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Abstract—To monitor and diagnose bottlenecks on network as bandwidth, delay, jitter and loss. The web-service selsem
paths used for large-scale data transfers, there is an increasing have been standardized in the Open Grid Forum [5] and have

tTrﬁ”d t% delploy meas“remet;“ frameworks such as p%rfSONAE- been adopted in frameworks such as OSCARS [6], Cricket-
ese dep Oyments use web-services to expose vast data areliv SNMP [7], and P|ngER [8]

of current and historic measurements, which can be queried .
across end-to-end multi-domain network paths. Consequently, ~Numerous perfSONAR deployments are sampling both ac-
there has arisen a need to develop automated techniques andtive and passive measurements of various metrics severa ti
intuitive tools that help analyze these measurements for detectin g day. They are exposing these collected measurements via
and notifying prominent network anomalies such as plateaus in \yap_services in the form of vast data archives of current and
both real-time and offline manner. In this paper, we present a . . . . .

dynamically adaptive plateau-detection (APD) scheme and its historic measurements on national and international haud
implementation in our “OnTimeDetect” tool to enable consumers  (€.9., ESnet, Internet2, GEANT, SWITCH). The consumers of
of perfSONAR measurements within the data-intensive scientific these measurements (e.g., network operators, researichers
communities in overcoming their existing limitations of network  scientific disciplines) are faced with the challenge to yrel
anomaly detection and notification. We empirically evaluate our 5,4 interpret the vast measurement data sets across emdto-

APD scheme in terms of accuracy, agility and scalability by . - . . . .
using measurement traces collected by OnTimeDetect tool from multi-domain network paths with minimal human inspection.

worldwide perfSONAR deployments in HPC communities. They direly need automated techniques and intuitive towls t
query, analyze, detect and notify prominent network perfor
|. INTRODUCTION mance anomalies such as plateaus that hinder data transfer

Scientific communities involved in major simulation andgpeeds. Timely and accurate anomaly notification can lead to
experimental activities involving the Teragrid [1] and gar quicker resolution of network faults, and thus proactivefg-
Hadron Collider (LHC) [2] are generating massive data sets gents end-users experiencing annoyingly slow data tresiefe
aregular basis. These data sets are being transferreddosarwell-provisioned high-speed networks. In addition, theed
labs and universities at several Gbps speeds on netwoelfective techniques and tools to support network anomaly
that span across continents. Given the real-time consomptiletection and notification in both real-time and offline mamn
demands of the data and the substantial investments matienulti-resolution timescales.
for the network infrastructure to support the data tramssfer There have been several recent network anomaly detection
there is a rapidly increasing trend to deploy instrumeotati studies that utilize various statistical and machine liearn
and measurement frameworks such as perfSONAR [3]. Thasehniques such as: principal component analysis [9], leave
frameworks assist in measurement data collection, staaade analysis [10], Kalman filter [11], covariance matrix analy-
dissemination for monitoring and diagnosing bottlenediat t sis [12], and online change-point detection [13] [14]. Gésh
hinder end-to-end data transfer speeds. In addition, #red¥ schemes, a plateau-detector scheme [13] that belongs in the
works help in provisioning end-to-end network measureserthange-point detection category has been found to beveljati
that can be used to understand how network performanoere effective [15] for routine network performance monito
changes due to end-user behavioral patterns (e.g., higineol ing due to its low complexity, ease of implementation and
flows, flash crowds), network fault events (e.g., misconfigureffectiveness. It has been adopted by large-scale mamitori
tions, outages, malicious attacks) and cross-traffic cetige deployments such as NLANR AMP [13] and SLAC IEPM-
impact end-application and protocol behavior [4]. BW [14], which can be considered as predecessors to the

The emergence of perfSONAR deployments in the scieperfSONAR deployments.
tific communities that rely on high performance computing However, faithful adoption of the plateau-detectors used
(HPC) resources is recent and revolutionary in the area iof the predecessors has limitations for perfSONAR users.
network troubleshooting. This is because the deploymerthke NLANR AMP and SLAC IEPM-BW deployments used
support web-services to publish and subscmibelti-domain static configurations of the salient threshold parameters in
network measurements of various network health metrick sube variants of the plateau-detection schemes they emgbloye

Specifically, they used static configuration of “sensiyiVit
This material is based upon work supported by the Departm&?d ‘trigger elevation” threshold parameters for incregsi
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that may result when an anomaly event on a network pathaging perfSONAR web-services. We use the OnTimeDetect
to be triggered. The trigger elevation parameters are usedtdol to query vast measurement data archives of current and
temporarily increase the thresholds to avoid repeateddrg) historic measurements from several worldwide perfSONAR
for a brief period after an anomaly event has been detecteéployments. More specificallihe real-network measurement
Due to the static configurations in earlier frameworks, thaata in this paper has been queried by our OnTimeDetect tool
sensitivity and trigger elevation threshold parameterghef from 65 sites that monitor approximately 480 network paths
static plateau-detectioiSPD) schemes need to be manuallgonnecting various HPC communities (i.e., universitiabs|
calibrated toaccuratelydetect plateaus in different measureHPC centers) over high-speed network backbones that ieclud
ment sample profiles on network paths. Such a laborioESnet, Internet2, GEANT, CENIC, KREONET, LHCOPN and
process for accurate anomaly detection is impracticakdfiggd- many othersOur evaluation metrics include anomaly detection
scale monitoring infrastructures involving large numbefs accuracy agility and scalability.
end-to-end network paths with dynamically changing traffic Through our accuracy evaluations, we show that our APD
characteristics. Another anomaly detection short-corniimg scheme outperforms the SPD scheme in detecting anomaly
earlier large-scale monitoring deployments is that the SRients and avoiding false alarms. We compare the APD and
scheme implementations weeenbeddedvithin their deploy- SPD scheme accuracy results in terms of the three metrics:
ment software. Hence, SPD implementations are not amenadlecess ratipfalse positive ratip and false negative ratio
for network paths monitoring customization and drill-dowiNote that a false-positive trigger is one that gets reponteein
analysis of anomaly events by consumers of web-servitteere is no actual anomaly event, whereas, a false-negative
enabled perfSONAR measurement data sets. trigger is one that does not get reported when in fact there is
In this paper, we preserd novel, dynamically adaptive an actual anomaly event.
plateau-detection (APD) scheme and its implementation inNext, through our agility evaluations, we show how the
our “OnTimeDetect” tool to enable the rapidly growing con-anomaly detection timessing our APD scheme varies across
sumers of perfSONAR measurements (e.g., network operatpesfSONAR deployments, and is on the order of one or
researchers in scientific disciplines) within the dataeimsive more days. The reason for these variations and long detectio
scientific communities in overcoming the existing limitagi times is mainly due to the currently chosen average periodic
of network anomaly detection and notificatidio dynamically (a.k.a. stratified random) sampling patterns and freqesnai
configure thresholds for the “sensitivity” and “trigger we the perfSONAR deployments. We demonstrate that by using
tion” parameters in our APD scheme, we appinforcement adaptive sampling in perfSONAR deployments, we can reduce
learning that guides the learning process based on partiaffye anomaly detection times to be on the order of a few hours,
available Markov Decision Processes [12]. Our premiseds trand inturn lessen the detection time tradeoff that is neéated
the raw measurements just after an anomaly event provide igiinforcement learning in our APD scheme.
rect intelligence about the anomaly event itself, and legierg Lastly, through our scalability evaluations, we calcultte
them for reinforcement of the machine learning (to compagyerageanalysis timeper-site to sequentially detect anomalies
statistics of historic and current measurement samples for a large number of perfSONAR monitored paths. We ob-
detecting change points) can make the anomaly detectioa meerve that the analysis times are on the order of tens of decon
robust and accurate. Based on a systematic study of anonfaly multi-resolution timescale queries. We define analysis
events in real and synthetic measurement traffic traces, Wee for a measurement archive as the sum of the times
observe thatvariance of the network performance just aftertaken for perfSONAR web-service processing, measurement
an anomaly event is the critical statistic that can be used farchive transfer and run time of the APD scheme on the
reinforcement to accurately trigger an anomaly. Levemgimmeasurement archive. We demonstrate that by using a paralle
this observation, we derive closed-form expressions usiqgery mechanism in the OnTimeDetect tool, we can speedup
statistical curve-fitting principles for dynamically detgning the average analysis time per-site by (40 - 60)%, and inturn
thresholds of sensitivity and trigger elevation paranseieiour improve the OnTimeDetect tool user experience during enlin
APD scheme. Thus, our APD scheme avoids manual calib@til-down analysis.
tion of sensitivity and trigger elevation threshold paréene  The remainder paper organization is as follows: Section 2
used in SPD schemes for different profiles of measuremetscribes related work. Section 3 explains the SPD schethe an
samples on network paths. It achieves low false alarm railgstrates its limitations. Section 4 details our APD stiee
at the cost of a fractional increase in detection time that $ection 5 discusses our OnTimeDetect tool implementation
needed for the reinforcement learning. of the APD scheme and the performance evaluation with
We empirically evaluate our APD scheme using an impl@efSONAR datasets. Section 6 concludes the paper.
mentation of the “OnTimeDetect” tool that we have developed
as an added contribution of this paper. The OnTimeDetett too
capabilities include: (i) anomaly monitoring custominatiof It is common practice even today to rely on user-defined
large measurement topologies, and (ii) drill-down analyfi monitor thresholds to detect and notify anomalies [7]. The
anomaly events in vast measurement archives in both raal-tithresholds can be exact values (e.g., notify anomaly if de-
and offline manner at multi-resolution timescales. We rémalay exceeds 50ms on a network path) or relations that use
that the OnTimeDetect tool is the first to perform a largedifferences between temporally distinct values for the esam
scale network performance anomaly detection analysig-levdata source or a secondary data source (e.g., notify anomaly

II. RELATED WORK
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intermittent spikes, intermittent dips, and bursts in kv
performance, which are typically not of interest as anomaly
events. and is relatively easy to implement in large-scale network
The authors in [9] use principal component analysis pringinonitoring frameworks. Moreover, it has been shown to be
ples and the authors in [10] uses wavelet analysis for datectreasonably effective for monitoring anomalies of activeame
network performance anomalies. Both these studies involsgrements comprising of end-to-end paths across multiagom
offline analysis and focus on detecting anomalies in passivaths in the NLANR AMP and SLAC IEPM-BW frameworks
measurements at a network link basis. Hence, they are et sf@r measurements collected over several years.
able for real-time monitoring of anomalies pertaining tg\azc . PLATEAU ANOMALY DETECTION
measurements across end-to-end network paths, which are of )
greater interest in the context of bulk-data transfer apgitin - Plateau-Detector Overview
flows that traverse multiple links. The authors in [11] atgm The description of the basic plateau-detector algorithm
to overcome the link basis limitation by creating a traffismplemented in [13] and [14] is as follows. The algorithm
matrix of all links within an enterprise network domain. Jheis an enhanced version of the MSD method. In the MSD
employ a Kalman-filter based anomaly detection scheme tiagthod, the first step is to determine the network health norm
filters out the network norm by comparing future predictiongy calculating the mean for a set of measurements sampled
of the traffic matrix state to an inference of the actual tcaffirecently into a “summary buffer”. The sampled measurements
matrix obtained from recent measurements. The limitatibn oorrespond to network health metrics such as throughput,
employing such a scheme in data-intensive communitiessarislelay, loss on a network path. The number of samples in
due to the fact that bulk-data transfer application flowserse the summary buffer is user-defined and is specified using a
multiple links across multiple domains. Hence, the traffitsummary window count’swe. In the next step, an anomaly
matrix sizes can become unwieldy very quickly. Moreoveis triggered if the value of the most recent measurement Eamp
it is not generally feasible to obtain link-level informati in z; crosses either of the:+c thresholds of the summary
multi-domain scenarios due to policy limitations. buffer measurements; note that corresponds to standard
In [17], an adaptive fault detector algorithm is propose@leviation of the measurements in the summary buffer. In
that determines the baseline for network norm in local aré@mparison to the MSD method, the plateau-detector regjuire
networks using a stochastic approximation of the maximufo additional user-defined inputs called “trigger duratio
likelihood function of recent performance samples. Abruptl and “sensitivity” s. The trigger duratiorid specifies the
jumps in means of local area network metrics (e.g., ARguration of the anomaly event before a trigger is signaldwh T
broadcast packets, TCP connections to a web-server) 8@@sitivitys specifies the magnitude of the plateau change that
treated as anomalies. This scheme that is based on onli@y result when an anomaly event on a network path is to be
change-point detection is not suitable for wide area netwotriggered.
monitoring because it assumes that the data sets compriskigure 1 shows the different components of a plateau-
of k-variate Gaussian distributions that are common in locéletector. The values aof; are first input to a “checker” which
area network data sets. Authors in [18] also use sequenfi@gmpares whether the most recent value lies within the
change point detection principles to detect anomalies whepper and lower threshold sel(.) = {T'su, Tqu, Tsr, Tor}
correlated changes occur in various network health metrigkthe: (i) “summary buffer'sumbuffi.e., T's;; andT’s,, or (ii)
collected along a network path. “guarantine buffer'gbuffi.e., Toy andTy . These thresholds
There are also several related studies that use nd4€ illustrated in Figure 3 and are calculated using mean
chine learning techniques for unsupervised anomaly det@fd standard deviation of the summary window as shown
tion [19] [20] [13] [14]. Frameworks such as NLANRIN Equations (1) - (4).
AMP [13] and SLAC IEPM-BW [14] have used variants of
the plateau-detector because it is well suited for reaetim Tsu = p+s*o (1)
monitoring of anomalies pertaining to active measurements T P S @)
across end-to-end network paths. Specifically, it usespersu QU H sxa
vised machine learning that relies on raw measurements and Tsp = p—sxo 3
dynamic network norm estimation. It also has low complexity Tor, = p—2xsxo0 (4)



timer <swc;

. <o .
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Until the timer equalsswe, the elevated thresholds are used
for comparingz;. The reason for the trigger elevation is to
avoid reporting of repeated triggers for the already detect
anomaly. It is relevant to note that the plateau-detector ca
imer = ON: transition from TE state to El state if another anomaly oscur
trig_cnt=0 due tox; crossing the elevated thresholds. Oticeer equals
swe, andz,; does not cross the elevated thresholds, the plateau-
detector returns to the NE state. Referring back to the Eidur
we can see that the “solver” tracks the plateau-detectoe sta
transitions and outputs thdo_Event Event Impending and
Event Detectedsignals.

NE \Jimer=swc

trig_cnt<0.75td
timer# 0

trig_cnt<0.75td ;
timer=0

trig_cnt=0.75td
trig_cnt=0.75td

trig_cnt=td
0.75 td < trig_cnt<td

Fig. 2. Plateau detector states and state-transitions
B. Plateau Detector Parameters

We now discuss selection of values used for the following

Impending Anomaly Event Anomaly Event Detected !
22 ‘ ‘ ‘ ‘ ‘ plateau-detector parameters: summary window count,
20 trigger durationtd, sensitivitys, NE state threshold set(.),
T and TE state threshold s&t(.). Based on this discussion, we
_516 R A motivate the need for dynamically adaptive determinatibn o
8 s, ts(.), andts’(.).
e The value ofswc is chosen depending upon the number
g“ ] of recent history samples that are sufficient to obtain amoug
e R yet reliable estimate of the network norm. Choosing a small
8 ] value for swe has the risk of allowing network noise such
N et i S— Tor as intermittent spikes, intermittent dips, or bursts thatouit
0 10 20 30 40 50 60 . . .
Sample Number the network norm estimation. Alternately, choosing a large
value for swc has the risk of smoothening out trends of
Fig. 3. Plateau-detector thresholds illustration impending anomalies that inturn increases detection time o

leads to false negatives. Both the earlier plateau-detecto
implementations [13] and [14] have used a settingsot =

If 2, values lie within these thresholds, the plateau-detect®?- This value assumes average inter-sampling periods to be
will be in the no event (NE) state shown in Figure 2. In thi§ the range of 3 to 8 hrs on any given network path, which
state,z, values are put into theumbuffIf z; values go below IS typically e_quw_alent to the ne_twork status in the moserdgc
Tqr or exceedIyy, they are put into the quarantine bufferl 10 3 days in history, respectively.
gbuff Similarly, if 2, values crosds;, andTs, they are put The value oftd is chosen to be relatively smaller than the
into the “sample buffersampbuffIf z, is put into eithemgbuff swc. The smaller the value @fl compared tawc, the faster a
or sampbuffa trigger countrig_cnt counter is incremented. trigger will be signaled in the event of an anomaly. However,
Whereas, ifz, is put intosumbufftrig_cnt is decremented as thetd must be chosen to be large-enough such that intermittent
long astrig_cnt is non-zero. Iftrig_cnt exceeds 0.75¢ due SPikes, intermittent dips, or bursts i.e., noise eventseiwork
to increasing number of, values going intabuffor sampbuff health do not influence the trigger signaling and cause false
then the plateau-detector enters into an event impendif)g (&larms. Given the fact that samples that don't crosstfig
state. If thetrig_cnt drops below 0.754, then the plateau- thresholds reduce theig_cnt, values on the order afl 5 to
detector returns to NE state. Otherwise, the plateau-theteclO are suitable. In the earlier plateau-detector impleatints,
stays in the El state untitrig_cnt equalstd, after which thetd is assumed to be approximately 1/3dc (i.e., td =
it enters into an event detected (ED) state. Figure 3 shols Based on our systematic study of anomaly events in real
an anomaly event being triggered after crosses the's(.) and s_yn_thetlc measurement traffic traces (V\_/e provide eetail
thresholds. The El state, values are marked as trianglesdescriptions of the trace sources in Section 1V), we have
and the triggered event in the ED state is marked by the crd@ygnd that the assumptions ofwc = 20 andtd = 7 are
mark. At this point, therig_cnt is reset, and &éimer is turned reasonable, and minor modifications to these settings have
ON. The plateau-detector now goes into a trigger elevat&g (Thegligible influence in triggered false alarms.
state, where the values in the upper and lower threshold setlowever, we found that the, ¢s(.), andts’(.) parameters
ts'(.) = {T&y, Thy, Thy, T, } are calculated as shown inare relatively more salient, and minor modifications in thei

Equations (5) - (8). values selection significantly influences the anomaly dietec
accuracy. Chosing the value needs consideration of trade-
Tsy = 1.2xmax(z,) in trigbuff (5) pffs i.e., a smalk value results i_n triggers for slight variations
! — 14%maz(z,) in trigbuff 6) in network performance magnitudes, whereas a largalue
?U ' ] v } could overlook actual anomalies that should be detecteth Bo
Tsy, = 08xmin(z,) in trigbuff (") the NLANR AMP [13] and SLAC IEPM-BW [14] frameworks
TfQL = 0.6 *xmin(x;) in trigbuff (8) chooses = 2, and analysis with a large number of real



X 10 3X 10° o X 10°
\ Legend: i
25t [] False Negative
O False Positive

Legend:
[] False Negative

Legend
2.5 O False Positive

rsts

Persistent Increase Persistent
Variations

TCP Throughput (bps)
&

TCP Throughput (bps)
&

TCP Throughput (bps)
o

N

Intermi
Dips

0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700
Sample Number Sample Number Sample Number

(@)s=2 (b) s =3 (©)s=4
Fig. 4. Impact of choosing statie values on anomaly detection accuracy

negative remains. These observations motivate us to develo

8 an adaptive scheme (described in detail in Section 1V) for
o -egend: | dynamically configurings values, which avoids triggering
2 [] raise Negative such false alarms that occur when using the SPD scheme.
= ] Similarly, we found that choosing static’(.) settings as
8 shown in Equations (5) - (8) can result in false alarms.
-‘Tcl Recall from Section IlI-A that thes’(.) settings use elevated
2 thresholds based on theaz(x;) and min(z;) values in the
& trigbuff until the timer equalsswc. Figure 5 shows how the
static ¢s(.) settings do not detect consecutive anomalies of
the same magnitude of either the persistent increaseatacre

0 20 4‘0 éO éO 160 léO 11‘10 160 . . .
Sample Number kinds when thetimer is lesser tharswe. These observations
motivate us to develop an adaptive scheme (described iil deta
Fig. 5. Impact of choosing statits’(.) settings on anomaly detectionin Section 1V) for dynamically configurings’(.) values, which
accuracy avoids triggering false negatives in consecutive anomaiynie
scenarios when using the SPD scheme.

measurement traces in [15] has shown thatettings in the IV. DYNAMICALLY ADAPTIVE PLATEAU-DETECTOR
range of 2 to 3 is effective. In fact, even in grid environment SCHEME
monitoring of resources such as CPU, a variant of the MSDIn this section, we describe the trace sources and our
method with thresholds of: + 2 x o, has been found to be systematic study of anomaly events in real and synthetic mea
effective [20]. In essence, setting of the threshold valiees surements of network performance. In addition, we present o
pu£2*0 is based on an inherent assumption that network nomavel, dynamically adaptive plateau-detection (APD) sobe
data follows normal distribution. It is known that if any dat based on reinforcement learning to overcome the SPD scheme
follows normal distribution, approximately 95% of the datdéimitations described in Section III-B.
points fall within thisu42*c range. Since this assumption is
not completely true, static setting sf= 2, which also directly A- Trace Data
impactsts(.) settings (see Equations (1) - (4)) causes false The real-network measurement trace sources for study-
alarms. In our analysis of anomaly events in real and syiatheing anomaly events referred in this paper are from several
measurement traffic traces, we observed in some traces thatldwide perfSONAR deployments [3]. Using customized
minor changes in the setting (e.g.s set to either 1.9, 2, 2.1, perfSONAR web-service client scripts, we queried current
or 2.3) can result in a notable difference in false alarms. and historic measurement data archives from 65 sites that
Figures 4(a) - (c) show the impact of choosing stati@lues monitor approximately 480 network paths connecting variou
of 2, 3 or 4 for detecting anomaly events on a conjoined sdPC communities (i.e., universities, labs, HPC centergr ov
of real-network traces. We conjoined the traces to illustrahigh-speed network backbones that include ESnet, Inrnet
how the anomaly detection accuracy is affected by the staticGEANT, CENIC, KREONET, LHCOPN and many others.
values for different kinds of network events such as pesist Although we had the option to query a number of active and
increase/decrease, persistent variations, intermitgpikes, passive metrics, we queried only the active measurements of
intermittent dips, and bursts. As we can see, increasing thEP throughput pertaining to the BWCTL tool [3] used in
sensitivity from 2 to 3 reduces the number of false positiveperfSONAR deployments. The BWCTL tool is a scheduling
and causes a false negative. Increasing the sensitivity taadd policy daemon that wraps popular data throughput gestin
can avoid the triggering of all false positives but the falsmols such as Iperf [21], Thrulay [22] and Nuttcp [23]. We



chose only to query BWCTL tool measurements of TCEBlements, cross-traffic congestion, or even due to changes
throughput as an exemplar metric in this paper because: ifa)the test platforms (e.g., kernel driver, OS image, TCP
it is commonly-used by consumers of perfSONAR meaurflavor, auto-tuned buffers versus fixed buffers) of the activ
ments, and (b) it has direct relevance to monitoring endieasurement probes.
to-end network path performance affecting large-scale file ) o ]
transfers. Other measurements such as SNMP [7] only provide Dynamic Sensitivity Selection
hop-status that is useful to know general network equipmentin our analysis of the above described real-network and
health status. However, we remark that our observations ayhthetic traces, we found that in the range of 2 to 4
conclusions presented in this paper can be generally a@pplsnsistently detected the labeled anomalies. We noted that
to any time-series of active or passive measurements. although the SPD scheme frequently detected the labeled
To obtain greater flexibility in studying how plateau-détec anomaly events, the false alarms i.e., false positivies and
parameters are affected by a wide-range of characteristicsfalse negatives were caused primarily due to thealues
anomaly events, we also use synthetic measurement tra¢es. changing for various anomaly events. If the sensitivity
For generating the synthetic traces that mimic the behavil the time point of a false alarm was modified, the anomaly
of real active measurement traffic traces, we leveragetsesivent was successfully detected. Hence, we concluded that
from our earlier study on modeling real-network active mea- needs to be re-evaluated at each time step to avoid false
surement traces [24]. In this study, we analyzed large datrms. Further, we observed that false alarms were tegger
volumes of active and passive measurements collected oethe SPD scheme due to the nature of persistent variations
campus, regional and national network backbones with tinfethe time series after an anomaly event is detected. Hence,
series trends that are: (i) routine, and (ii) event-lades],[2 we concluded that variance? of the raw measurements just
[26]. Our modeling was based on the Box-Jenkins meth@dter an anomaly event provides direct intelligence abbat t
for time-series analysis [27]. Using diagnostics, 95% confainomaly event itself, and leveraging it for reinforcemeft o
dence interval checking, and prediction, we showed thattite machine learning (to compare statistics of historic and
is reasonable to characterize active measurements on wétgrent measurement samples for detecting change poants) ¢
area network paths using Auto-Regressive Integrated Movimake the anomaly detection more robust and accurate. We
Average (ARIMA) model class parameters. We also showgemark that this idea of using? as the critical statistic for
that first-order differencing is sufficient to remove inhare reinforcement to detect anomalgl events robustly and atalyra
trends and thus filter the data sets. Further, we concludedformally referred to in the machine learning literatue a
that active measurement time series have “too much memoryrginforcement learning”. Also, finite-state Markov deois
because of which they generally follow M#)(process (even processes are commonly used to formulate the reinforcement
when they contain events with AR characteristics) with lolgarning. ,
q values. Hence, we generated synthetic traces for the roundgased on these observations, we use Fheelation in our
trip delay metric following theARIMA (0, 1, q) model with  App scheme to determine the sensitivity ;... dynamically
q values in the range of 1 to 3. Next, we injected the traces a time step. Here, o7 refers to the variance of thewc
with a wide-range of anomaly events that had different whi{g, nher of measurement samples in the future,hfers to
noise standard deviations in the anomaly time-series megio yhe variance of thewe number of most current measurement
One of the significant challenges in dealing with all thgamples. We set;_,. to a higher value (closer to 4) based

measurement traces is to decide what kind of network events L ow much the’s ratio is higher than 1. Similarly, we set
need to be labeled as anomaly events that have to be trig- i0 a Iowerilzalue (closer to 2) basea on how,much the

gered by a detection scheme under test. For this task, S\&ES’“’C_ ] i _
leveraged the established fact that plateau anomalies fare;p ratio is lower than 1. Equations 9 - 12 show the expressions
most interest since they have in most cases indicated reaséncalculate ther; ando. values.

for changes in data transfer speeds on high-speed network

paths [14]. In addition, network paths with high performanc 1 Swe
variability behave similar to noticeable plateau anonsalie pe = —— Yy swd[i] (9)
terms of their statistical nature. Intermittent spikesgimittent swesis

dips, and bursts generally are caused due to user-behavior

swc
during normal network operation, i.e., users generatimgpua o, = _ 1 Z(Swdm — pte)? (10)
application traffic. Thus, intermittent spikes, interreitt dips, swe — 1~
and bursts are not of interest as anomaly events and should swe
not be notified. The anomalies we categorized as worthy of T 1 Zdem (11)
notification are based on our own experiences as network swe —7
operators [25], [26], and are based on our extensive digmss . .
with other network operators supporting HPC communities - q 9
(e.g., ESnet, Internet2, GEANT). We remark that the causes o = swe — 1 ;(de[l] ) (12)

for the performance patterns seen in the real-network mea-
surement traces can be due to several reasons. It could bNote thatswd refers to summary window data andd
due to large-application flows, misconfigurations of nekwvorefers to reinforcement buffer data. Figure 6 shows the



Trigger Elevated Values

i
|

Checker

T

i
I
s | swetd Lo--------—

t-swe Summary Statistics|

@ i b o » &

ensitivity

S
N
©

NN
PRSI SIS}

Learner

i) WA

i 100 200 300 400 500 600 700
t _| Reinforcement Sample Number

Buffer

. . Fig. 8. Instantaneous value selections in APD scheme
Fig. 6. Additional blocks needed in the plateau-detector for APD 9

scheme
_x10 m
3 ‘ n
MW“ E
L > 35|
5 2.5 %
5 a
= 2 230
3 T
£ T o
215 5
3 ¢
= i 20
o
o 15
d 0.5t 0 20 40 60 80 100 120 140 160
' Sample Number
% 100 200 300 400 500 600 700 ) . . ., . .
Sample Number Fig. 9. lllustration to show choosing dynamig’(.) settings avoids
false alarms

Fig. 7. lllustration to show choosing dynamicvalues avoids false
alarms

C. Dynamic Trigger Elevation Selection

In our analysis of the synthetic traces, we found that
“Learner” and “Reinforcement Buffer” blocks needed in thehoosing staticts’(.) settings does not detect consecutive
plateau-detector shown in Figure 1 for dynamically determianomalies of the same magnitude of either the persistent
ing the sensitivity parameter. The Learner implements ouncrease/decrease kinds when theer is lesser tharswe.
APD scheme logic to output instantaneous values of sengie noted that using th&'(.) settings based on theax(z;)
tivity s;_ < to the Checker. The Reinforcement Buffer storeand min(z;) values in the SPD scheme was the cause for
the measurement samples as they arrive to the plateau-the false negatives. In order to understand how we overcame
detector, which are subsequently used by the Learner for thés limitation, let us consider the measurement sampje
reinforcement learning. that arrived at the time when the anomaly was detected i.e.,

Using this setup of the plateau-detector, we recordgéqe x4 refers to thex, point on which we annotate the cross

values between sensitivity 2 to 4 that detect the differém& Mark on the related graphs in this paper. By usingas the
of anomaly events accurately in various synthetic and re

etwork norm in the trigger elevated (TE) state for caldngat
network traces. Next, using statistical curve-fitting pipes, the thresholds, we were able to avoid the false negatives in
we best fit the recorded values to derive the closed fo

nsecutive anomaly event scenarios. Hence, we use Egsiatio
/
linear expression as shown in Equation 13 for calculatireg tht#) - (17) to calculate thes’(.) upper and lower threshold

dynamic sensitivitys;_suwe. set values.
o2
S(t—swe) = 0.4 % J—’; +2 (13) Tgy = T+ si*0c (14)
¢ Toy = Ta+2%si %0, (15)
Figure 7 shows how the APD scheme accurately detects TS, = Xg—S;%0¢ (16)
the anomaly events and avoids false alarms for the example Th, = xq—2%si%0, (17)

trace described in Section 1lI-B. Correspondingly, Fig@e
shows how the sensitivity configuration changes dynanyicall Figure 9 shows how the false negatives that were marked
between the range of 2 to 4 during the robust and accuratethe Figure 5 for the SPD scheme are detected using the
anomaly detection of the APD scheme. dynamicts’(.) settings in the APD scheme.



V. PERFORMANCEEVALUATION Note that higher values a®, and lower values of?;, and

In this section, we first describe our OnTimeDetect tool imf/~ denote superior performance. In addition, the value of the

plementation of the APD scheme. Following this, we descritiXPressionit,+i,_ is always equal to 1. Table Il shows the
its use in the accuracy, agility and scalability evaluatiarf 2ccuracy evaluation results for the APD scheme in compariso
our APD scheme. with the SPD scheme with stati¢ settings of 2, 3 and 4.

We can observe that the APD scheme outperforms atleast one
A. OnTimeDetect Tool Implementation of the static SPD schemes in detecting anomaly events and

We have developed an OnTimeDetect tool prototype who@yoiding false alarms in all of the 8 Fra_ces. Howeve_r, in some
capabilities include: (i) anomaly monitoring customipatiof €2S€s the APD scheme performs similar to a particular SPD
large measurement topologies, and (ii) drill-down analysfi scheme. The cases where the APD scheme outperforms the

anomaly events in vast measurement archives in both real-0 Scheme variants are shown in bold font. We can note
time and offine manner at multi-resolution timescales. Wgat the SPD scheme witk=2 causes most false negatives

have developed both command-line and GUI versions of tHiicating that it is least robust than the other schemes.

tool that we plan to widely distribute in the near future witl*t Aqility Evaluat
Windows and Linux platforms support. In the offline mode;” gility Evajuation
a measurement trace with timeseries and measurement tupl@gility evaluations presented herein are for the purpose
can be loaded into the tool to obtain an annotated graph showing the anomaly detection time results from our
with anomalies. Various timeseries portions of the grapfiieal-network measurement trace analysis. Our definition of
can be zoomed in-and-out to analyze trends at different tirdetection time of an anomaly refers to the time difference
granularities. Theswe, td, s, ts(.), andts’(.) parameters can between the instant the plateau-detector enters the inmgend
also be adjusted to observe anomaly detection results. Kbt) state and the instant it is in the event detected (EOpsta
any user setting of the parameters, the tool reports summ#&g expected, low detection times indicates a superior ahoma
statistics of the measurement data being analyzed as wisitection scheme. Figure 10 shows the detection times éor th
as the number of impending and anomaly events. The tdepresentative set of 8 traces shown in Table I. We can observ
also allows a user to save the analyzed graphs. The grafitai the anomaly detection times using our APD scheme varies
and anomaly report are intended to help in communicatiggross perfSONAR deployments, and is on the order of one or
network anomaly information in traces amongst end-userpore days. The reason for these variations and long detectio
and network operators. In the online mode, the tool takéges is mainly due to the currently chosen average periodic
as input a site-list with each target site specified by if@.k.a. stratified random) sampling patterns and freqesnci
perfSONAR measurement archive webservice address eig.the perfSONAR deployments. The average periodic pattern
http://wtg248.otctest.psu.edu:8085. This list can alsabto- and frequency indicates that there is not a strict sampling a
generated for specific projects e.g., LHC and using the pepferiodic time points (e.g., every hour on the hour sampling)
SONAR global lookup web-service [3]. Upon specifying @nd for a given time period (e.g., a day), there are a fixed
query time resolution (e.g., 1 month), latest measurematat dnumber of measurement samples (we observed anywhere from
sets from the perfSONAR deployments are correspondingdyto 12 samples per day) at a deployment site.

queried and analyzed for anomalies using our APD schemelo improve the detection times of our APD scheme in the
or for any static settings of thewc, td, s, ts(.), andts’(.) traces, we evaluate using adaptive sampling instead of the

parameters. average periodic sampling. In the case of adaptive sampling
) once the plateau-detector enters the El state, the sampling
B. Accuracy Evaluation frequency at a sitesf is increased to collect measurement

We have extensively investigated the accuracy of our APEamples at smaller inter-sampling times. Figure 11 shows
scheme on measurement traces collected by our OnTimeDetbet detection times when using the adaptive sampling with
tool from 65 sites that monitor approximately 480 networkhe sampling frequencies 2f, 4*sf, and 8%f. To increase
paths connecting various HPC communities. To illustrage tithe number of samples available at higher frequencies at a
findings of our investigation, we choose to show the accuradgployment site, we use the values of the consecutive sample
performance for a representative set of 8 traces showniinthe future. We do so with the assumption that they follow
Table | with unique time series characteristics. We useethrthe same process of the anomaly event time series region just
metrics shown in Equations 18, 19 and 20 respectively, & the additional samples would have if they were adaptively
evaluate the anomaly detection accuracy of the APD sches@mpled in reality. We can see that by using adaptive samplin
in comparison with the SPD schenwiccess ratiqR,), false measurement data, the APD scheme detection times reduce

positive ratio(R;,), andfalse negative ratigR_). to the range of only a few hours versus the earlier observed
number of true triggers detected ranges of several days. In_ addition, we can see that 4nd
R, = _ (18) 8*sf cases would result in oversampling (i.e., measurement
number of true triggers traffic consumes the network path bandwidth that could have
Rt = number of false triggers detected (19) been used by actual application traffic), and do not provide
number of true triggers any further improvement to just using 2f. Nevertheless, the
number of true triggers missed reduced detection times lessen the detection time tradheatff
Ri— = number of true tri (20) is needed for reinforcement learning i APD sch
ggers g In our scheme.



TABLE |

TRACES DESCRIPTION

Detection Time (Days)

times

Fig. 11. Effect of adaptive sampling on anomaly detection times

TABLE I
ACCURACY EVALUATION RESULTS
Trace ID SPDs:2 SPD5:3 SPDS:4 APDSZQHA
No. R Ry Ry_ R, Ry Ry_ R Ry Ry_ R Ry Ry_
1 1 0 2 1 0 1 1 0 0 1 0 0
2 1 0 15 05 | 05 05 || 05] 05 0 1 0 0
3 1 0 0 0.67 ] 0.33 | 0.33 1 0 0 1 0 0
4 05] 05 5 1 0 0 1 0 0 1 0 0
5 1 0 0.5 1 0 0 05| 05 0 1 0 0
6 0 0 3 1 0 2 1 0 0 1 0 0
7 1 0 0.5 05| 05 0 05| 05 0 1 0 0
8 1 0 0.5 1 0 0 1 0 0 1 0 0

2 3 4 5 6 7
Trace ID

D. Scalability Evaluation

Trace | Source <+ Destination Time Range (Start - | Time Series Characteristics

ID End)

1 psmsu02.aglt2.org <> | 2009-10-9 15:03:19 { Persistent Decrease, Burst Decrease, Intermittent Dips
psumO02.aglt2.org 2010-4-7 17:28:05

2 bwectl.ucsc.edu < | 2010-1-16 06:51:22 { Persistent Decrease, Persistent Increase, Intermittent
bwectl.atla.net.internet2.edu 2010-4-7 20:36:05 Dips

3 bwctl.ucsc.edu <> | 2010-1-16 08:50:36 { Persistent Decrease, Persistent Increase, Intermittent
bwectl.wash.net.internet2.edu 2010-4-7 20:37:43 Bursts, Intermittent Dips

4 wtg248.otctest.psu.edu < | 2010-2-8 14:08:31 - Persistent Variations
perfsonar.dragon.maxgigapop.net2010-4-7 21:25:57

5 chic-ptl.es.net < | 2009-7-2 20:04:41 { Persistent Increase, Persistent Decrease, Persistent
anl-ptl.es.net 2010-1-9 12:32:48 Variations

6 nersc-ptl.es.net <> | 2009-5-18 22:48:13 { Persistent Increase, Intermittent Bursts, Intermittent
wash-ptl.es.net 2010-1-9 16:46:47 Dips

7 hous-ptl.es.net « | 2009-5-19 04:05:12 { Persistent Increase, Persistent Variations, Intermittent
pnwg-ptl.es.net 2010-4-7 13:39:31 Dips

8 nettest.boulder.noaa.gov  «+» | 2009-10-6 20:41:22 { Persistent Decrease, Persistent Increase, Intermittent
wtg248.otctest.psu.edu 2010-4-7 21:27:05 Bursts, Intermittent Dips

Lastly, we evalute the scalability of the APD scheme if used
for notifying anomalies in large-scale measurement tagiek®
comprising of several hundred of network paths. For this,
we calculate the average analysis time per-site to sequen-
tially detect anomalies on over 480 perfSONAR monitored
paths whose measurement data we queried from 65 sites
using our OnTimeDetect tool. We define analysis time for a
measurement archive at a site as the sum of the times taken

for perfSONAR web-service processing, measurement achiv
Fig. 10. Effect of average periodic sampling on anomaly detectiomansfer and run time of the APD scheme on the measurement
archive. Figure 12 shows the average analysis time per-site
for sequential queries spanning multi-timescale resmhsti
shown on the x-axis. We remark that the average analysis
times shown have been calculated from 75 query iterations
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spanning several days. We can observe that the analysis time
are on the order of tens of seconds. Upon further analysis, we
found that some sites have analysis times that are less than a
second, whereas some sites have analysis times on the érder o
several seconds. Based on this observation, we experithente
with a parallel query mechanism where the OnTimeDetect
concurrently queries all the sites in the site-list. Theespe

up results in the average analysis time per-site for thellphra
query compared to the sequential query from 75 iterations
are shown in Figure 13. The speedup value is calculated as a
percentage ratio of the sequential query analysis time tbner
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Our future work is to compare and contrast our adap-
tive plateau-detector with other advanced anomaly detecti
schemes considering archives of additional network health

metrics available in the perfSONAR deployments.

V1. CONCLUSION



