated Moving
Average (ARIMA) model class parameters. We also showed
that first-order differencing is sufficient to remove inherent
trends and thus filter the data sets. Further, we concluded
that active measurement time series have “too much memory”,
because of which they generally follow MA(q) process (even
when they contain events with AR characteristics) with low
q values. Hence, we generated synthetic traces for the round-
trip delay metric following theARIMA (0, 1, q) model with
q values in the range of 1 to 3. Next, we injected the traces
with a wide-range of anomaly events that had different white
noise standard deviations in the anomaly time-series regions.

One of the significant challenges in dealing with all the
measurement traces is to decide what kind of network events
need to be labeled as anomaly events that have to be trig-
gered by a detection scheme under test. For this task, we
leveraged the established fact that plateau anomalies are of
most interest since they have in most cases indicated reasons
for changes in data transfer speeds on high-speed network
paths [14]. In addition, network paths with high performance
variability behave similar to noticeable plateau anomalies in
terms of their statistical nature. Intermittent spikes, intermittent
dips, and bursts generally are caused due to user-behavior
during normal network operation, i.e., users generating various
application traffic. Thus, intermittent spikes, intermittent dips,
and bursts are not of interest as anomaly events and should
not be notified. The anomalies we categorized as worthy of
notification are based on our own experiences as network
operators [25], [26], and are based on our extensive discussions
with other network operators supporting HPC communities
(e.g., ESnet, Internet2, GEANT). We remark that the causes
for the performance patterns seen in the real-network mea-
surement traces can be due to several reasons. It could be
due to large-application flows, misconfigurations of network

elements, cross-traffic congestion, or even due to changes
in the test platforms (e.g., kernel driver, OS image, TCP
flavor, auto-tuned buffers versus fixed buffers) of the active
measurement probes.

B. Dynamic Sensitivity Selection

In our analysis of the above described real-network and
synthetic traces, we found thats in the range of 2 to 4
consistently detected the labeled anomalies. We noted that
although the SPD scheme frequently detected the labeled
anomaly events, the false alarms i.e., false positivies and
false negatives were caused primarily due to thes values
not changing for various anomaly events. If the sensitivity
at the time point of a false alarm was modified, the anomaly
event was successfully detected. Hence, we concluded that
s needs to be re-evaluated at each time step to avoid false
alarms. Further, we observed that false alarms were triggered
in the SPD scheme due to the nature of persistent variations
in the time series after an anomaly event is detected. Hence,
we concluded that varianceσ2

f of the raw measurements just
after an anomaly event provides direct intelligence about the
anomaly event itself, and leveraging it for reinforcement of
the machine learning (to compare statistics of historic and
current measurement samples for detecting change points) can
make the anomaly detection more robust and accurate. We
remark that this idea of usingσ2

f as the critical statistic for
reinforcement to detect anomaly events robustly and accurately
is formally referred to in the machine learning literature as
“reinforcement learning”. Also, finite-state Markov decision
processes are commonly used to formulate the reinforcement
learning.

Based on these observations, we use the
σ2

f

σ2
c

relation in our
APD scheme to determine the sensitivityst−swc dynamically
at a time stept. Here,σ2

f refers to the variance of theswc
number of measurement samples in the future, andσ2

c refers to
the variance of theswc number of most current measurement
samples. We setst−swc to a higher value (closer to 4) based

on how much the
σ2

f

σ2
c

ratio is higher than 1. Similarly, we set
st−swc to a lower value (closer to 2) based on how much the
σ2

f

σ2
c

ratio is lower than 1. Equations 9 - 12 show the expressions
to calculate theσf andσc values.

µc =
1

swc

swc
∑

i=1

swd[i] (9)

σc =

√

√

√

√

1

swc− 1

swc
∑

i=1

(swd[i]− µc)2 (10)

µf =
1

swc

swc
∑

i=1

rbd[i] (11)

σf =

√

√

√

√

1

swc− 1

swc
∑

i=1

(rbd[i]− µf)2 (12)

Note that swd refers to summary window data andrbd
refers to reinforcement buffer data. Figure 6 shows the

Fig. 6. Additional blocks needed in the plateau-detector for APD
scheme

0 100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

3
x 10

9

Sample Number

T
C

P
 T

hr
ou

gh
pu

t (
bp

s)

Fig. 7. Illustration to show choosing dynamics values avoids false
alarms

“Learner” and “Reinforcement Buffer” blocks needed in the
plateau-detector shown in Figure 1 for dynamically determin-
ing the sensitivity parameter. The Learner implements our
APD scheme logic to output instantaneous values of sensi-
tivity st−swc to the Checker. The Reinforcement Buffer stores
the measurement samplesxt as they arrive to the plateau-
detector, which are subsequently used by the Learner for the
reinforcement learning.

Using this setup of the plateau-detector, we record the
σ2

f

σ2
c

values between sensitivity 2 to 4 that detect the different kinds
of anomaly events accurately in various synthetic and real-
network traces. Next, using statistical curve-fitting principles,
we best fit the recorded values to derive the closed form
linear expression as shown in Equation 13 for calculating the
dynamic sensitivityst−swc.

s(t−swc) = 0.4 ∗
σ2
f

σ2
c

+ 2 (13)

Figure 7 shows how the APD scheme accurately detects
the anomaly events and avoids false alarms for the example
trace described in Section III-B. Correspondingly, Figure8
shows how the sensitivity configuration changes dynamically
between the range of 2 to 4 during the robust and accurate
anomaly detection of the APD scheme.

0 100 200 300 400 500 600 700
2

2.2

2.4

2.6

2.8

3

3.2

3.4

3.6

3.8

4

Sample Number

S
en

si
tiv

ity

Fig. 8. Instantaneouss value selections in APD scheme

0 20 40 60 80 100 120 140 160
15

20

25

30

35

40

45

Sample Number
R

ou
nd

−
tr

ip
 D

el
ay

 (
m

s)

Fig. 9. Illustration to show choosing dynamicts′(.) settings avoids
false alarms

C. Dynamic Trigger Elevation Selection

In our analysis of the synthetic traces, we found that
choosing staticts′(.) settings does not detect consecutive
anomalies of the same magnitude of either the persistent
increase/decrease kinds when thetimer is lesser thanswc.
We noted that using thets′(.) settings based on themax(xt)
and min(xt) values in the SPD scheme was the cause for
the false negatives. In order to understand how we overcame
this limitation, let us consider the measurement samplexd

that arrived at the time when the anomaly was detected i.e.,
xd refers to thext point on which we annotate the cross
mark on the related graphs in this paper. By usingxd as the
network norm in the trigger elevated (TE) state for calculating
the thresholds, we were able to avoid the false negatives in
consecutive anomaly event scenarios. Hence, we use Equations
(14) - (17) to calculate thets′(.) upper and lower threshold
set values.

T ′

SU = xd + st ∗ σc (14)

T ′

QU = xd + 2 ∗ st ∗ σc (15)

T ′

SL = xd − st ∗ σc (16)

T ′

QL = xd − 2 ∗ st ∗ σc (17)

Figure 9 shows how the false negatives that were marked
in the Figure 5 for the SPD scheme are detected using the
dynamicts′(.) settings in the APD scheme.

V. PERFORMANCEEVALUATION

In this section, we first describe our OnTimeDetect tool im-
plementation of the APD scheme. Following this, we describe
its use in the accuracy, agility and scalability evaluations of
our APD scheme.

A. OnTimeDetect Tool Implementation

We have developed an OnTimeDetect tool prototype whose
capabilities include: (i) anomaly monitoring customization of
large measurement topologies, and (ii) drill-down analysis of
anomaly events in vast measurement archives in both real-
time and offline manner at multi-resolution timescales. We
have developed both command-line and GUI versions of this
tool that we plan to widely distribute in the near future with
Windows and Linux platforms support. In the offline mode,
a measurement trace with timeseries and measurement tuple
can be loaded into the tool to obtain an annotated graph
with anomalies. Various timeseries portions of the graphs
can be zoomed in-and-out to analyze trends at different time
granularities. Theswc, td, s, ts(.), andts′(.) parameters can
also be adjusted to observe anomaly detection results. For
any user setting of the parameters, the tool reports summary
statistics of the measurement data being analyzed as well
as the number of impending and anomaly events. The tool
also allows a user to save the analyzed graphs. The graphs
and anomaly report are intended to help in communicating
network anomaly information in traces amongst end-users
and network operators. In the online mode, the tool takes
as input a site-list with each target site specified by its
perfSONAR measurement archive webservice address e.g.,
http://wtg248.otctest.psu.edu:8085. This list can also be auto-
generated for specific projects e.g., LHC and using the perf-
SONAR global lookup web-service [3]. Upon specifying a
query time resolution (e.g., 1 month), latest measurement data
sets from the perfSONAR deployments are correspondingly
queried and analyzed for anomalies using our APD scheme
or for any static settings of theswc, td, s, ts(.), and ts′(.)
parameters.

B. Accuracy Evaluation

We have extensively investigated the accuracy of our APD
scheme on measurement traces collected by our OnTimeDetect
tool from 65 sites that monitor approximately 480 network
paths connecting various HPC communities. To illustrate the
findings of our investigation, we choose to show the accuracy
performance for a representative set of 8 traces shown in
Table I with unique time series characteristics. We use three
metrics shown in Equations 18, 19 and 20 respectively, to
evaluate the anomaly detection accuracy of the APD scheme
in comparison with the SPD scheme:success ratio(Rs), false
positive ratio(Rf+), and false negative ratio(Rf−).

Rs =
number of true triggers detected

number of true triggers
(18)

Rf+ =
number of false triggers detected

number of true triggers
(19)

Rf− =
number of true triggers missed

number of true triggers
(20)

Note that higher values ofRs and lower values ofRf+ and
Rf− denote superior performance. In addition, the value of the
expressionRs+Rf− is always equal to 1. Table II shows the
accuracy evaluation results for the APD scheme in comparison
with the SPD scheme with statics settings of 2, 3 and 4.
We can observe that the APD scheme outperforms atleast one
of the static SPD schemes in detecting anomaly events and
avoiding false alarms in all of the 8 traces. However, in some
cases the APD scheme performs similar to a particular SPD
scheme. The cases where the APD scheme outperforms the
SPD scheme variants are shown in bold font. We can note
that the SPD scheme withs=2 causes most false negatives
indicating that it is least robust than the other schemes.

C. Agility Evaluation

Agility evaluations presented herein are for the purpose
of showing the anomaly detection time results from our
real-network measurement trace analysis. Our definition of
detection time of an anomaly refers to the time difference
between the instant the plateau-detector enters the impending
(EI) state and the instant it is in the event detected (ED) state.
As expected, low detection times indicates a superior anomaly
detection scheme. Figure 10 shows the detection times for the
representative set of 8 traces shown in Table I. We can observe
that the anomaly detection times using our APD scheme varies
across perfSONAR deployments, and is on the order of one or
more days. The reason for these variations and long detection
times is mainly due to the currently chosen average periodic
(a.k.a. stratified random) sampling patterns and frequencies
in the perfSONAR deployments. The average periodic pattern
and frequency indicates that there is not a strict sampling at
periodic time points (e.g., every hour on the hour sampling),
and for a given time period (e.g., a day), there are a fixed
number of measurement samples (we observed anywhere from
3 to 12 samples per day) at a deployment site.

To improve the detection times of our APD scheme in the
traces, we evaluate using adaptive sampling instead of the
average periodic sampling. In the case of adaptive sampling,
once the plateau-detector enters the EI state, the sampling
frequency at a sitesf is increased to collect measurement
samples at smaller inter-sampling times. Figure 11 shows
the detection times when using the adaptive sampling with
the sampling frequencies 2*sf , 4*sf , and 8*sf . To increase
the number of samples available at higher frequencies at a
deployment site, we use the values of the consecutive samples
in the future. We do so with the assumption that they follow
the same process of the anomaly event time series region just
as the additional samples would have if they were adaptively
sampled in reality. We can see that by using adaptive sampling
measurement data, the APD scheme detection times reduce
to the range of only a few hours versus the earlier observed
ranges of several days. In addition, we can see that 4*sf and
8*sf cases would result in oversampling (i.e., measurement
traffic consumes the network path bandwidth that could have
been used by actual application traffic), and do not provide
any further improvement to just using 2*sf . Nevertheless, the
reduced detection times lessen the detection time tradeoffthat
is needed for reinforcement learning in our APD scheme.

TABLE I
TRACES DESCRIPTION

Trace
ID

Source↔ Destination Time Range (Start -
End)

Time Series Characteristics

1 psmsu02.aglt2.org ↔

psum02.aglt2.org
2009-10-9 15:03:19 -
2010-4-7 17:28:05

Persistent Decrease, Burst Decrease, Intermittent Dips

2 bwctl.ucsc.edu ↔

bwctl.atla.net.internet2.edu
2010-1-16 06:51:22 -
2010-4-7 20:36:05

Persistent Decrease, Persistent Increase, Intermittent
Dips

3 bwctl.ucsc.edu ↔

bwctl.wash.net.internet2.edu
2010-1-16 08:50:36 -
2010-4-7 20:37:43

Persistent Decrease, Persistent Increase, Intermittent
Bursts, Intermittent Dips

4 wtg248.otctest.psu.edu ↔

perfsonar.dragon.maxgigapop.net
2010-2-8 14:08:31 -
2010-4-7 21:25:57

Persistent Variations

5 chic-pt1.es.net ↔

anl-pt1.es.net
2009-7-2 20:04:41 -
2010-1-9 12:32:48

Persistent Increase, Persistent Decrease, Persistent
Variations

6 nersc-pt1.es.net ↔

wash-pt1.es.net
2009-5-18 22:48:13 -
2010-1-9 16:46:47

Persistent Increase, Intermittent Bursts, Intermittent
Dips

7 hous-pt1.es.net ↔

pnwg-pt1.es.net
2009-5-19 04:05:12 -
2010-4-7 13:39:31

Persistent Increase, Persistent Variations, Intermittent
Dips

8 nettest.boulder.noaa.gov ↔

wtg248.otctest.psu.edu
2009-10-6 20:41:22 -
2010-4-7 21:27:05

Persistent Decrease, Persistent Increase, Intermittent
Bursts, Intermittent Dips

TABLE II
ACCURACY EVALUATION RESULTS

Trace ID SPDs=2 SPDs=3 SPDs=4 APDs=2...4

No. Rs Rf+ Rf− Rs Rf+ Rf− Rs Rf+ Rf− Rs Rf+ Rf−

1 1 0 2 1 0 1 1 0 0 1 0 0
2 1 0 1.5 0.5 0.5 0.5 0.5 0.5 0 1 0 0
3 1 0 0 0.67 0.33 0.33 1 0 0 1 0 0
4 0.5 0.5 5 1 0 0 1 0 0 1 0 0
5 1 0 0.5 1 0 0 0.5 0.5 0 1 0 0
6 0 0 3 1 0 2 1 0 0 1 0 0
7 1 0 0.5 0.5 0.5 0 0.5 0.5 0 1 0 0
8 1 0 0.5 1 0 0 1 0 0 1 0 0

Fig. 10. Effect of average periodic sampling on anomaly detection
times

Fig. 11. Effect of adaptive sampling on anomaly detection times

D. Scalability Evaluation

Lastly, we evalute the scalability of the APD scheme if used
for notifying anomalies in large-scale measurement topologies
comprising of several hundred of network paths. For this,
we calculate the average analysis time per-site to sequen-
tially detect anomalies on over 480 perfSONAR monitored
paths whose measurement data we queried from 65 sites
using our OnTimeDetect tool. We define analysis time for a
measurement archive at a site as the sum of the times taken
for perfSONAR web-service processing, measurement archive
transfer and run time of the APD scheme on the measurement
archive. Figure 12 shows the average analysis time per-site
for sequential queries spanning multi-timescale resolutions
shown on the x-axis. We remark that the average analysis
times shown have been calculated from 75 query iterations
spanning several days. We can observe that the analysis times
are on the order of tens of seconds. Upon further analysis, we
found that some sites have analysis times that are less than a
second, whereas some sites have analysis times on the order of
several seconds. Based on this observation, we experimented
with a parallel query mechanism where the OnTimeDetect
concurrently queries all the sites in the site-list. The speed
up results in the average analysis time per-site for the parallel
query compared to the sequential query from 75 iterations
are shown in Figure 13. The speedup value is calculated as a
percentage ratio of the sequential query analysis time overthe

Fig. 12. Per-site analysis times for sequential queries spanning multi-
timescale resolutions

Fig. 13. Speedup in per-site analysis times for parallel queries
spanning multi-timescale resolutions

parallel query analysis time. We can see that the parallel-query
mechanism in the OnTimeDetect tool can speedup the average
analysis time per-site by (40 - 60)%, and inturn improve the
OnTimeDetect tool user experience during online drill-down
analysis.

VI. CONCLUSION

In this paper, we presented a dynamically adaptive plateau-
detector and its implementation in our “OnTimeDetect” toolto
notify network anomaly events that are of interest to network
operators and end-users in the data-intensive scientific com-
munities. We leveraged the vast measurement data archives
available via perfSONAR web-services at several worldwide
sites, and also synthetic measurement traces with anomaly
events to develop our adaptive plateau-detector.

Through our performance evaluations, we showed that our
adaptive plateau-detector is robust and accurate in anomaly
notifications. We also showed that it is possible to minimize
anomaly detection times in the perfSONAR deployments by
using adaptive sampling instead of the currently employed
average periodic sampling. Further, we showed that it is
possible to substantially speedup anomaly analysis times when
dealing with large number of paths using a parallel-query
mechanism instead of a sequential-query mechanism.

Our future work is to compare and contrast our adap-
tive plateau-detector with other advanced anomaly detection
schemes considering archives of additional network health
metrics available in the perfSONAR deployments.

REFERENCES

[1] Teragrid Project - http://www.teragrid.org
[2] The Large Hadron Collider (LHC) Project - http://lhc.web.cern.ch/lhc
[3] A. Hanemann, J. Boote, E. Boyd, J. Durand, L. Kudarimoti, R.Lapacz,

M. Swany, S. Trocha, J. Zurawski, “PerfSONAR: A Service Oriented
Architecture for Multi-Domain Network Monitoring”,Proc. of Service
Oriented Computing, Springer Verlag, LNCS 3826, pp. 241-254, 2005.
(http://www.perfsonar.net)

[4] P. Calyam, A. Kalash, R. Gopalan, S. Gopalan, A. Krishnamurthy,
“RICE: A Reliable and Efficient Remote Instrumentation Collaboration
Environment”,Advances in Multimedia Journal, 2008.

[5] J. Zurawski, M. Swany, D. Gunter, “Scalable Framework forRepre-
sentation and Exchange of Network Measurements”,Proc. of IEEE
TRIDENTCOM, 2006.

[6] C. Guok, D. Robertson, M. Thompson, J. Lee, B. Tierney, W. John-
ston, “Intra and Interdomain Circuit Provisioning Using theOSCARS
Reservation System”,Proc. of IEEE/ICST Conference on Broadband
Communications, Networks, and Systems, 2006.

[7] J. Allen, “Driving by the Rear-View Mirror: Managing a Network with
Cricket”, Proc. of USENIX Network Administration Conference, 1999.

[8] W. Matthews, L. Cottrell, “The PingER Project: Active Internet Perfor-
mance Monitoring for the HENP Community”,IEEE Communications
Magazine on Network Traffic Measurements and Experiments, 2000.

[9] A. Lakhina, M. Crovella, C. Diot, “Diagnosing Network-Wide Traffic
Anomalies”,Proc. of ACM SIGCOMM, 2004.

[10] P. Barford, J. Line, D. Plonka, A. Ron, “A Signal Analysis of Network
Traffic Anomalies”, Prof. of ACM SIGCOMM Internet Measurement
Workshop, 2002.

[11] A. Soule, K. Salamtian, N. Taft, “Combining Filtering andStatistical
Methods for Anomaly Detection”,Proc. of Internet Measurement Con-
ference, 2005.

[12] M. Thottan, G. Liu, C. Ji, “Anomaly Detection Approachesfor Com-
munication Networks”,Book Chapter in Algorithms for Next Generation
Networks, Springer, 2010.

[13] A. McGregor, H-W. Braoun, “Automated Event Detection for Active
Measurement Systems”,Proc. of Passive and Active Measurement Work-
shop, 2001.

[14] C. Logg, L. Cottrell, “Experiences in Traceroute and Available Band-
width Change Analysis”,Proc. of ACM SIGCOMM Network Trou-
bleshooting Workshop, 2004.

[15] L. Cottrell, M. Chhaparia, F. Haro, F. Nazir, M. Sandford, “Evaluation
of Techniques to Detect Significant Network Performance Problems using
End-to-end Active Network Measurements”,Proc. of IEEE/IFIP NOMS,
2006.

[16] F. Feather, R. Maxion, “Fault Detection in an Ethernet Network using
Anomaly Signature Matching”,Proc. of ACM SIGCOMM, 1993.

[17] H. Hajji, “Statistical Analysis of Network Traffic for Adaptive Faults
Detection”, IEEE Transactions on Neural Networks, 2005.

[18] M. Thottan, C. Ji, “Anomaly Detection in IP Networks”,IEEE Trans-
actions on Signal Processing, 2003.

[19] D. Gunter, B. Tierney, A. Brown, M. Swany, J. Bresnahan,J. Schopf,
“Log Summarization and Anomaly Detection for TroubleshootingDis-
tributed Systems”,Proc. of IEEE/ACM Grid Computing, pp. 226-234,
2007.

[20] L. Yang, C. Liu, J. Schopf, I. Foster, “Anomaly Detectionand Diagnosis
in Grid Environments”,Proc. of ACM/IEEE Supercomputing, 2007.

[21] A. Tirumala, L. Cottrell, T. Dunigan, “Measuring End-To-End Band-
width with Iperf Using Web100”,Proc. of Passive and Active Measure-
ment Workshop, 2003.

[22] Thrulay: Network Capacity Tester - http://shlang.com/thrulay
[23] Nuttcp: TCP/UDP Network Testing Tool - http://wcisd.hpc.mil/nuttcp
[24] P. Calyam, A. Devulapalli, “Modeling of Multi-resolution Active Net-

work Measurement Time-series”,Proc. of IEEE Workshop on Network
Measurements, 2008.

[25] P. Calyam, D. Krymskiy,M. Sridharan, P. Schopis, “Activeand Passive
Measurements on Campus, Regional and National Network Backbone
Paths”,Proc. of IEEE ICCCN, 2005.

[26] P. Calyam, D. Krymskiy,M. Sridharan, P. Schopis, “TBI:End-To-End
Network Performance Measurement Testbed For Empirical Bottleneck
Detection”,Proc. of IEEE ICCCN, 2005.

[27] M. Wheelwright, R. Hyndman, “Forecasting: Methods and Applications
(3rd edition)”, Wiley Publication ISBN No. 0471532339, 1998.

