
Slide 1

Conquering the OSC Batch Environment
or

Why Must I Get in Line?
I Want to Run Now!

Marcio Faerman, Ph.D. (mfaerman@osc.edu)
March 2015

Slide 2

Downloads

• OSC Getting Connected Web Page
– Download Putty

Slide 3

Understanding the Infrastructure
What Can I do?

☺ Many Compute Resources!

OSC’s HPC Clusters:
• Oakley - 8,300 cores

• Glenn – 3,400 cores
• Ruby 2014 – 4,800 cores

Slide 4

The User and an OSC Cluster

Slide 5

The User and an OSC Cluster

Slide 6

Interacting
The Login and Desktop Nodes

• Purpose
– Gateway

• Submit jobs to batch system

– Interactive Sandbox
• Edit files
• Manage your files
• Interactive work – small scale

– Compiling and some debugging

• Limits
– 20 minutes CPU time
– 1GB memory

• Use the batch system for serious computing!

Slide 7

Interactive Processing

• Way you work on your workstation or laptop

• Enter command at keyboard, output returns to monitor

• Interact in real-time with computer

• Figure things out as you go

Slide 8

Limitations of Interactive Processing

• Shell limits
– 20 minutes CPU time
– 1 GB memory

• No MPI (message-passing interface) programs
• Login nodes often have 70 or more users on them

• Interactive batch jobs are available
– Run on compute nodes, not login nodes
– Resource limits much higher than on login nodes

Slide 9

The User and an OSC Cluster

Access
& Interaction

Power
& Scale

Slide 10

Organization of an OSC Cluster

Slide 11

The Node Components

• Processors
• Memory
• Storage
• Special HW

– GPUs
– Accelerators

Slide 12

OSC Computational Capacity

Oakley System
(2012)

Glenn System
(Phase III, 2014)

Theoretical
Peak
Performance

88.6 TF
+65.5 TF (GPU)
~154 TF

53TF
+6 TF (GPU)
~60 TF

Number of
Nodes 692 426

Cores Per
Node 12 cores/node 8 cores/node

Number of
CPU Cores 8304 3408

Slide 13

OSC Computational Capacity

Ruby System
(2014)

Oakley System
(2012)

Glenn System
(Phase III, 2014)

Theoretical
Peak
Performance

96 TF
+28.6 TF (GPU)
+20 TF (Xeon Phi)
~144 TF

88.6 TF
+65.5 TF (GPU)
~154 TF

53TF
+6 TF (GPU)
~60 TF

Number of
Nodes 240 692 426

Cores Per
Node 20 cores/node 12 cores/node 8 cores/node

Number of
CPU Cores 4800 8304 3408

Slide 14

Understanding the Infrastructure
What Can I do? When Can I do it?

• Many Compute Resources ☺
• Many users �

– Crowd brings much more processes to run
• Than computer processors available

– Not everyone is able to run at the same time �
• Even though we wish you could

• What to do?
– Let’s get folks in line

• The only access to significant resources on the HPC
machines is through the batch job requests

Slide 15

The Batch Jobs Queue

Slide 16

What Else Needed
to Make Through the Queue and Run

More to consider in addition to just compute nodes?
• Number of Cores,
• Memory,
• Software

– Availability,
– Licenses

• Special Resources,
– Accelerators,
– GPUs

• Storage,
– Access permissions,
– Space availability

• Priority Policies
• Resource Limits
• RUs (Resource Units)

Slide 17

Idea Behind Batch Processing

• System runs the job when Resources become
available

• Batch Script Requests Resources
– What will be needed
– How Long

• Put keyboard input into Batch Script
• Screen output goes into a log file (or files)

• Very efficient in terms of resource utilization
• Requires more preparation than interactive

processing

Slide 18

Scheduling Policies

• Serial jobs requesting less than a full node
– May share a node with other jobs

Slide 19

Scheduling Policies

• Parallel jobs are always allocated (and charged for)
whole nodes

• Note: Serial jobs requiring more than the default amount
of memory per core are charged extra

Slide 20

Hardware Characteristics

of nodes # of cores
per node
(ppn)

Memory Temporary
file space

Oakley
(standard)

690 12 48 GB 812 GB

Oakley
(bigmem)

8 12 192 GB 812 GB

Oakley
(hugemem)

1 32 1 TB 812 GB

Glenn
(newdual)

400 8 24 GB 392 GB

Slide 21

Walltime and Processor Limits per Job
Oakley
• Serial jobs

– Request 1 node and up to 12 processor cores
– 168 hour limit (1 week)
– Exceptions possible, up to 2 weeks

• Parallel jobs
– Request multiple nodes and up to 2040 processor cores
– 96 hour limit (4 days)

• Huge memory node
– Request 1 node and 32 processor cores
– 48 hour limit

Slide 22

Limits per User and Group

• User
– Up to 128 concurrently running jobs and/or
– Up to 2048 cores in use

• Group
– Up to 192 concurrently running jobs and/or
– Up to 2048 cores in use

• Excess jobs wait in queue until other jobs exit
• No more than 1000 jobs per user in the system at once

Slide 23

Charging Algorithm

• Charges are in resource units (RUs)
• 1 RU = 10 CPU hours
• Serial job (1 node)

– CPU hours = # of cores (ppn) requested * walltime used
– Ex: nodes=1:ppn=12, 1.5 hours walltime used => 1.8 RUs

• Parallel job (2 or more nodes)
– Charged for whole nodes regardless of ppn requested
– CPU hours =
– # of nodes requested * # or cores on node * walltime used
– Ex: nodes=10:ppn=1, Oakley (12 cores/node), 1.5 hours

walltime used => 18 RUs

Slide 24

Memory Containers (not on Glenn)
Now memory counts!

• Nodes=1:ppn=1,mem=12GB
– Such requests didn’t work properly before

• Change rolled out in October, 2013
– Jobs allocated 4GB per core if explicit memory request not

included
• Effective Cores = memory / memory per core
• Charge for Effective Cores

Slide 25

Memory Containers (not on Glenn)
Now memory counts!

• Examples:
– Nodes=1:ppn=3,

• Will issue an implicit memory limit of 12GB.

– Now a job that requests nodes=1:ppn=1,mem=12GB
• Is charged for 3 Effective Cores.

– Jobs requesting more than 48GB are allocated an entire
large-memory node.

Slide 26

4GB

1 Core

Local
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Serial Request (nodes=1:ppn=2)

Slide 27

4GB

1 Core

Local
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Serial Request (nodes=1:ppn=2)
Implies Memory Limit of 8GB

Slide 28

4GB

1 Core

Local
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Serial Request (nodes=1)
1 core (ppn=1), Memory (12 GB)

Slide 29

4GB

1 Core

Local
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Actual Charge: 3 Effective Cores
Memory (12 GB)

Slide 30

Priority Scheduling

• Scheduling is not strictly first-come first-serve
• Many factors involved in priority calculation

– Length of time job has been waiting
– Processor count requested
– “Fair share” – reduced priority

• How much computing user has done over last few days
• How much user’s group has done over last few days

– Penalty for projects with large negative RU balances

Slide 31

Scheduling Algorithm

• Scheduler runs as many top priority jobs as possible
• Scheduler identifies highest priority job that cannot

currently be run
– Finds time in future to reserve for it

• Backfill
– Scheduler backfills as many lower priority jobs as reserved

resources permit
– Small jobs are most likely to fit into scheduling holes

• Keeps overall utilization of system high
• Allows reasonable turnaround time for high priority jobs

Slide 32

More on Scheduling

• Highest priority does not mean a job will run immediately
– Must free up enough resources (processors and memory)

to run it

• Debugging
– Small number of nodes set aside during the day
– Walltime limit of 1 hour or less

Slide 33

Preparing to Run a Batch Job

• Choose a cluster
• Compile and debug your code in an interactive session

– Use login node to the extent practical
– Not applicable if using system-installed software

• Determine resource requirements
– nodes, memory, walltime, software licenses

• Create a batch script for the job
– Script can have any valid filename

• Submit the job
• Job gets queued

Slide 34

Batch Script Overview

module load fluent

cd $PBS_O_WORKDIR

fluent 3d -g < run.input

Executable
commands

Set up the FLUENT environment

Move to directory job was submitted from

Run fluent

PBS headers

#PBS –N serial_fluent
#PBS –l walltime=1:00:00
#PBS –l nodes=1:ppn=1
#PBS –j oe
#PBS –l software=fluent+1

Put all this into a text file!

Slide 35

PBS (Batch) Options

• May appear on command line
• May appear at beginning of batch script

– Before first executable line
– Preceded by #PBS

• Resource requests
• Job name
• Output log preferences
• Mail options

Slide 36

Useful Options for Resource Requests

-l nodes= numnodes:ppn= numprocs Number of nodes and processors
per node. Can also specify gpus.
-l nodes=1:ppn=1
-l nodes=5:ppn=12

-l mem= amount (optional - rarely needed) Request
total amount of memory.
-l mem=192GB

-l walltime= time Total walltime limit in seconds or
hours:minutes:seconds.
-l walltime=10:00:00

-l software= package[+N] (optional) Request use of N
licenses for package. See software
documentation for details.
-l software=abaqus+5

Slide 37

• http://ondemand.osc.edu

• ssh oakley.osc.edu

Slide 38

Other Useful Options

-N jobname Name you give the job

-j oe Redirect stderr to stdout – get one log
file rather than two.

-m bea Mail options – send mail when job
begins, ends, or aborts. Specify any
combination of b, e, a.

-M <my-email-address> Send logs to alternative email
addresses

Slide 39

Batch Execution Environment

• Batch jobs begin execution in home directory
– Even if you submit job from another directory
– To get to directory submitted from:

• cd $PBS_O_WORKDIR

• Environment identical to what you get when you log in
– Same shell (unless you request a different one)
– Same modules loaded
– Appropriate “dot-files” executed
– Must load any modules you need

Slide 40

Unique Temporary Directory

• Fast local disk space
• Automatically created at beginning of each batch job
• Automatically deleted at end of job
• Access directory through $TMPDIRenvironment variable

• Use for intermediate and scratch files
• May use for other files – copy in and out
• In jobs using multiple nodes, $TMPDIR is not shared

– Each node has its own distinct instance of $TMPDIR

Slide 41

Submitting a Job and Checking Status

• Command to submit a job
– qsub script_file

• Response from PBS (example)
– 123456.oak-batch.osc.edu

• Show status of batch jobs (example)
– qstat -a 123456

– qstat –u usr1234

– qstat -f 123456

Slide 42

Waiting for Your Job to Complete

• Job runs when resources become available
– Optionally receive email when job starts

• Deleting a job
– qdel 123456

– Works for queued or running job

Slide 43

• cp ~mfaerman/OSC-Batch-Training.tar.gz ~

• tar xzvf OSC-Batch-Training.tar.gz

Slide 44

Monitoring a Running Job

• To see the job output log (stdout and/or stderr)
– qpeek 123456

– See documentation for options
• To see resource utilization on nodes allocated to job

– pdsh (Oakley)
– all (Glenn)
– See documentation

• Graphical representation of resource utilization
– OSC OnDemand (ondemand.osc.edu)
– Jobs � Active Jobs � Job Status

Slide 45

Considerations for Parallel Jobs

• Multiple Threads per process
– Share single memory space
– Leverage multiple cores within same node
– OpenMP most common approach

• Multiple Processes on multiple nodes
– Separate memory spaces
– Data exchanged through messages
– Message-Passing Interface (MPI) most common approach

• Multi-level parallelism may involve hybrid models
– Multithreading
– Message Passing
– Accelerators

• GPUS
• Xeon Phi

Slide 46

$TMPDIR – The FASTEST (scratch)

• Data or executable files so large do not fit home directories.

• The /tmp directory offers a huge amount of temporary
disk space (315TB in total)
– Much Faster than $HOMEdisk since it is on local disk (not NFS-

mounted).

• For each batch job – stored in the environment variable
TMPDIR

Slide 47

$TMPDIR – The FASTEST (scratch)

• In the batch file the user should
– copy all files needed to $TMPDIR,
– cd to $TMPDIR,

– run your code, and
– finally bring needed output back files to your $HOMEarea.

• “clean-up” not needed
– $TMPDIRdirectory and all its files are deleted when the

job ends.

Slide 48

pbsdcp – Distributed Copy for Parallel Jobs

• $TMPDIR directory is not shared across nodes!

• When a parallel job starts running on multiple nodes, each
node has its own $TMPDIR.

• Use pbsdcp when copying files to directories not shared
between nodes (e.g. /tmp or $TMPDIR)
– Distributed copy command
– Two modes:

• -s scatter mode (default)
• -g gather mode

Slide 49

pbsdcp – Distributed Copy for Parallel Jobs

• Note: In gather mode, if files on different nodes have the
same name, they will overwrite each other.
– Using the -g (gather mode), the file names should have the

form outfile001, outfile002, etc., with each node producing
a different set of files.

Slide 50

$PFSDIR

• Large, Complex Data Structures
– Spawning multiple nodes
– Good candidates for $PFSDIR

• Utilizing Data Driven Software
– MPI/IO
– HDF5
– NetCDF

• Removed when job terminates

Slide 51

51

PBS Information Variables

• PBS has a number of built-in environment variables that preserve
job information:
– PBS_O_HOST= hostname of machine running PBS
– PBS_O_QUEUE= starting queue your job was put in
– PBS_QUEUE= queue your job was executed in
– PBS_JOBID = JID of your job
– PBS_JOBNAME= “internal” name you gave job
– PBS_NODEFILE= name of the file containing list of nodes your

job used

• The next two slides show an example batch script and
corresponding log depicting access to these PBS variables

Slide 52

52

Batch Script Reporting PBS Environment Information

#PBS -l walltime=1:00
#PBS -N print-env-var
#PBS -j oe

#PBS -m bae

#PBS -S /bin/bash

set -x
cd $PBS_O_WORKDIR
qstat -u $USER -rn
echo $PBS_O_HOST
echo $PBS_O_QUEUE
echo $PBS_QUEUE
echo $PBS_JOBID
echo $PBS_JOBNAME
cat $PBS_NODEFILE

Slide 53

+ cd /nfs/15/mfaerman/Training-UC/PBS-Environment

+ qstat -u mfaerman -rn

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID Username Queue Jobname Se ssID NDS TSK Memory Time S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

3109574.oak-batc mfaerman serial print-env-var 4250 1 1 4gb 00:01 R --

n0678/0

+ echo oakley02.osc.edu

oakley02.osc.edu

+ echo batch

batch

+ echo serial

serial

+ echo 3109574.oak-batch.osc.edu

3109574.oak-batch.osc.edu

+ echo print-env-var

print-env-var

+ cat /var/spool/batch/torque/aux//3109574.oak-batc h.osc.edu

n0678

Batch Log Reporting PBS Environment Information

Slide 54

Parallel Jobs
Script Issues

• Script executes just on the first node assigned to the job

• But how about my other nodes?
– Use mpiexec to

• Run copies of a program or command
• On multiple nodes

• Software that also provides multi-node execution
– pbsdcp (parallel file copy)
– Some application software installed by OSC

Slide 55

Job Output

• Get your results when the job finishes
– Optionally receive email when job ends

• Screen output ends up in file job_name.o jobid

– Copied to your working directory when job ends
– Example: testjob.o1234567

Slide 56

Exercise

• Create and submit a serial job
– Batch script is a text file – many options for creating
– Select appropriate PBS headers – again, many options
– Have the job print out the hostname and working directory, then

sleep for 10 minutes
• hostname; pwd; sleep 600

• Check the status of the job using qstat

• Check the job using OnDemand
• Take a peek at the output log using qpeek

• Optional: delete the job using qdel

• Find and display the output log(s)

Slide 57

OMP Job qstat sample

[mfaerman@oakley01 Simple_OMP_Job]$ qstat -u mfaerma n

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID Username Queue Jobname Se ssID NDS TSK Memory Time S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

2861061.oak-batc mfaerman serial omp-hello -- 1 12 48gb 00:10 Q --

[mfaerman@oakley01 Simple_OMP_Job]$

Slide 58

Sample of end of execution e-mail
Some useful information

1 node: n0603 using 6 cores: 0-5

Normal Exit Status: 0

Slide 59

MPI Job qstat sample

[mfaerman@oakley02 Simple_MPI_Job]$ qstat -u mfaerma n

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID Username Queue Jobname Se ssID NDS TSK Memory Time S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

2861557.oak-batc mfaerman parallel mpi-hello -- 4 48 -- 00:10 Q --

[mfaerman@oakley02 Simple_MPI_Job]$

Slide 60

Problems with Jobs Not Starting

• My job didn’t start at all—why?
– Are you logged on to correct machine?
– Tricky part about shared storage is that all machines use

same home directories

• Why is my job being held?
– Check technical web pages

(http://www.osc.edu/supercomputing)
– Has a downtime been announced?

• Scheduler will not run jobs that cannot finish before downtime

Slide 61

Problems with Jobs Failing after Starting

• My job quit before it finished—why?
– Check for file ending with .ojobid

– Study errors listed
• Are errors from batch script?

– oschelp may be of assistance

• Are errors from programming problem?
– oschelp can’t really debug programs for users

• My job died with a segmentation fault—why?
– Usually sign of trying to access an array out of bounds
– Usually sign of a programming problem

Slide 62

Job Arrays

• Submission of many similar jobs
– With single qsub

• unique $PBS_ARRAYID,
– Parameterizes job behavior in array.

• Input argument to an application
• Part of a file name.

Slide 63

Job Array Script Example

#PBS -N test-array

#PBS -l walltime=00:00:30

#PBS -l nodes=1:ppn=1

#PBS -t 1-3,10,20

#PBS -j oe

#PBS -S /bin/bash

set -x

cd $PBS_O_WORKDIR

echo $PBS_ARRAYID

myprogram < data${PBS_ARRAYID}.in > data${PBS_ARRAYID}.out

Slide 64

How to qstat the whole Job Array

bash-4.1$ qstat -t '2862849[]'

Job id Name User Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch test-array-1 mfaerman 0 Q serial

2862849[2].oak-batch test-array-2 mfaerman 0 Q serial

2862849[3].oak-batch test-array-3 mfaerman 0 Q serial

2862849[10].oak-batch test-array-10 mfaerman 0 Q serial

2862849[20].oak-batch test-array-20 mfaerman 0 Q serial

Slide 65

How to qstat specific jobs in Job Array

bash-4.1$ qstat -t '2862849[1]'

Job id Name User Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch test-array-1 mfaerman 0 Q serial

bash-4.1$ qstat -t '2862849[2]'

Job id Name User Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[2].oak-batch test-array-2 mfaerman 0 Q serial

Slide 66

How to Remove a specific job from Job Array

bash-4.1$ qstat -t '2862849[]'

Job id Name User Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch test-array-1 mfaerman 0 Q serial

2862849[2].oak-batch test-array-2 mfaerman 0 Q serial

2862849[3].oak-batch test-array-3 mfaerman 0 Q serial

2862849[10].oak-batch test-array-10 mfaerman 0 Q serial

2862849[20].oak-batch test-array-20 mfaerman 0 Q serial

bash-4.1$ qdel -t 2 '2862849[]‘

bash-4.1$ qstat -t '2862849[]'

Job id Name User Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch test-array-1 mfaerman 0 Q serial

2862849[3].oak-batch test-array-3 mfaerman 0 Q serial

2862849[10].oak-batch test-array-10 mfaerman 0 Q serial

2862849[20].oak-batch test-array-20 mfaerman 0 Q serial

bash-4.1$

Slide 67

Job Dependency

• Example:
– Job C must not start before
– Jobs A and B terminate

• Several conditional options
available

Job
A

Job
C

O
utput

Job
B

qsub –W depend=afterany:$JobA_Id:$JobB_Id JobC.pbs

Slide 68

Job Dependency
Submission Example

[mfaerman@oakley02 Alt_OMP_Job]$ qsub -W depend=afte rany:2865505:2865506 alt-omp-hello.pbs

2865507.oak-batch.osc.edu

[mfaerman@oakley02 Alt_OMP_Job]$ qstat -u mfaerman

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID Username Queue Jobname Se ssID NDS TSK Memory Time S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

2865505.oak-batc mfaerman serial alt-omp-hello -- 1 6 24gb 00:05 Q --

2865506.oak-batc mfaerman serial alt-omp-hello -- 1 6 24gb 00:05 Q --

2865507.oak-batc mfaerman serial alt-omp-hello -- 1 6 24gb 00:05 H --

Slide 69

Licenses and Tokens
Abaqus Example
#PBS -N my_job

#PBS -l walltime=00:30:00

#PBS -l nodes=1:ppn=1

#PBS -l software=abaqus+5

module load abaqus

abaqus job=<abaqus_job> input=<input_file> interactive

• An Abaqus job needs T tokens to run
– T = int(5 x C^0.422), where
– C = total number of cores requested

• Tokens checked out from OSC token-based license pool

Cores
(nodes x ppn each):

1 2 3 4 6 8 12 16 24 32 48

Tokens needed: 5 6 7 8 10 12 14 16 19 21 25

Slide 70

Abaqus Job Example
#PBS -l walltime=1:00:00

#PBS -l nodes=2:ppn=12

#PBS -N my_abaqus_job

#PBS -l software=abaqus+19

#PBS -j oe

#

The following lines set up the ABAQUS environment

#

module load abaqus

#

Move to the directory where the job was submitted

#

cd $PBS_O_WORKDIR

cp *.inp $TMPDIR/

cd $TMPDIR

#

Run ABAQUS, note that in this case we have provid ed the names of the input files explicitly

#

abaqus job=test input=<my_input_file_name1>.inp cpus= 24 interactive

#

Now, move data back once the simulation has compl eted

#

mv * $PBS_O_WORKDIR

Slide 71

Considerations for Parallel Jobs

• Multiple Threads per process
– Share single memory space
– Leverage multiple cores within same node
– OpenMP most common approach

• Multiple Processes on multiple nodes
– Separate memory spaces
– Data exchanged through messages
– Message-Passing Interface (MPI) most common approach

• Multi-level parallelism may involve hybrid models
– Multithreading
– Message Passing
– Accelerators

• GPUS
• Xeon Phi

Slide 72

Hybrid MPI, OpenMP Job Script
6 threads/process, 4 MPI processes, 2 nodes

#PBS -N hybrid-mpi-omp-2x4d2

#PBS -l walltime=00:01:00

#PBS -l nodes=2:ppn=12

#PBS -j oe

#PBS -m bae

#PBS -S /bin/bash

module swap intel gnu

set -x

export OMP_NUM_THREADS=6

export MV2_ENABLE_AFFINITY=0

cd $PBS_O_WORKDIR

pwd

Compile in $PBS_O_WORKDIR, printed above.

mpicc -O2 -fopenmp hello-hybrid.c -o hello-hybrid

Copy executable to all nodes

pbsdcp $PBS_O_WORKDIR/hello-hybrid $TMPDIR

mpiexec -npernode 2 $TMPDIR/hello-hybrid

Slide 73

MPI-OpenMP Sample Output
6 threads/process, 4 MPI processes, 2 nodes

[mfaerman@oakley02 Hybrid-MPI-OpenMP]$ grep Hello hybrid-mpi-omp-2x4d2.o2879820

Hello from thread 0 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 3 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 4 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 0 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 0 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 5 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 3 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 4 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 1 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 3 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 2 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 1 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 2 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 2 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 5 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 5 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 4 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 4 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 0 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 1 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 3 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 5 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 2 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 1 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Slide 74

Batch Specifics

• 8 Large Memory (192 GB) nodes on Oakley ("bigmem").
– #PBS -l mem=192GB

• Huge Memory node ("hugemem"), with 1 TB of RAM and 32
cores
– #PBS -l nodes=1:ppn=32.

– This node is only for serial jobs, must request the entire
– Walltime limit of 48 hours for jobs on this node.

• GPU jobs may request any number of cores and either 1 or 2
GPUs.

Slide 75

Interacting with OSC Nodes

• Login Nodes
– Just ssh to cluster login nodes
– Limited time and computational resources

• OnDemand Portal
– Easy access to Graphic User Interface (GUI) software

• Just open a VNC App
– Desktops
– Applications

Slide 76

Interacting with a Batch Job

• Yes – you wait in line to run your job

• But once you get out of the queue:
– You have access to the batch nodes
– Can actually interact with them

• For instance, using VNC

• Further information available at:
https://www.osc.edu/documentation/howto/use-vnc-in-a-batch-job

Slide 77

Interactive Batch Jobs

• Useful for debugging parallel programs
• Running a GUI program too large for login or desktop

nodes.
• Resource limits (memory, CPU) same as batch limits
• Generally invoked without a script, for example:

– The -I flag indicates job is interactive
– The -X flag enables X11 forwarding
– Need X11 server running on your computer to use X11

forwarding [see more]

qsub -I -X -l nodes=2:ppn=12 -l walltime=1:00:00

Slide 78

Starting your VNC server
Option 1: Interactive Shell

• In your job submission, request:
– Entire GPU node,

• GPUs used to accelerate visualization

• Your job will still be queued just like any job

• When the job runs, you’ll see the following line:

• You now have an Interactive Shell
– On one of the GPU nodes

qsub -I -l nodes=1:ppn=12: gpus=2:vis

qsub: waiting for job 123456.opt-batch.osc.edu to start

qsub: job 123456.opt-batch.osc.edu ready

Slide 79

• If the load is high,
�Your job may wait for hours in the queue

• A walltime limit ≤ 1 hour recommended
– As job can run on nodes reserved for debugging

Interactive PBS Shell – An Important Note

Slide 80

• Start the VNC server

• May ask to setup password
– To secure VNC session from unauthorized connections
– We recommend a strong password

• The output of this command is important

– Tells where to point client to access desktop
• Host Name (before the :)
• Display # (after the :)

Starting your VNC server
Option 1: Interactive Shell

module load virtualgl
module load turbovnc
vncserver

New 'X' desktop is n0302.ten.osc.edu : 1

Slide 81

Starting your VNC server
Option 2: Non-Interactive Batch Job

• Less Friendly
– Use qpeek to verify the output of vncserver

• Host Name
• Display #

• More Robust
– Can go away (no “baby-sitting” of interactive prompt)

• System notifies by email when desktop is available
– If connection to OSC is unstable and intermittent

• VNC server survives disconnection

Slide 82

#PBS -l nodes=1:ppn=12:gpus=2:vis

#PBS -l walltime=00:15:00

#PBS -m b

#PBS -N VNCjob

#PBS -j oe

module load virtualgl

module load turbovnc

vncserver

sleep 100

vncpid=`pgrep -s 0 Xvnc`

while [-e /proc/$vncpid]; do sleep 0.1; done

Starting your VNC server
Option 2: Non-Interactive Batch Job

Script Sample:

Slide 83

-bash-4.1$ vncpasswd

Password:

-bash-4.1$ qsub int-nogpus.pbs

3092450.oak-batch.osc.edu

Starting your VNC server
Option 2: Non-Interactive Batch Job

Slide 84

Starting your VNC server
Option 2: Non-Interactive Batch Job

• Script submission sends an email when job has started
– Includes the host (node) name

• Use qpeek to check output of vncserver on a login node:
– The display# is virtually always “1”

[mfaerman@oakley02]$ qpeek 2903380

New 'X' desktop is n0646.ten.osc.edu:1

Starting applications specified in /nfs/15/mfaerman/.vnc/xstartup.turbovnc

Log file is /nfs/15/mfaerman/.vnc/n0646.ten.osc.edu:1.log

: “n0646 ”

Slide 85

Connecting to your VNC server

• In both Interactive an Batch options
• Cluster compute nodes not directly accessible

• Must log into login node
– Allow VNC client to "tunnel" through SSH to compute

node.
• The method of doing so may vary on client software.

Slide 86

Linux/MacOS example to Oakley
Manually create an SSH tunnel

• Issue this command in new terminal window on your
local machine, creating a new connection to Oakley.

• Open your VNC client and connect to "localhost:1“
– This will tunnel to the correct node on Oakley

ssh -L 5901:n0646.ten.osc.edu:5901 mfaerman@oakley.o sc.edu

Slide 87

• Enable X11 Forwarding

• At SSH Tunnels settings
– Pick Source port

• Between 5911 and 5999

– Set Destination
• From vncserver output

– Click “Add” button

• SSH to cluster login node
– Where vncserver is running

Putty/Windows example to Oakley

<Host Name>:<5900+display#>

Slide 88

VNC Client
Windows Example

• Enter localhost:[port]
– Replacing [port] with the port between 11-99 chosen earlier.

• TurboVNC is recommended

• If you've set up a VNC password you will be prompted for it
now

• A desktop display should pop up now if everything is
configured correctly.

Slide 89

Further Considerations

• Advanced Reservations
– Known Start Time
– Interactive Sessions
– Reservations are charged

• Condo Model
– Shared cost

• Users and OSC
• Purchase or Rental

– Win-Win Framework
• Skip the line!
• Exclusive access to user dedicated resources
• Operational Costs Reduction

Slide 90

For More Information

• www.osc.edu/supercomputing/batch-processing-at-osc

• Contact oschelp@osc.edu with any questions or problems

Marcio Faerman
mfaerman@osc.edu
614-292-2819

Slide 91

Slide 92

Additional Infrastructure Details

Slide 93

Login Nodes – Configuration

• Oakley
– 2 general-purpose login nodes
– 12 cores, 124 GB memory each
– Connect to oakley.osc.edu

• Glenn
– 4 general-purpose login nodes
– 8 cores, 32 GB memory each
– Connect to glenn.osc.edu

Slide 94

Compute Nodes – Oakley

• 684 standard nodes
– 12 cores per node
– 48 GB memory (4GB/core)
– 812 GB local disk space

• 8 large memory nodes
– 12 cores per node
– 192 GB memory (16GB/core)
– 812 GB local disk space

• Network
– Nodes connected by 40Gbit/sec Infiniband network (QDR)

Slide 95

Special Resources

• GPU computing
– 128 NVIDIA Tesla M2070 GPUs
– 64 of the standard nodes have 2 GPUs each

• 1 huge memory node
– 32 cores
– 1 TB memory

• Intel Xeon Phi accelerators (Ruby cluster)
– 8 nodes, each with one Phi card
– limited-access test cluster

Slide 96

Compute Nodes – Glenn

• 634 standard nodes
– 8 cores per node
– 24 GB memory (3GB/core)
– 393 GB local disk space

• Network
– Nodes connected by 20Gbit/sec Infiniband network (DDR)

Slide 97

Special Resources – Glenn

• GPU computing
– 18 NVIDIA Quadro Plex S4 systems
– Each Quadro Plex S4 has 4 Quadro FX GPUs
– 36 of the standard nodes have 2 GPUs each

