
Shameema Oottikkal

Managing Python Environments at OSC

Outline
• How to access Python at OSC

• Module files for Python versions

• Python environment

• Anaconda vs miniconda

• Pip vs conda

• Install, uninstall and upgrade packages

• Interactive Python with Jupyter

How to access python on OSC clusters

• These are installed by system group
• Older versions and cannot be updated

On Pitzer cluster:

On Ascend cluster:

How to get newer versions of python on OSC systems

Loading Python module
module load python or module load python/3.9-2022.05

If you need a package that is not available in the module

• If you install yt/4.1.0, yt/4.1.4 will be uninstalled
• Create a Python environment to avoid conflicts

While our Python installations come with many popular packages installed, users may have a case in
which they need an additional package that is not installed.

Installing Python packages locally

Step 1: Load proper Python module

module load python/3.9-2022.05 or module load miniconda3/4.12.0-py39

Anaconda and Miniconda are both Python distributions
that come with a package manager called Conda.

Conda is a powerful tool that allows you to install, update,
and remove Python packages.

Anaconda is a more comprehensive distribution than
Miniconda. It comes with over 150 pre-installed packages,
including many popular data science libraries such as
NumPy, SciPy, and Pandas. This makes it a good choice for
beginners who want to get started with data science
quickly.

Miniconda is a smaller, more lightweight distribution than
Anaconda. It only comes with Conda and a few other
essential packages. This makes it a good choice for
experienced users who want to have more control over the
packages they install.

Source: Planemo documentation

Anaconda vs Miniconda

Choose Anaconda if you:
•Are new to conda or Python
•Like the convenience of having Python and several scientific packages automatically installed at once
•Have the time and disk space (a few minutes and 3 GB), and/or
•Don’t want to install each of the packages you want to use individually.

Choose Miniconda if you:
•Do not mind installing each of the packages you want to use individually.
•Do not have time or disk space to install several packages
•Just want fast access to Python and the conda commands

If you want to create your own python environment, we recommend using miniconda3 module,
since you can start with minimal configurations.

Module load miniconda3/4.12.0-py39

Step 2: Create new environment

The following will create a minimal Python installation without any extraneous packages:

conda create –n myenv

You can augment the command above by listing specific packages you would like installed into the
environment. For example, the following will create a minimal Python installation with only the specified
packages (in this case, numpy and babel):

conda create –n myenv numpy babel

Specific versions can be specified by adding =<version> after the package name. For example, the
following will create a Python installation with Python version 2.7 and NumPy version 1.16:

conda create –n myenv python=3.6 numpy=1.16

conda create –n myenv -–clone base

If you want to clone the full base Python environment from the system, you may use the following
create command:

Do not use this, but use source activate instead

To verify that a clone has been created, use the command

conda info -e

Step 3: Activate environment

Before the created environment can be used, it must be activated

Step 4: Install packages

To install additional packages, use the conda install command. For example, to install
the numpy package:

By default, conda will install the latest version if the package that it can find. Specific versions can be
specified by adding =<version> after the package name. For example, to install version 1.16 of the
NumPy package:

conda install numpy

conda install numpy=1.16

Searching for packages

To see if a specific package, such as SciPy, is available for installation:

conda search scipy

To see installed packages:

conda list

Name Version Build Channel
scipy 0.17.1 np110py27_blas_openblas_200 conda-forge
scipy 0.17.1 np110py27_blas_openblas_201 conda-forge
scipy 1.1.0 py35h9b217d5_1 pkgs/main
scipy 1.1.0 py35hd20e5f9_0 pkgs/main
scipy 1.1.0 py35he2b7bc3_1 pkgs/main

To see if a specific package, such as SciPy, is available for installation from Anaconda.org:

conda search --override-channels --channel defaults scipy

To see if a specific package, such as scipy, exists in a specific channel, such
as http://conda.anaconda.org/intel, and is available for installation:

conda search --override-channels --channel http://conda.anaconda.org/intel scipy

To install multiple packages at once, such as SciPy and cURL:

conda install scipy curl

conda install --name myenv scipy

To install a package without activating an environment

http://conda.anaconda.org/mutirri
http://conda.anaconda.org/intel

Use conda update command to check to see if a new update is available. If conda tells you an
update is available, you can then choose whether or not to install it.

•To update a specific package:
•conda update scipy
•To update Python:
•conda update python
•To update conda itself:
•source deactivate -n myenv
•conda update conda

Updating packages

Use the terminal or an Anaconda Prompt for the following steps.

•To remove a package such as SciPy in an environment such as myenv:
•conda remove -n myenv scipy

•To remove a package such as SciPy in the current environment:
•conda remove scipy

•To remove multiple packages at once, such as SciPy and cURL:
•conda remove scipy curl

•To confirm that a package has been removed:
•conda list

Removing Packages

https://docs.conda.io/projects/conda/en/latest/user-guide/tasks/create-custom-channels.html

pip is a package manager for Python. That means it’s a tool that allows you to install and manage
libraries and dependencies that aren’t distributed as part of the standard library.

pip: python package manager

The pip install <package> command always looks for the latest version of the package and installs it. It
also searches for dependencies listed in the package metadata and installs them to ensure that the
package has all the requirements that it needs.

•pip uninstall camelcase
To uninstall a package

•conda install pip

If pipis not available in conda environment, install it as

Point of Difference pip Conda

Multi-Language
Dependency Not Supported Supported

Package Installation Build on wheels Download binary

Package Availability 235,000 packages 1,500+ pacakges

Dependency
Management No SAT test performs SAT test

Virtual Environment
Management

No in-built Virutal
management

In-built virtual
management system

Minimalistic yes no

Pip in virtual environment

Currently, there are two common tools for creating Python virtual environments:

•venv is available by default in Python 3.3 and later, and
installs pip and setuptools into created virtual environments in Python 3.4 and
later.
•virtualenv needs to be installed separately, but supports Python 2.7+ and
Python 3.3+, and pip, setuptools and wheel are always installed into created
virtual environments by default (regardless of Python version).

Example: create an environment using venv

•source pipenv/bin/activate

•python –m venv pipenv

Activate the environment

https://docs.python.org/3/library/venv.html
https://packaging.python.org/en/latest/key_projects/
https://packaging.python.org/en/latest/key_projects/
https://packaging.python.org/en/latest/key_projects/
https://packaging.python.org/en/latest/key_projects/
https://packaging.python.org/en/latest/key_projects/
https://packaging.python.org/en/latest/key_projects/

To see pip commands:

Using pip in virtual environments

•pip help

Python environment using virtualenv

Creating reproducible environment with requirements.txt

The requirements.txt is a simple text file that allows you to keep track of the Python modules installed and
enabled in a given environment.

This file keeps a list of modules and packages required in a given project. Hence, if you want to replicate the
project in a new environment, you can reference this file to install the dependencies instead of manually
tracking them down.

Create requirements.txt

Start by navigating to the environment where your project is located. Then use the pip freeze command
to export your packages to the requirements.txt file

•pip freeze > requirments.txt

•conda list -e > requirements.txt

pip install -r requirements.txt

Install required pkgs

conda install --file requirements.txt

How to run a Python code
name = input("What is your name? ")
print("Hello, " + name + "!")

test.py

python test.py

Running on a compute node:

Submitting Batch Jobs

test.py

test.sbatch

Once the job is completed:

OSC OnDemand
ondemand.osc.edu

• 1: User Interface
• Web based

• Usable from computers, tablets,
smartphones

• Zero installation
• Single point of entry

• User needs three things
• ondemand.osc.edu
• OSC Username
• OSC Password

• Connected to all resources at OSC

• 2: Interactive Services
• File Access
• Job Management
• Visualization Apps

• Desktop access
• Single-click apps (Abaqus, Ansys,

Comsol, Paraview)
• Terminal Access
Tutorial available at
osc.edu/ondemand

osc.edu/ondemand

Interactive Python with Jupyter

Kernel name

Installing packages

How to load custom Python environment in Jupyter

New custom kernel

Switch kernels

https://www.osc.edu/resources/available_software/software_list/python

If you need further help:

https://www.osc.edu/resources/getting_started/howto/howto_add_python_packages_using_th
e_conda_package_manager

https://www.osc.edu/resources/getting_started/howto/howto
_use_a_condavirtual_environment_with_jupyter

Email: oschelp@osc.edu

mailto:oschelp@osc.edu

