

Ohio Supercomputer Center

An **OH**·**TECH** Consortium Member

Conquering the OSC Batch Environment

or Why Must I Get in Line? I Want to Run Now!

Marcio Faerman, Ph.D. (mfaerman@osc.edu) March 2015

www.osc.edu

Downloads

- OSC Getting Connected Web Page
 - Download Putty

Ohio Supercomputer Center

Understanding the Infrastructure

What Can I do?

③ Many Compute Resources!

OSC's HPC Clusters:

- Oakley 8,300 cores
 - Glenn 3,400 cores
 - Ruby 2014 4,800 cores

Ohio Supercomputer Center

Slide 3

The User and an OSC Cluster

Ohio Supercomputer Center

The User and an OSC Cluster

Interacting The Login and Desktop Nodes

- Purpose
 - Gateway
 - Submit jobs to batch system
 - Interactive Sandbox
 - Edit files
 - Manage your files
 - Interactive work **small scale**
 - Compiling and some debugging
- Limits
 - 20 minutes CPU time
 - 1GB memory
- Use the batch system for serious computing!

Slide 6

Interactive Processing

- Way you work on your workstation or laptop
- Enter command at keyboard, output returns to monitor
- Interact in real-time with computer
- Figure things out as you go

Limitations of Interactive Processing

- Shell limits
 - 20 minutes CPU time
 - 1 GB memory
- No MPI (message-passing interface) programs
- Login nodes often have 70 or more users on them
- Interactive batch jobs are available
 - Run on compute nodes, not login nodes
 - Resource limits much higher than on login nodes

The User and an OSC Cluster

Ohio Supercomputer Center

Organization of an OSC Cluster

Ohio Supercomputer Center

The Node Components

- Processors
- Memory
- Storage
- Special HW
 - GPUs
 - Accelerators

		HPC Node		
1 Core	1 Core	1 Core	1 Core	1 Core
1 Core	4GB 4GB 4GE 4GB 4GB 4GE	3 4GB 4GB 4 3 4GB 4GB 4	GB GB Local Storage	1 Core
1 Core	1 Core	1 Core	1 Core	1 Core
Accelerator	Accelerator			

OSC Computational Capacity

	Oakley System (2012)	Glenn System (Phase III, 2014)
Theoretical Peak Performance	88.6 TF <u>+65.5 TF (GPU)</u> ~154 TF	53TF <u>+6 TF (GPU)</u> ~60 TF
Number of Nodes	692	426
Cores Per Node	12 cores/node	8 cores/node
Number of CPU Cores	8304	3408

OSC Computational Capacity

	Ruby System (2014)	Oakley System (2012)	Glenn System (Phase III, 2014)
Theoretical Peak Performance	96 TF +28.6 TF (GPU) <u>+20 TF (Xeon Phi)</u> ~144 TF	88.6 TF <u>+65.5 TF (GPU)</u> ~154 TF	53TF <u>+6 TF (GPU)</u> ~60 TF
Number of Nodes	240	692	426
Cores Per Node	20 cores/node	12 cores/node	8 cores/node
Number of CPU Cores	4800	8304	3408

Understanding the Infrastructure

What Can I do? When Can I do it?

- Many Compute Resources ③
- Many users 😑
 - Crowd brings much more processes to run
 - Than computer processors available
 - Not everyone is able to run at the same time $\ensuremath{\mathfrak{S}}$
 - Even though we wish you could
- What to do?
 - Let's get folks in line

• The only access to significant resources on the HPC machines is through the batch job requests

Ohio Supercomputer Center

Slide 14

The Batch Jobs Queue

Ohio Supercomputer Center

What Else Needed

to Make Through the Queue and Run

More to consider in addition to just compute nodes?

- Number of Cores,
- Memory,
- Software
 - Availability,
 - Licenses
- Special Resources,
 - Accelerators,
 - GPUs
- Storage,
 - Access permissions,
 - Space availability
- Priority Policies
- Resource Limits
- **RUs** (Resource Units)

Idea Behind Batch Processing

- System runs the job when **Resources** become available
- Batch Script Requests Resources
 - What will be needed
 - How Long
- Put keyboard input into **Batch Script**
- Screen output goes into a log file (or files)
- Very efficient in terms of resource utilization
- Requires more preparation than interactive processing

		-

Slide 17

Scheduling Policies

- Serial jobs requesting less than a full node
 - May share a node with other jobs

Scheduling Policies

 Parallel jobs are always allocated (and charged for) whole nodes

• Note: Serial jobs requiring more than the default amount of memory per core are charged extra

Hardware Characteristics

	# of nodes	# of cores per node (ppn)	Memory	Temporary file space
Oakley (standard)	690	12	48 GB	812 GB
Oakley (bigmem)	8	12	192 GB	812 GB
Oakley (hugemem)	1	32	1 TB	812 GB
Glenn (newdual)	400	8	24 GB	392 GB

Walltime and Processor Limits per Job Oakley

- Serial jobs
 - Request 1 node and up to 12 processor cores
 - 168 hour limit (1 week)
 - Exceptions possible, up to 2 weeks
- Parallel jobs
 - Request multiple nodes and up to 2040 processor cores
 - 96 hour limit (4 days)
- Huge memory node
 - Request 1 node and 32 processor cores
 - 48 hour limit

Limits per User and Group

- User
 - Up to 128 concurrently running jobs and/or
 - Up to 2048 cores in use
- Group
 - Up to 192 concurrently running jobs and/or
 - Up to 2048 cores in use
- Excess jobs wait in queue until other jobs exit
- No more than 1000 jobs per user in the system at once

Charging Algorithm

- Charges are in resource units (RUs)
- 1 RU = 10 CPU hours
- Serial job (1 node)
 - CPU hours = # of cores (ppn) requested * walltime used
 - Ex: nodes=1:ppn=12, 1.5 hours walltime used => 1.8 RUs
- Parallel job (2 or more nodes)
 - Charged for whole nodes regardless of ppn requested
 - CPU hours =
 - # of nodes requested * # or cores on node * walltime used
 - Ex: nodes=10:ppn=1, Oakley (12 cores/node), 1.5 hours walltime used => 18 RUs

Memory Containers (not on Glenn)

Now memory counts!

- Nodes=1:ppn=1,mem=12GB
 - Such requests didn't work properly before
- Change rolled out in October, 2013
 - Jobs allocated 4GB per core if explicit memory request not included
 - Effective Cores = memory / memory per core
 - Charge for Effective Cores

Memory Containers (not on Glenn)

Now memory counts!

- Examples:
 - Nodes=1:ppn=3,
 - Will issue an implicit memory limit of 12GB.
 - Now a job that requests nodes=1:ppn=1,mem=12GB
 - Is charged for 3 Effective Cores.
 - Jobs requesting more than 48GB are allocated an entire large-memory node.

Serial Request (nodes=1:ppn=2)

Ohio Supercomputer Center

Slide 26

Serial Request (nodes=1:ppn=2) Implies Memory Limit of 8GB

Ohio Supercomputer Center

Slide 27

Serial Request (nodes=1) 1 core (ppn=1), Memory (12 GB)

Ohio Supercomputer Center

Slide 28

Actual Charge: 3 Effective Cores Memory (12 GB)

Ohio Supercomputer Center

Slide 29

Priority Scheduling

- Scheduling is not strictly first-come first-serve
- Many factors involved in priority calculation
 - Length of time job has been waiting
 - Processor count requested
 - "Fair share" reduced priority
 - How much computing user has done over last few days
 - How much user's group has done over last few days
 - Penalty for projects with large negative RU balances

Scheduling Algorithm

- Scheduler runs as many top priority jobs as possible
- Scheduler identifies highest priority job that cannot currently be run
 - Finds time in future to reserve for it
- Backfill
 - Scheduler backfills as many lower priority jobs as reserved resources permit
 - Small jobs are most likely to fit into scheduling holes
- Keeps overall utilization of system high
- Allows reasonable turnaround time for high priority jobs

More on Scheduling

- Highest priority does not mean a job will run immediately
 - Must free up enough resources (processors and memory) to run it
- Debugging
 - Small number of nodes set aside during the day
 - Walltime limit of 1 hour or less

Preparing to Run a Batch Job

- Choose a cluster
- Compile and debug your code in an interactive session
 - Use login node to the extent practical
 - Not applicable if using system-installed software
- Determine resource requirements
 - nodes, memory, walltime, software licenses
- Create a batch script for the job
 - Script can have any valid filename
- Submit the job
- Job gets queued

Batch Script Overview

PBS (Batch) Options

- May appear on command line
- May appear at beginning of batch script
 - Before first executable line
 - Preceded by **#PBS**
- Resource requests
- Job name
- Output log preferences
- Mail options

Useful Options for Resource Requests

-1 nodes=numnodes:ppn=numprocs	Number of nodes and processors per node. Can also specify gpus. -1 nodes=1:ppn=1 -1 nodes=5:ppn=12
-1 mem= <i>amount</i>	(optional - rarely needed) Request total amount of memory. -1 mem=192GB
-l walltime= <i>time</i>	Total walltime limit in seconds or hours:minutes:seconds.
-l software=package[+N]	 (optional) Request use of N licenses for package. See software documentation for details. -1 software=abaqus+5

- http://ondemand.osc.edu
- ssh oakley.osc.edu

Ohio Supercomputer Center

Other Useful Options

-N jobname	Name you give the job
-j oe	Redirect stderr to stdout – get one log file rather than two.
-m bea	Mail options – send mail when job begins, ends, or aborts. Specify any combination of b, e, a.
-M <my-email-address></my-email-address>	Send logs to alternative email addresses

Batch Execution Environment

- Batch jobs begin execution in home directory
 - Even if you submit job from another directory
 - To get to directory submitted from:
 - cd \$PBS_O_WORKDIR
- Environment identical to what you get when you log in
 - Same shell (unless you request a different one)
 - Same modules loaded
 - Appropriate "dot-files" executed
 - Must load any modules you need

Unique Temporary Directory

- Fast local disk space
- Automatically created at beginning of each batch job
- Automatically deleted at end of job
- Access directory through **\$TMPDIR** environment variable
- Use for intermediate and scratch files
- May use for other files copy in and out
- In jobs using multiple nodes, **\$TMPDIR** is <u>not</u> shared
 - Each node has its own distinct instance of **\$TMPDIR**

Submitting a Job and Checking Status

- Command to submit a job
 - qsub script_file
- Response from PBS (example)
 - 123456.oak-batch.osc.edu
- Show status of batch jobs (example)
 - qstat -a 123456
 - qstat -u usr1234
 - qstat -f 123456

Waiting for Your Job to Complete

- Job runs when resources become available
 - Optionally receive email when job starts
- Deleting a job
 - qdel 123456
 - Works for queued or running job

- cp ~mfaerman/OSC-Batch-Training.tar.gz ~
- tar xzvf OSC-Batch-Training.tar.gz

Ohio Supercomputer Center

Slide 43

Ohio Technology Consortium A Division of the Ohio Board of Regents

Monitoring a Running Job

- To see the job output log (stdout and/or stderr)
 - qpeek 123456
 - See documentation for options
- To see resource utilization on nodes allocated to job
 - pdsh (Oakley)
 - all (Glenn)
 - See documentation
- Graphical representation of resource utilization
 - OSC OnDemand (<u>ondemand.osc.edu</u>)
 - − Jobs → Active Jobs → Job Status

Considerations for Parallel Jobs

- Multiple Threads per process
 - Share single memory space
 - Leverage multiple cores within same node
 - OpenMP most common approach
- Multiple Processes on multiple nodes
 - Separate memory spaces
 - Data exchanged through messages
 - Message-Passing Interface (MPI) most common approach
- Multi-level parallelism may involve hybrid models
 - Multithreading
 - Message Passing
 - Accelerators
 - GPUS
 - Xeon Phi

Local Storage

\$TMPDIR – The FASTEST (scratch)

- Data or executable files so large do not fit home directories.
- The /tmp directory offers a huge amount of **temporary** disk space (315TB in total)
 - Much Faster than \$HOME disk since it is on local disk (not NFSmounted).
- For each batch job stored in the environment variable TMPDIR

Ohio Supercomputer Center

Slide 46

Ohio Technology Consortium A Division of the Ohio Board of Regents

Local Storage

\$TMPDIR – The FASTEST (scratch)

- In the batch file the user should
 - copy all files needed to \$TMPDIR,
 - cd to \$TMPDIR,
 - run your code, and
 - finally bring needed output back files to your \$HOME area.
- "clean-up" not needed
 - \$TMPDIR directory and all its files are deleted when the job ends.

pbsdcp – Distributed Copy for Parallel Jobs

- **\$TMPDIR** directory is not shared across nodes!
- When a parallel job starts running on multiple nodes, each node has its own \$TMPDIR.
- Use pbsdcp when copying files to directories not shared between nodes (e.g. /tmp or \$TMPDIR)
 - Distributed copy command
 - Two modes:
 - -s scatter mode (default)
 - -g gather mode

pbsdcp – Distributed Copy for Parallel Jobs

- Note: In gather mode, if files on different nodes have the same name, they will overwrite each other.
 - Using the -g (gather mode), the file names should have the form outfile001, outfile002, etc., with each node producing a different set of files.

\$PFSDIR

- Large, Complex Data Structures
 - Spawning multiple nodes
 - Good candidates for \$PFSDIR
- Utilizing Data Driven Software
 - MPI/IO
 - HDF5
 - NetCDF
- Removed when job terminates

Slide 50

Ohio Technology Consortium A Division of the Ohio Board of Regents

PBS Information Variables

- PBS has a number of built-in environment variables that preserve job information:
 - PBS_O_HOST = hostname of machine running PBS
 - PBS_O_QUEUE = starting queue your job was put in
 - PBS_QUEUE = queue your job was executed in
 - PBS_JOBID = JID of your job
 - PBS_JOBNAME = "internal" name you gave job
 - PBS_NODEFILE = name of the file containing list of nodes your job used
- The next two slides show an example batch script and corresponding log depicting access to these PBS variables

Ohio Supercomputer Center

Batch Script Reporting PBS Environment Information

```
#PBS -1 walltime=1:00
#PBS -N print-env-var
#PBS -j oe
#PBS -m bae
#PBS -S /bin/bash
set -x
cd $PBS_O_WORKDIR
qstat -u $USER -rn
echo $PBS_O_HOST
echo $PBS_O_QUEUE
echo $PBS QUEUE
echo $PBS_JOBID
echo $PBS JOBNAME
cat $PBS_NODEFILE
```


Batch Log Reporting PBS Environment Information

+ cd /nfs/15/mfaerman/Training-UC/PBS-Environment											
+ qstat -u mfaerman -rn											
oak-batch.osc.edu:1	5001:										
					Req'd	Req'd	Elap				
Job ID	Username	Queue	Jobname	SessID NDS	TSK	Memory	Time :	S Time			
3109574 oak-batc	mfaerman	gerial	nrint-env-var	4250	 1 1		00:01 1	 R			
n0678/0	miaciman	beriar	prine chiv var	1200	± ±	190	00001				
+ echo oakley02.osc	.edu										
oakley02.osc.edu											
+ echo batch											
batch											
+ echo serial											
serial											
+ echo 3109574.oak-1	batch.osc.edu	1									
3109574.oak-batch.os	sc.edu										
+ echo print-env-va	r										
print-env-var											
+ cat /var/spool/bat	tch/torque/au	ux//310957	4.oak-batch.osc.e	edu							
n0678											

Parallel Jobs Script Issues

- Script executes just on the first node assigned to the job
- But how about my other nodes?
 - Use mpiexec to
 - Run copies of a program or command
 - On multiple nodes
- Software that also provides multi-node execution
 - pbsdcp (parallel file copy)
 - Some application software installed by OSC

Job Output

- Get your results when the job finishes
 - Optionally receive email when job ends
- Screen output ends up in file job_name.ojobid
 - Copied to your working directory when job ends
 - Example: testjob.o1234567

Exercise

- Create and submit a serial job
 - Batch script is a text file many options for creating
 - Select appropriate PBS headers again, many options
 - Have the job print out the hostname and working directory, then sleep for 10 minutes
 - hostname; pwd; sleep 600
- Check the status of the job using qstat
- Check the job using OnDemand
- Take a peek at the output log using **qpeek**
- Optional: delete the job using qde1
- Find and display the output log(s)

OMP Job qstat sample

[mfaerman@oakley01 Simple_OMP_Job]\$ qstat -u mfaerman

oak-batch.osc.edu:15001:

					Req'd	Req'd Elap	
Job ID	Username	Queue	Jobname	SessID NDS	TSK	Memory Time S Tim	ne
2861061.oak-batc	mfaerman 🤇	serial	omp-hello	(1) (12)	48gb 00:10 Q -	
[mfaerman@oakley01 S	Simple_OMP_Jo	b]\$					

Sample of end of execution e-mail Some useful information

	↓ 	PBS JOB 28	61704.oak-batch.c	sc.edu - Mess	age (Plain Text)	
File Messa	ige McAfee E-mail Scan					
Ignore X	Reply Reply Forward More -	Image: TAACCCT Image: To Manager Image: Team E-mail ✓ Done Image: Team E-mail Image: Team E-mail Image: Team E-mail Image: Team E-mail	÷ Move	Rules *	Mark Categorize	Follow Up *
Delete	Respond	Quick steps	1.3	WOVE	Tags	176
om: root	<adm@oak-batch.osc.edu></adm@oak-batch.osc.edu>					
n mfae	arman@oakley02.osc.edu					
uhiadu DRS	IOR 3861704 oak batch orc adu					
Exec host: n06 Execution tern Exit_status=0	503/5+n0603/4+n0603/3+n0603/2+r ninated	n0603/1+n0603/0				
resources_use resources_use resources_use	ed.mem=0kb ed.vmem=0kb ed.valltime=00:00:06	1 node: n0603 us	ing 6 cores	: 0-5		

MPI Job qstat sample

[mfaerman@oakley02 Simple_MPI_Job]\$ qstat -u mfaerman

oak-batch.osc.edu:15001:

						Req'o	d Req'd	Ela	р	
Job ID	Username	Queue	Jobname	Sess	ID NDS	TSK	Memory	Time	S T	ime
2861557.oak-batc	mfaerman	parallel	mpi-hello	-	- 4	4	8	00:10	Q	
[mfaerman@oakley02	Simple MPI J	ob]\$								

Problems with Jobs Not Starting

- My job didn't start at all—why?
 - Are you logged on to correct machine?
 - Tricky part about shared storage is that all machines use same home directories
- Why is my job being held?
 - Check technical web pages (http://www.osc.edu/supercomputing)
 - Has a downtime been announced?
 - Scheduler will not run jobs that cannot finish before downtime

Problems with Jobs Failing after Starting

- My job quit before it finished—why?
 - Check for file ending with .ojobid
 - Study errors listed
 - Are errors from batch script?
 - oschelp may be of assistance
 - Are errors from programming problem?
 - oschelp can't really debug programs for users
- My job died with a segmentation fault—why?
 - Usually sign of trying to access an array out of bounds
 - Usually sign of a programming problem

Job Arrays

- Submission of many similar jobs
 - With single qsub
- unique \$PBS_ARRAYID,
 - Parameterizes job behavior in array.
 - Input argument to an application
 - Part of a file name.

Job Array Script Example

#PBS -N test-array #PBS -1 walltime=00:00:30

#PBS -1 nodes=1:ppn=1

#PBS -t 1-3,10,20

- #PBS −j oe
- **#PBS** -S /bin/bash

set -x

cd \$PBS_O_WORKDIR

echo \$PBS_ARRAYID

myprogram < data\${PBS_ARRAYID}.in > data\${PBS_ARRAYID}.out

How to qstat the whole Job Array

bash-4.1\$ qstat -t '2862849[]'									
Job id	Name	User	Time Use S Queue						
2862849[1].oak-batch	test-array-1	mfaerman	0 Q serial						
2862849[2].oak-batch	test-array-2	mfaerman	0 Q serial						
2862849[3].oak-batch	test-array-3	mfaerman	0 Q serial						
2862849[10].oak-batch	test-array-10	mfaerman	0 Q serial						
2862849[20].oak-batch	test-array-20	mfaerman	0 Q serial						

How to qstat specific jobs in Job Array

bash-4.1\$ qstat -t '2862849[1]'									
Job id	Name	User	Time Use S Queue						
2862849[1].oak-batch	test-array-1	mfaerman	0 Q serial						
bash-4.1\$ qstat -t '286	2849[2]'								
Job id	Name	User	Time Use S Queue						
2862849[2].oak-batch	test-array-2	mfaerman	0 Q serial						

How to **Remove** a specific job from Job Array

bash-4.1\$ qstat -t '2862	2849[]'		
Job id	Name	User	Time Use S Queue
2862849[1].oak-batch	test-array-1	mfaerman	0 Q serial
2862849[2].oak-batch	test-array-2	mfaerman	0 Q serial
2862849[3].oak-batch	test-array-3	mfaerman	0 Q serial
2862849[10].oak-batch	test-array-10	mfaerman	0 Q serial
2862849[20].oak-batch	test-array-20	mfaerman	0 Q serial
bash-4.1\$ qstat -t '2862	2849[]'		
Job id	Name	User	Time Use S Queue
2862849[1].oak-batch	test-array-1	mfaerman	0 Q serial
2862849[3].oak-batch	test-array-3	mfaerman	0 Q serial
2862849[10].oak-batch	test-array-10	mfaerman	0 Q serial
2862849[20].oak-batch	test-array-20	mfaerman	0 Q serial
bash-4.1\$			

Job Dependency

- Example:
 - Job C must not start before
 - Jobs A and B terminate
- Several conditional options available

qsub -W depend=afterany:\$JobA_Id:\$JobB_Id JobC.pbs

Ohio Supercomputer Center

Slide 67

Ohio Technology Consortium A Division of the Ohio Board of Regents

Job Dependency **Submission Example**

[mfaerman@oakley02 Alt_OMP_Job]\$ qsub -W depend=afterany:2865505:2865506 alt-omp-hello.pbs 2865507.oak-batch.osc.edu

[mfaerman@oakley02 Alt_OMP_Job]\$ qstat -u mfaerman

oak-batch.osc.edu:15001:

				R	leq'd	Req'd	Elap	2	
Username	Queue	Jobname	SessID ND	S TS	SK	Memory	Time	S :	Гime
									1
mfaerman	serial	alt-omp-hello		1	6	24gb	00:05	Q	
mfaerman	serial	alt-omp-hello		1	б	24gb	00:05	Q	/
mfaerman	serial	alt-omp-hello		1	б	24gb	00:05	H	
	Username mfaerman mfaerman mfaerman	Username Queue mfaerman serial mfaerman serial mfaerman serial	Username Queue Jobname mfaerman serial alt-omp-hello mfaerman serial alt-omp-hello mfaerman serial alt-omp-hello	UsernameQueueJobnameSessIDNDmfaermanserialalt-omp-hellomfaermanserialalt-omp-hellomfaermanserialalt-omp-hello	UsernameQueueJobnameSessID NDSTSmfaermanserialalt-omp-hello1mfaermanserialalt-omp-hello1	Req'dUsernameQueueJobnameSessID NDSTSKmfaermanserialalt-omp-hello16mfaermanserialalt-omp-hello16mfaermanserialalt-omp-hello16	Req'dReq'dReq'dUsernameQueueJobnameSessID NDSTSKMemorymfaermanserialalt-omp-hello1624gbmfaermanserialalt-omp-hello1624gb	Req'dReq'dReq'dElapUsernameQueueJobnameSessID NDSTSKMemoryTimemfaermanserialalt-omp-hello1624gb00:05mfaermanserialalt-omp-hello1624gb00:05mfaermanserialalt-omp-hello1624gb00:05	Req'dReq'dElapUsernameQueueJobnameSessID NDSTSKMemory TimeSmfaermanserialalt-omp-hello1624gb00:05 Qmfaermanserialalt-omp-hello1624gb00:05 Qmfaermanserialalt-omp-hello1624gb00:05 Q

Licenses and Tokens Abaqus Example

#PBS -N my_job
#PBS -l walltime=00:30:00
#PBS -l nodes=1:ppn=1
#PBS -l software=abaqus+5
module load abaqus
abaqus job=<abaqus_job> input=<input_file> interactive

An Abaqus job needs T tokens to run

- $T = int(5 \times C^{0.422})$, where
- C = total number of cores requested

Tokens checked out from OSC token-based license pool

Cores (nodes x ppn each):	1	2	3	4	6	8	12	16	24	32	48
Tokens needed:	5	6	7	8	10	12	14	16	19	21	25

Ohio Supercomputer Center

Abaqus Job Example

```
#PBS -1 walltime=1:00:00
#PBS -l nodes=2:ppn=12
#PBS -N my abaqus job
#PBS -l software=abaqus+19
#PBS −j oe
#
# The following lines set up the ABAQUS environment
#
module load abaqus
#
# Move to the directory where the job was submitted
#
cd $PBS O WORKDIR
cp *.inp $TMPDIR/
cd STMPDIR
#
# Run ABAQUS, note that in this case we have provided the names of the input files explicitly
#
abaqus job=test input=<my input file name1>.inp cpus=24 interactive
#
# Now, move data back once the simulation has completed
#
mv * $PBS_O_WORKDIR
```


Ohio Supercomputer Center

Considerations for Parallel Jobs

- Multiple Threads per process
 - Share single memory space
 - Leverage multiple cores within same node
 - OpenMP most common approach
- Multiple Processes on multiple nodes
 - Separate memory spaces
 - Data exchanged through messages
 - Message-Passing Interface (MPI) most common approach
- Multi-level parallelism may involve hybrid models
 - Multithreading
 - Message Passing
 - Accelerators
 - GPUS
 - Xeon Phi

Hybrid MPI, OpenMP Job Script 6 threads/process, 4 MPI processes, 2 nodes

#PBS -N hybrid-mpi-omp-2x4d2 #PBS -1 walltime=00:01:00 #PBS -1 nodes=2:ppn=12 #PBS −j oe **#PBS** -m bae **#PBS** -S /bin/bash module swap intel gnu set -x export OMP_NUM_THREADS=6 export MV2 ENABLE AFFINITY=0 cd \$PBS O WORKDIR pwd # Compile in \$PBS O WORKDIR, printed above. mpicc -O2 -fopenmp hello-hybrid.c -o hello-hybrid # Copy executable to all nodes pbsdcp \$PBS_0_WORKDIR/hello-hybrid \$TMPDIR mpiexec -npernode 2 \$TMPDIR/hello-hybrid

MPI-OpenMP Sample Output 6 threads/process, 4 MPI processes, 2 nodes

[mfaerman@oakley02 Hybrid-MPI-OpenMP]\$ grep Hello hybrid-mpi-omp-2x4d2.o2879820 Hello from thread 0 out of 6 from process 0 out of 4 on n0599.ten.osc.edu Hello from thread 3 out of 6 from process 3 out of 4 on n0401.ten.osc.edu Hello from thread 4 out of 6 from process 0 out of 4 on n0599.ten.osc.edu Hello from thread 0 out of 6 from process 2 out of 4 on n0401.ten.osc.edu Hello from thread 0 out of 6 from process 1 out of 4 on n0599.ten.osc.edu Hello from thread 5 out of 6 from process 1 out of 4 on n0599.ten.osc.edu Hello from thread 3 out of 6 from process 0 out of 4 on n0599.ten.osc.edu Hello from thread 4 out of 6 from process 2 out of 4 on n0401.ten.osc.edu Hello from thread 1 out of 6 from process 3 out of 4 on n0401.ten.osc.edu Hello from thread 3 out of 6 from process 2 out of 4 on n0401.ten.osc.edu Hello from thread 2 out of 6 from process 2 out of 4 on n0401.ten.osc.edu Hello from thread 1 out of 6 from process 1 out of 4 on n0599.ten.osc.edu Hello from thread 2 out of 6 from process 1 out of 4 on n0599.ten.osc.edu Hello from thread 2 out of 6 from process 3 out of 4 on n0401.ten.osc.edu Hello from thread 5 out of 6 from process 3 out of 4 on n0401.ten.osc.edu Hello from thread 5 out of 6 from process 2 out of 4 on n0401.ten.osc.edu Hello from thread 4 out of 6 from process 1 out of 4 on n0599.ten.osc.edu Hello from thread 4 out of 6 from process 3 out of 4 on n0401.ten.osc.edu Hello from thread 0 out of 6 from process 3 out of 4 on n0401.ten.osc.edu Hello from thread 1 out of 6 from process 2 out of 4 on n0401.ten.osc.edu Hello from thread 3 out of 6 from process 1 out of 4 on n0599.ten.osc.edu Hello from thread 5 out of 6 from process 0 out of 4 on n0599.ten.osc.edu Hello from thread 2 out of 6 from process 0 out of 4 on n0599.ten.osc.edu Hello from thread 1 out of 6 from process 0 out of 4 on n0599.ten.osc.edu

Ohio Supercomputer Center

Slide 73

Batch Specifics

- 8 Large Memory (192 GB) nodes on Oakley ("bigmem").
 - #PBS -1 mem=192GB
- Huge Memory node ("hugemem"), with 1 TB of RAM and 32 cores
 - **#PBS** -1 nodes=1:ppn=32.
 - This node is only for serial jobs, must request the entire
 - Walltime limit of 48 hours for jobs on this node.
- GPU jobs may request any number of cores and either 1 or 2 GPUs.

Interacting with OSC Nodes

- Login Nodes
 - Just ssh to cluster login nodes
 - Limited time and computational resources
- <u>OnDemand</u> Portal
 - Easy access to Graphic User Interface (GUI) software
 - Just open a VNC App
 - Desktops
 - Applications

Interacting with a Batch Job

- Yes you wait in line to run your job
- But once you get out of the queue:
 - You have access to the batch nodes
 - Can actually interact with them
 - For instance, using VNC
 - Further information available at: <u>https://www.osc.edu/documentation/howto/use-vnc-in-a-batch-job</u>

Interactive Batch Jobs

- Useful for debugging parallel programs
- Running a GUI program too large for login or desktop nodes.
- Resource limits (memory, CPU) same as batch limits
- Generally invoked without a script, for example:

```
qsub -I -X -l nodes=2:ppn=12 -l walltime=1:00:00
```

- The -I flag indicates job is interactive
- The -x flag enables X11 forwarding
- Need X11 server running on your computer to use X11 forwarding [<u>see more</u>]

Starting your VNC server

Option 1: Interactive Shell

- In your job submission, request:
 - Entire GPU node,
 - GPUs used to accelerate visualization

qsub -I -l nodes=1:ppn=12:gpus=2:vis

• Your job will still be **queued** just like any job

qsub: waiting for job 123456.opt-batch.osc.edu to start

• When the job runs, you'll see the following line:

qsub: job 123456.opt-batch.osc.edu ready

- You now have an Interactive Shell
 - On one of the GPU nodes

Slide 78

A Interactive PBS Shell – An Important Note

- If the load is high,
 - ➡Your job may wait for hours in the queue
- A walltime limit \leq 1 hour recommended
 - As job can run on nodes reserved for debugging

Starting your VNC server

Option 1: Interactive Shell

- Start the VNC server module load virtualgl module load turbovnc vncserver
- May ask to setup password
 - To secure VNC session from unauthorized connections
 - We recommend a strong password
- The output of this command is important

New 'X' desktop is n0302.ten.osc.edu:1

- Tells where to point client to access desktop
 - Host Name (before the :)
 - Display # (after the :)

Starting your VNC server

Option 2: Non-Interactive Batch Job

- Less Friendly
 - Use **qpeek** to verify the output of **vncserver**
 - Host Name
 - Display #
- More Robust
 - Can go away (no "baby-sitting" of interactive prompt)
 - System notifies by email when desktop is available
 - If connection to OSC is unstable and intermittent
 - VNC server survives disconnection

Starting your VNC server

Option 2: Non-Interactive Batch Job

Script Sample:

```
#PBS -l nodes=1:ppn=12:gpus=2:vis
#PBS -1 walltime=00:15:00
#PBS -m b
#PBS -N VNCjob
#PBS −j oe
module load virtualgl
module load turbovnc
vncserver
sleep 100
vncpid=`pqrep -s 0 Xvnc`
while [ -e /proc/$vncpid ]; do sleep 0.1; done
```


Ohio Supercomputer Center

Starting your VNC server Option 2: Non-Interactive Batch Job

-bash-4.1\$ vncpasswd Password:

-bash-4.1\$ qsub int-nogpus.pbs 3092450.oak-batch.osc.edu

Starting your VNC server

Option 2: Non-Interactive Batch Job

- Script submission sends an email when job has started
 - Includes the host (node) name: "n0646"

Ohio Supercomputer Center

Slide 84

Connecting to your VNC server

- In both Interactive an Batch options
- Cluster compute nodes not directly accessible
- Must log into login node
 - Allow VNC client to "tunnel" through SSH to compute node.
 - The method of doing so may vary on client software.

Linux/MacOS example to Oakley

Manually create an SSH tunnel

ssh -L 5901:n0646.ten.osc.edu:5901 mfaerman@oakley.osc.edu

- Issue this command in new terminal window on your local machine, creating a new connection to Oakley.
- Open your VNC client and connect to "localhost:1"
 - This will tunnel to the correct node on Oakley

Putty/Windows example to Oakley

- Enable X11 Forwarding
- At SSH Tunnels settings
 - Pick Source port
 - Between 5911 and 5999
 - Set Destination
 - From vncserver output

<Host Name>:<5900+display#>

- Click "Add" button
- SSH to cluster login node
 - Where vncserver is running

VNC Client

Windows Example

- Enter localhost: [port]
 - Replacing [port] with the port between 11-99 chosen earlier.
- TurboVNC is recommended

New TurboVNC Connection			8 ×
TURBO VNC	Server: localhost:1	1	•
Listen mode	Options	Connect	Cancel

- If you've set up a VNC password you will be prompted for it now
- A desktop display should pop up now if everything is configured correctly.

Further Considerations

- Advanced Reservations
 - Known Start Time
 - Interactive Sessions
 - Reservations are charged
- Condo Model
 - Shared cost
 - Users and OSC
 - Purchase or Rental
 - Win-Win Framework
 - Skip the line!
 - Exclusive access to user dedicated resources
 - Operational Costs Reduction

For More Information

- <u>www.osc.edu/supercomputing/batch-processing-at-osc</u>
- Contact <u>oschelp@osc.edu</u> with any questions or problems

Marcio Faerman mfaerman@osc.edu 614-292-2819

Ohio Supercomputer Center

Slide 90

Ohio Supercomputer Center

Additional Infrastructure Details

www.osc.edu

Login Nodes – Configuration

- Oakley
 - 2 general-purpose login nodes
 - 12 cores, 124 GB memory each
 - Connect to oakley.osc.edu
- Glenn
 - 4 general-purpose login nodes
 - 8 cores, 32 GB memory each
 - Connect to glenn.osc.edu

Compute Nodes – Oakley

- 684 standard nodes
 - 12 cores per node
 - 48 GB memory (4GB/core)
 - 812 GB local disk space
- 8 large memory nodes
 - 12 cores per node
 - 192 GB memory (16GB/core)
 - 812 GB local disk space
- Network
 - Nodes connected by 40Gbit/sec Infiniband network (QDR)

Special Resources

- GPU computing
 - 128 NVIDIA Tesla M2070 GPUs
 - 64 of the standard nodes have 2 GPUs each
- 1 huge memory node
 - 32 cores
 - 1 TB memory
- Intel Xeon Phi accelerators (Ruby cluster)
 - 8 nodes, each with one Phi card
 - limited-access test cluster

Slide 95

Compute Nodes – Glenn

- 634 standard nodes
 - 8 cores per node
 - 24 GB memory (3GB/core)
 - 393 GB local disk space
- Network
 - Nodes connected by 20Gbit/sec Infiniband network (DDR)

Special Resources – Glenn

- GPU computing
 - 18 NVIDIA Quadro Plex S4 systems
 - Each Quadro Plex S4 has 4 Quadro FX GPUs
 - 36 of the standard nodes have 2 GPUs each

