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Downloads

• OSC Getting Connected Web Page
– Download Putty
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Understanding the Infrastructure
What Can I do?

☺ Many Compute Resources!

OSC’s HPC Clusters: 
• Oakley - 8,300 cores

• Glenn – 3,400 cores
• Ruby 2014 – 4,800 cores
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The User and an OSC Cluster
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The User and an OSC Cluster
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Interacting
The Login and Desktop Nodes

• Purpose
– Gateway

• Submit jobs to batch system

– Interactive Sandbox
• Edit files
• Manage your files
• Interactive work – small scale

– Compiling and some debugging

• Limits
– 20 minutes CPU time
– 1GB memory

• Use the batch system for serious computing!
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Interactive Processing

• Way you work on your workstation or laptop

• Enter command at keyboard, output returns to monitor

• Interact in real-time with computer

• Figure things out as you go
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Limitations of Interactive Processing

• Shell limits
– 20 minutes CPU time
– 1 GB memory

• No MPI (message-passing interface) programs
• Login nodes often have 70 or more users on them

• Interactive batch jobs are available
– Run on compute nodes, not login nodes
– Resource limits much higher than on login nodes
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The User and an OSC Cluster

Access 
& Interaction

Power 
& Scale
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Organization of an OSC Cluster
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The Node Components

• Processors
• Memory
• Storage
• Special HW

– GPUs
– Accelerators
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OSC Computational Capacity

Oakley System 
(2012)

Glenn System 
(Phase III, 2014)

Theoretical 
Peak 
Performance

88.6 TF
+65.5 TF (GPU)
~154 TF

53TF
+6 TF (GPU)
~60 TF

Number of 
Nodes 692 426

Cores Per 
Node 12 cores/node 8 cores/node

Number of 
CPU Cores 8304 3408 
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OSC Computational Capacity

Ruby System 
(2014)

Oakley System 
(2012)

Glenn System 
(Phase III, 2014)

Theoretical 
Peak 
Performance

96 TF
+28.6 TF (GPU)
+20 TF (Xeon Phi)
~144 TF

88.6 TF
+65.5 TF (GPU)
~154 TF

53TF
+6 TF (GPU)
~60 TF

Number of 
Nodes 240 692 426

Cores Per 
Node 20 cores/node 12 cores/node 8 cores/node

Number of 
CPU Cores 4800 8304 3408 
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Understanding the Infrastructure
What Can I do? When Can I do it?

• Many Compute Resources ☺
• Many users �

– Crowd brings much more processes to run 
• Than computer processors available

– Not everyone is able to run at the same time �
• Even though we wish you could

• What to do?
– Let’s get folks in line

• The only access to significant resources on the HPC 
machines is through the batch job requests
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The Batch Jobs Queue
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What Else Needed
to Make Through the Queue and Run

More to consider in addition to just compute nodes?
• Number of Cores,
• Memory, 
• Software

– Availability,
– Licenses

• Special Resources,
– Accelerators,
– GPUs

• Storage, 
– Access permissions,
– Space availability

• Priority Policies 
• Resource Limits
• RUs (Resource Units)
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Idea Behind Batch Processing

• System runs the job when Resources become 
available

• Batch Script Requests Resources 
– What will be needed
– How Long

• Put keyboard input into Batch Script
• Screen output goes into a log file (or files)

• Very efficient in terms of resource utilization
• Requires more preparation than interactive 

processing
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Scheduling Policies

• Serial jobs requesting less than a full node 
– May share a node with other jobs
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Scheduling Policies

• Parallel jobs are always allocated (and charged for) 
whole nodes

• Note:  Serial jobs requiring more than the default amount 
of memory per core are charged extra
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Hardware Characteristics

# of nodes # of cores 
per node 
(ppn)

Memory Temporary 
file space

Oakley 
(standard)

690 12 48 GB 812 GB

Oakley 
(bigmem)

8 12 192 GB 812 GB

Oakley 
(hugemem)

1 32 1 TB 812 GB

Glenn 
(newdual)

400 8 24 GB 392 GB
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Walltime and Processor Limits per Job
Oakley
• Serial jobs

– Request 1 node and up to 12 processor cores
– 168 hour limit (1 week)
– Exceptions possible, up to 2 weeks

• Parallel jobs
– Request multiple nodes and up to 2040 processor cores
– 96 hour limit (4 days)

• Huge memory node
– Request 1 node and 32 processor cores
– 48 hour limit
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Limits per User and Group

• User
– Up to 128 concurrently running jobs and/or
– Up to 2048 cores in use

• Group
– Up to 192 concurrently running jobs and/or
– Up to 2048 cores in use

• Excess jobs wait in queue until other jobs exit
• No more than 1000 jobs per user in the system at once
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Charging Algorithm

• Charges are in resource units (RUs)
• 1 RU = 10 CPU hours
• Serial job (1 node)

– CPU hours = # of cores (ppn) requested * walltime used
– Ex: nodes=1:ppn=12, 1.5 hours walltime used => 1.8 RUs

• Parallel job (2 or more nodes)
– Charged for whole nodes regardless of ppn requested
– CPU hours = 
– # of nodes requested * # or cores on node * walltime used
– Ex: nodes=10:ppn=1, Oakley (12 cores/node ), 1.5 hours 

walltime used => 18 RUs
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Memory Containers (not on Glenn)
Now memory counts!

• Nodes=1:ppn=1,mem=12GB
– Such requests didn’t work properly before

• Change rolled out in October, 2013 
– Jobs allocated 4GB per core if explicit memory request not 

included
• Effective Cores = memory / memory per core
• Charge for Effective Cores
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Memory Containers (not on Glenn)
Now memory counts!

• Examples: 
– Nodes=1:ppn=3, 

• Will issue an implicit memory limit of 12GB. 

– Now a job that requests nodes=1:ppn=1,mem=12GB
• Is charged for 3 Effective Cores.

– Jobs requesting more than 48GB are allocated an entire 
large-memory node.
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4GB

1 Core

Local 
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Serial Request (nodes=1:ppn=2)
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4GB

1 Core

Local 
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Serial Request (nodes=1:ppn=2) 
Implies Memory Limit of 8GB
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4GB

1 Core

Local 
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Serial Request (nodes=1)
1 core (ppn=1), Memory (12 GB)
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4GB

1 Core

Local 
StorageM E O R YM

Accelerator Accelerator

4GB 4GB 4GB 4GB 4GB

1 Core 1 Core 1 Core

1 Core 1 Core 1 Core 1 Core

1 Core

1 Core

1 Core 1 Core

HPC Node

Actual Charge: 3 Effective Cores
Memory (12 GB)
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Priority Scheduling

• Scheduling is not strictly first-come first-serve
• Many factors involved in priority calculation

– Length of time job has been waiting
– Processor count requested
– “Fair share” – reduced priority

• How much computing user has done over last few days
• How much user’s group has done over last few days

– Penalty for projects with large negative RU balances
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Scheduling Algorithm

• Scheduler runs as many top priority jobs as possible
• Scheduler identifies highest priority job that cannot 

currently be run
– Finds time in future to reserve for it

• Backfill
– Scheduler backfills as many lower priority jobs as reserved 

resources permit
– Small jobs are most likely to fit into scheduling holes

• Keeps overall utilization of system high
• Allows reasonable turnaround time for high priority jobs
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More on Scheduling

• Highest priority does not mean a job will run immediately
– Must free up enough resources (processors and memory) 

to run it

• Debugging
– Small number of nodes set aside during the day
– Walltime limit of 1 hour or less
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Preparing to Run a Batch Job

• Choose a cluster
• Compile and debug your code in an interactive session

– Use login node to the extent practical
– Not applicable if using system-installed software

• Determine resource requirements
– nodes, memory, walltime, software licenses

• Create a batch script for the job
– Script can have any valid filename

• Submit the job
• Job gets queued
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Batch Script Overview

module load fluent

cd $PBS_O_WORKDIR  

fluent 3d -g < run.input  

Executable 
commands

# Set up the FLUENT environment

# Move to directory job was submitted from

# Run fluent

PBS headers

#PBS –N serial_fluent
#PBS –l walltime=1:00:00
#PBS –l nodes=1:ppn=1
#PBS –j oe
#PBS –l software=fluent+1

Put all this into a text file!
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PBS (Batch) Options

• May appear on command line
• May appear at beginning of batch script

– Before first executable line
– Preceded by #PBS

• Resource requests
• Job name
• Output log preferences
• Mail options
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Useful Options for Resource Requests

-l nodes= numnodes:ppn= numprocs Number of nodes and processors 
per node.  Can also specify gpus.
-l nodes=1:ppn=1
-l nodes=5:ppn=12

-l mem= amount (optional - rarely needed) Request 
total amount of memory.
-l mem=192GB

-l walltime= time Total walltime limit in seconds or 
hours:minutes:seconds.
-l walltime=10:00:00

-l software= package[+N] (optional) Request use of N 
licenses for package.  See software 
documentation for details.
-l software=abaqus+5
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• http://ondemand.osc.edu

• ssh oakley.osc.edu
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Other Useful Options

-N jobname Name you give the job

-j oe Redirect stderr to stdout – get one log 
file rather than two.

-m bea Mail options – send mail when job 
begins, ends, or aborts.  Specify any 
combination of b, e, a.

-M <my-email-address> Send logs to alternative email 
addresses
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Batch Execution Environment

• Batch jobs begin execution in home directory
– Even if you submit job from another directory
– To get to directory submitted from: 

• cd $PBS_O_WORKDIR

• Environment identical to what you get when you log in
– Same shell (unless you request a different one)
– Same modules loaded
– Appropriate “dot-files” executed
– Must load any modules you need
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Unique Temporary Directory

• Fast local disk space
• Automatically created at beginning of each batch job
• Automatically deleted at end of job
• Access directory through $TMPDIRenvironment variable

• Use for intermediate and scratch files
• May use for other files – copy in and out
• In jobs using multiple nodes, $TMPDIR is not shared

– Each node has its own distinct instance of $TMPDIR
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Submitting a Job and Checking Status

• Command to submit a job
– qsub script_file

• Response from PBS (example)
– 123456.oak-batch.osc.edu

• Show status of batch jobs (example)
– qstat -a 123456

– qstat –u usr1234

– qstat -f 123456
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Waiting for Your Job to Complete

• Job runs when resources become available
– Optionally receive email when job starts

• Deleting a job
– qdel 123456

– Works for queued or running job
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• cp ~mfaerman/OSC-Batch-Training.tar.gz ~

• tar xzvf OSC-Batch-Training.tar.gz
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Monitoring a Running Job

• To see the job output log (stdout and/or stderr )
– qpeek 123456

– See documentation for options
• To see resource utilization on nodes allocated to job

– pdsh (Oakley)
– all (Glenn)
– See documentation

• Graphical representation of resource utilization
– OSC OnDemand (ondemand.osc.edu)
– Jobs � Active Jobs � Job Status
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Considerations for Parallel Jobs

• Multiple Threads per process
– Share single memory space
– Leverage multiple cores within same node
– OpenMP most common approach

• Multiple Processes on multiple nodes
– Separate memory spaces
– Data exchanged through messages
– Message-Passing Interface (MPI) most common approach

• Multi-level parallelism may involve hybrid models
– Multithreading
– Message Passing
– Accelerators

• GPUS
• Xeon Phi
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$TMPDIR – The FASTEST (scratch)

• Data or executable files so large do not fit home directories.

• The /tmp directory offers a huge amount of temporary 
disk space (315TB in total) 
– Much Faster than $HOMEdisk since it is on local disk (not NFS-

mounted).

• For each batch job – stored in the environment variable 
TMPDIR
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$TMPDIR – The FASTEST (scratch)

• In the batch file the user should 
– copy all files needed to $TMPDIR, 
– cd to $TMPDIR,

– run your code, and 
– finally bring needed output back files to your $HOMEarea.

• “clean-up” not needed 
– $TMPDIRdirectory and all its files are deleted when the 

job ends.
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pbsdcp – Distributed Copy for Parallel Jobs

• $TMPDIR directory is not shared across nodes!

• When a parallel job starts running on multiple nodes, each 
node has its own $TMPDIR.

• Use pbsdcp when copying files to directories not shared 
between nodes (e.g. /tmp or $TMPDIR)
– Distributed copy command
– Two modes: 

• -s scatter mode (default)
• -g gather mode
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pbsdcp – Distributed Copy for Parallel Jobs

• Note: In gather mode, if files on different nodes have the 
same name, they will overwrite each other. 
– Using the -g (gather mode), the file names should have the 

form outfile001, outfile002, etc., with each node producing 
a different set of files.
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$PFSDIR

• Large, Complex Data Structures
– Spawning multiple nodes
– Good candidates for $PFSDIR

• Utilizing Data Driven Software
– MPI/IO 
– HDF5
– NetCDF

• Removed when job terminates
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PBS Information Variables

• PBS has a number of built-in environment variables that preserve 
job information:
– PBS_O_HOST= hostname of machine running PBS
– PBS_O_QUEUE= starting queue your job was put in
– PBS_QUEUE= queue your job was executed in
– PBS_JOBID = JID of your job
– PBS_JOBNAME= “internal” name you gave job
– PBS_NODEFILE= name of the file containing list of nodes your 

job used

• The next two slides show an example batch script and 
corresponding log depicting access to these PBS variables
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Batch Script Reporting PBS Environment Information

#PBS -l walltime=1:00
#PBS -N print-env-var
#PBS -j oe

#PBS -m bae

#PBS -S /bin/bash

set -x
cd $PBS_O_WORKDIR
qstat -u $USER -rn
echo $PBS_O_HOST
echo $PBS_O_QUEUE
echo $PBS_QUEUE
echo $PBS_JOBID
echo $PBS_JOBNAME
cat $PBS_NODEFILE
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+ cd /nfs/15/mfaerman/Training-UC/PBS-Environment

+ qstat -u mfaerman -rn

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID               Username    Queue    Jobname Se ssID NDS   TSK    Memory Time  S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

3109574.oak-batc     mfaerman serial   print-env-var 4250     1      1    4gb 00:01 R   --

n0678/0

+ echo oakley02.osc.edu

oakley02.osc.edu

+ echo batch

batch

+ echo serial

serial

+ echo 3109574.oak-batch.osc.edu

3109574.oak-batch.osc.edu

+ echo print-env-var

print-env-var

+ cat /var/spool/batch/torque/aux//3109574.oak-batc h.osc.edu

n0678

Batch Log Reporting PBS Environment Information
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Parallel Jobs
Script Issues

• Script executes just on the first node assigned to the job

• But how about my other nodes?
– Use mpiexec to

• Run copies of a program or command
• On multiple nodes

• Software that also provides multi-node execution
– pbsdcp (parallel file copy) 
– Some application software installed by OSC
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Job Output

• Get your results when the job finishes
– Optionally receive email when job ends

• Screen output ends up in file job_name.o jobid

– Copied to your working directory when job ends
– Example:  testjob.o1234567
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Exercise

• Create and submit a serial job
– Batch script is a text file – many options for creating
– Select appropriate PBS headers – again, many options
– Have the job print out the hostname and working directory, then 

sleep for 10 minutes
• hostname; pwd; sleep 600

• Check the status of the job using qstat

• Check the job using OnDemand
• Take a peek at the output log using qpeek

• Optional: delete the job using qdel

• Find and display the output log(s)
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OMP Job qstat sample

[mfaerman@oakley01 Simple_OMP_Job]$ qstat -u mfaerma n

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID               Username    Queue    Jobname Se ssID NDS   TSK    Memory Time  S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

2861061.oak-batc     mfaerman serial   omp-hello           -- 1     12   48gb 00:10 Q   --

[mfaerman@oakley01 Simple_OMP_Job]$
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Sample of end of execution e-mail
Some useful information

1 node: n0603 using 6 cores: 0-5

Normal Exit Status: 0
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MPI Job qstat sample

[mfaerman@oakley02 Simple_MPI_Job]$ qstat -u mfaerma n

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID               Username    Queue    Jobname Se ssID NDS   TSK    Memory Time  S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

2861557.oak-batc     mfaerman parallel mpi-hello           -- 4     48    -- 00:10 Q   --

[mfaerman@oakley02 Simple_MPI_Job]$
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Problems with Jobs Not Starting

• My job didn’t start at all—why?
– Are you logged on to correct machine?
– Tricky part about shared storage is that all machines use 

same home directories

• Why is my job being held?
– Check technical web pages 

(http://www.osc.edu/supercomputing)
– Has a downtime been announced?

• Scheduler will not run jobs that cannot finish before downtime
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Problems with Jobs Failing after Starting

• My job quit before it finished—why?
– Check for file ending with .ojobid

– Study errors listed
• Are errors from batch script?

– oschelp may be of assistance

• Are errors from programming problem?
– oschelp can’t really debug programs for users

• My job died with a segmentation fault—why?
– Usually sign of trying to access an array out of bounds
– Usually sign of a programming problem
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Job Arrays

• Submission of many similar jobs 
– With single qsub

• unique $PBS_ARRAYID, 
– Parameterizes job behavior in array.

• Input argument to an application 
• Part of a file name.
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Job Array Script Example

#PBS -N test-array

#PBS -l walltime=00:00:30

#PBS -l nodes=1:ppn=1

#PBS -t 1-3,10,20

#PBS -j oe

#PBS -S /bin/bash

set -x

cd $PBS_O_WORKDIR

echo $PBS_ARRAYID

myprogram < data${PBS_ARRAYID}.in > data${PBS_ARRAYID}.out



Slide 64

How to qstat the whole Job Array

bash-4.1$ qstat -t '2862849[]'

Job id                    Name             User            Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch       test-array-1     mfaerman 0 Q serial

2862849[2].oak-batch       test-array-2     mfaerman 0 Q serial

2862849[3].oak-batch       test-array-3     mfaerman 0 Q serial

2862849[10].oak-batch      test-array-10    mfaerman 0 Q serial

2862849[20].oak-batch      test-array-20    mfaerman 0 Q serial
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How to qstat specific jobs in Job Array

bash-4.1$ qstat -t '2862849[1]'

Job id                    Name             User            Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch       test-array-1     mfaerman 0 Q serial

bash-4.1$ qstat -t '2862849[2]'

Job id                    Name             User            Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[2].oak-batch       test-array-2     mfaerman 0 Q serial
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How to Remove a specific job from Job Array

bash-4.1$ qstat -t '2862849[]'

Job id                    Name             User            Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch       test-array-1     mfaerman 0 Q serial

2862849[2].oak-batch       test-array-2     mfaerman 0 Q serial

2862849[3].oak-batch       test-array-3     mfaerman 0 Q serial

2862849[10].oak-batch      test-array-10    mfaerman 0 Q serial

2862849[20].oak-batch      test-array-20    mfaerman 0 Q serial

bash-4.1$ qdel -t 2 '2862849[]‘

bash-4.1$ qstat -t '2862849[]'

Job id                    Name             User            Time Use S Queue

------------------------- ---------------- --------------- -------- - -----

2862849[1].oak-batch       test-array-1     mfaerman 0 Q serial

2862849[3].oak-batch       test-array-3     mfaerman 0 Q serial

2862849[10].oak-batch      test-array-10    mfaerman 0 Q serial

2862849[20].oak-batch      test-array-20    mfaerman 0 Q serial

bash-4.1$
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Job Dependency

• Example: 
– Job C must not start before
– Jobs A and B terminate

• Several conditional options 
available

Job 
A

Job 
C

O
utput

Job 
B

qsub –W depend=afterany:$JobA_Id:$JobB_Id JobC.pbs
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Job Dependency
Submission Example

[mfaerman@oakley02 Alt_OMP_Job]$ qsub -W depend=afte rany:2865505:2865506 alt-omp-hello.pbs

2865507.oak-batch.osc.edu

[mfaerman@oakley02 Alt_OMP_Job]$ qstat -u mfaerman

oak-batch.osc.edu:15001:

Req'd Req'd Elap

Job ID               Username    Queue    Jobname Se ssID NDS   TSK    Memory Time  S Time

-------------------- ----------- -------- ------------ ---- ------ ----- ------ ------ ----- - -----

2865505.oak-batc     mfaerman serial   alt-omp-hello        -- 1      6   24gb 00:05 Q   --

2865506.oak-batc     mfaerman serial   alt-omp-hello        -- 1      6   24gb 00:05 Q   --

2865507.oak-batc     mfaerman serial   alt-omp-hello        -- 1      6   24gb 00:05 H   --
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Licenses and Tokens
Abaqus Example
#PBS -N my_job

#PBS -l walltime=00:30:00

#PBS -l nodes=1:ppn=1

#PBS -l software=abaqus+5

module load abaqus

abaqus job=<abaqus_job> input=<input_file> interactive

• An Abaqus job needs T tokens to run
– T = int(5 x C^0.422), where
– C = total number of cores requested

• Tokens checked out from OSC token-based license pool

Cores 
(nodes x ppn each):

1 2 3 4 6 8 12 16 24 32 48

Tokens needed: 5 6 7 8 10 12 14 16 19 21 25



Slide 70

Abaqus Job Example
#PBS -l walltime=1:00:00

#PBS -l nodes=2:ppn=12

#PBS -N my_abaqus_job

#PBS -l software=abaqus+19

#PBS -j oe

#

# The following lines set up the ABAQUS environment

#

module load abaqus

#

# Move to the directory where the job was submitted

#

cd $PBS_O_WORKDIR

cp *.inp $TMPDIR/

cd $TMPDIR

#

# Run ABAQUS, note that in this case we have provid ed the names of the input files explicitly

#

abaqus job=test input=<my_input_file_name1>.inp cpus= 24 interactive

#

# Now, move data back once the simulation has compl eted

#

mv * $PBS_O_WORKDIR



Slide 71

Considerations for Parallel Jobs

• Multiple Threads per process
– Share single memory space
– Leverage multiple cores within same node
– OpenMP most common approach

• Multiple Processes on multiple nodes
– Separate memory spaces
– Data exchanged through messages
– Message-Passing Interface (MPI) most common approach

• Multi-level parallelism may involve hybrid models
– Multithreading
– Message Passing
– Accelerators

• GPUS
• Xeon Phi
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Hybrid MPI, OpenMP Job Script
6 threads/process, 4 MPI processes, 2 nodes

#PBS -N hybrid-mpi-omp-2x4d2

#PBS -l walltime=00:01:00

#PBS -l nodes=2:ppn=12

#PBS -j oe

#PBS -m bae

#PBS -S /bin/bash

module swap intel gnu

set -x

export OMP_NUM_THREADS=6

export MV2_ENABLE_AFFINITY=0

cd $PBS_O_WORKDIR

pwd

# Compile in $PBS_O_WORKDIR, printed above.

mpicc -O2 -fopenmp hello-hybrid.c -o hello-hybrid

# Copy executable to all nodes

pbsdcp $PBS_O_WORKDIR/hello-hybrid $TMPDIR

mpiexec -npernode 2 $TMPDIR/hello-hybrid
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MPI-OpenMP Sample Output
6 threads/process, 4 MPI processes, 2 nodes

[mfaerman@oakley02 Hybrid-MPI-OpenMP]$ grep Hello hybrid-mpi-omp-2x4d2.o2879820

Hello from thread 0 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 3 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 4 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 0 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 0 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 5 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 3 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 4 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 1 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 3 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 2 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 1 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 2 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 2 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 5 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 5 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 4 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 4 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 0 out of 6 from process 3 out of 4 on n0401.ten.osc.edu

Hello from thread 1 out of 6 from process 2 out of 4 on n0401.ten.osc.edu

Hello from thread 3 out of 6 from process 1 out of 4 on n0599.ten.osc.edu

Hello from thread 5 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 2 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Hello from thread 1 out of 6 from process 0 out of 4 on n0599.ten.osc.edu
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Batch Specifics

• 8 Large Memory (192 GB) nodes on Oakley ("bigmem"). 
– #PBS -l mem=192GB

• Huge Memory node ("hugemem"), with 1 TB of RAM and 32 
cores
– #PBS -l nodes=1:ppn=32. 

– This node is only for serial jobs, must request the entire 
– Walltime limit of 48 hours for jobs on this node.

• GPU jobs may request any number of cores and either 1 or 2 
GPUs.
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Interacting with OSC Nodes

• Login Nodes
– Just ssh to cluster login nodes
– Limited time and computational resources

• OnDemand Portal
– Easy access to Graphic User Interface (GUI) software

• Just open a VNC App
– Desktops
– Applications
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Interacting with a Batch Job

• Yes – you wait in line to run your job

• But once you get out of the queue:
– You have access to the batch nodes
– Can actually interact with them

• For instance, using VNC

• Further information available at: 
https://www.osc.edu/documentation/howto/use-vnc-in-a-batch-job
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Interactive Batch Jobs

• Useful for debugging parallel programs
• Running a GUI program too large for login or desktop 

nodes. 
• Resource limits (memory, CPU) same as batch limits
• Generally invoked without a script, for example:

– The -I flag indicates job is interactive 
– The -X flag enables X11 forwarding
– Need X11 server running on your computer to use X11 

forwarding [see more]

qsub -I -X -l nodes=2:ppn=12 -l walltime=1:00:00 
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Starting your VNC server
Option 1: Interactive Shell

• In your job submission, request:
– Entire GPU node, 

• GPUs used to accelerate visualization

• Your job will still be queued just like any job 

• When the job runs, you’ll see the following line:

• You now have an Interactive Shell 
– On one of the GPU nodes

qsub -I -l nodes=1:ppn=12: gpus=2:vis

qsub: waiting for job 123456.opt-batch.osc.edu to start

qsub: job 123456.opt-batch.osc.edu ready
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• If the load is high, 
�Your job may wait for hours in the queue

• A walltime limit ≤ 1 hour recommended 
– As job can run on nodes reserved for debugging

Interactive PBS Shell – An Important Note
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• Start the VNC server

• May ask to setup password
– To secure VNC session from unauthorized connections
– We recommend a strong password

• The output of this command is important 

– Tells where to point client to access desktop
• Host Name (before the : ) 
• Display # (after the : )

Starting your VNC server
Option 1: Interactive Shell

module load virtualgl
module load turbovnc
vncserver

New 'X' desktop is n0302.ten.osc.edu : 1
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Starting your VNC server
Option 2: Non-Interactive Batch Job

• Less Friendly
– Use qpeek to verify the output of vncserver

• Host Name
• Display #

• More Robust
– Can go away (no “baby-sitting” of interactive prompt)

• System notifies by email when desktop is available
– If connection to OSC is unstable and intermittent

• VNC server survives disconnection
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#PBS -l nodes=1:ppn=12:gpus=2:vis

#PBS -l walltime=00:15:00

#PBS -m b

#PBS -N VNCjob

#PBS -j oe

module load virtualgl

module load turbovnc

vncserver

sleep 100

vncpid=`pgrep -s 0 Xvnc`

while [ -e /proc/$vncpid ]; do sleep 0.1; done

Starting your VNC server
Option 2: Non-Interactive Batch Job

Script Sample:
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-bash-4.1$ vncpasswd

Password:

-bash-4.1$ qsub int-nogpus.pbs

3092450.oak-batch.osc.edu

Starting your VNC server
Option 2: Non-Interactive Batch Job
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Starting your VNC server
Option 2: Non-Interactive Batch Job

• Script submission sends an email when job has started
– Includes the host (node) name 

• Use qpeek to check output of vncserver on a login node:
– The display# is virtually always “1”

[mfaerman@oakley02]$ qpeek 2903380

New 'X' desktop is n0646.ten.osc.edu:1

Starting applications specified in /nfs/15/mfaerman/.vnc/xstartup.turbovnc

Log file is /nfs/15/mfaerman/.vnc/n0646.ten.osc.edu:1.log

: “n0646 ”
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Connecting to your VNC server

• In both Interactive an Batch options
• Cluster compute nodes not directly accessible

• Must log into login node
– Allow VNC client to "tunnel" through SSH to compute 

node. 
• The method of doing so may vary on client software.
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Linux/MacOS example to Oakley
Manually create an SSH tunnel

• Issue this command in new terminal window on your 
local machine, creating a new connection to Oakley.

• Open your VNC client and connect to "localhost:1“
– This will tunnel to the correct node on Oakley

ssh -L 5901:n0646.ten.osc.edu:5901 mfaerman@oakley.o sc.edu
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• Enable X11 Forwarding

• At SSH Tunnels settings
– Pick Source port

• Between 5911 and 5999

– Set Destination
• From vncserver output

– Click “Add” button

• SSH to cluster login node 
– Where vncserver is running 

Putty/Windows example to Oakley

<Host Name>:<5900+display#>
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VNC Client
Windows Example

• Enter localhost:[port]
– Replacing [port] with the port between 11-99 chosen earlier.

• TurboVNC is recommended

• If you've set up a VNC password you will be prompted for it 
now 

• A desktop display should pop up now if everything is 
configured correctly.
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Further Considerations

• Advanced Reservations
– Known Start Time
– Interactive Sessions
– Reservations are charged

• Condo Model
– Shared cost 

• Users and OSC
• Purchase or Rental

– Win-Win Framework
• Skip the line!
• Exclusive access to user dedicated resources
• Operational Costs Reduction
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For More Information

• www.osc.edu/supercomputing/batch-processing-at-osc

• Contact oschelp@osc.edu with any questions or problems

Marcio Faerman
mfaerman@osc.edu
614-292-2819
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Additional Infrastructure Details



Slide 93

Login Nodes – Configuration 

• Oakley
– 2 general-purpose login nodes
– 12 cores, 124 GB memory each
– Connect to oakley.osc.edu

• Glenn
– 4 general-purpose login nodes
– 8 cores, 32 GB memory each
– Connect to glenn.osc.edu
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Compute Nodes – Oakley

• 684 standard nodes
– 12 cores per node
– 48 GB memory (4GB/core)
– 812 GB local disk space

• 8 large memory nodes
– 12 cores per node
– 192 GB memory (16GB/core)
– 812 GB local disk space

• Network
– Nodes connected by 40Gbit/sec Infiniband network (QDR)
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Special Resources

• GPU computing
– 128 NVIDIA Tesla M2070 GPUs
– 64 of the standard nodes have 2 GPUs each

• 1 huge memory node
– 32 cores
– 1 TB memory

• Intel Xeon Phi accelerators (Ruby cluster)
– 8 nodes, each with one Phi card
– limited-access test cluster
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Compute Nodes – Glenn

• 634 standard nodes
– 8 cores per node
– 24 GB memory (3GB/core)
– 393 GB local disk space

• Network
– Nodes connected by 20Gbit/sec Infiniband network (DDR)
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Special Resources – Glenn

• GPU computing
– 18 NVIDIA Quadro Plex S4 systems
– Each Quadro Plex S4 has 4 Quadro FX GPUs
– 36 of the standard nodes have 2 GPUs each


