## Data Pipeline Considerations for Hyperscale AI

Santosh Rao Senior Technical Director, AI & Data Engg

Apr 2019





At distance L<sub>5</sub> ~ 20 m (~ 60 m), the resolution is 5 cm/pixel



rear



## AI - Impactful

Rapid AI adoption world wide







**\$59.8 Billion** Growth of AI software market in 2025







**190%** AI patents grew by over 5 yrs



**71%** Automation potential in Manufacturing

### 4<sup>th</sup> la startur

4<sup>th</sup> largest number of Al startups in Berlin







### **Refining Analytics doesn't lead to Artificial Intelligence**





### Analytics vs A.I





•

© 2018 NetApp, Inc. All rights reserved. — NETAPP CONFIDENTIAL —





.

 $\mathbf{i}$ 

.

. \*

· · ·

. .

.



© 2018 NetApp, Inc. All rights reserved. — NETAPP CONFIDENTIAL —

## .

.

.

. . .





Source: Kenji Doya Complementary roles of basal ganglia and cerebellum in learning and motor control © 2018 NetApp, Inc. All rights reserved. — NETAPP CONFIDENTIAL —

#### **Cellular Network Traffic Scheduling with Deep Reinforcement Learning**

Sandeep Chinchali<sup>1</sup>, Pan Hu<sup>2</sup>, Tianshu Chu<sup>3</sup>, Manu Sharma<sup>3</sup>, Manu Bansal<sup>3</sup>, Rakesh Misra<sup>3</sup> Marco Pavone<sup>4</sup> and Sachin Katti<sup>1,2</sup>

<sup>1</sup> Department of Computer Science, Stanford University

<sup>2</sup> Department of Electrical Engineering, Stanford University

<sup>3</sup> Uhana, Inc.

<sup>4</sup> Department of Aeronautics and Astronautics, Stanford University {csandeep, panhu, pavone, skatti}@stanford.edu, {tchu, manusharma, manub, rakesh}@uhana.io



Figure 1: Time-variant congestion patterns in Melbourne.

### Efficient Large-Scale Fleet Management via Multi-Agent Deep Reinforcement Learning

Kaixiang Lin Michigan State University linkaixi@msu.edu Renyu Zhao, Zhe Xu Didi Chuxing {zhaorenyu,xuzhejesse}@didichuxing. Jiayu Zhou Michigan State University jiayuz@msu.edu

com



# Human-level control through deep reinforcement learning

Volodymyr Mnih<sup>1</sup>\*, Koray Kavukcuoglu<sup>1</sup>\*, David Silver<sup>1</sup>\*, Andrei A. Rusu<sup>1</sup>, Joel Veness<sup>1</sup>, Marc G. Bellemare<sup>1</sup>, Alex Graves<sup>1</sup>, Martin Riedmiller<sup>1</sup>, Andreas K. Fidjeland<sup>1</sup>, Georg Ostrovski<sup>1</sup>, Stig Petersen<sup>1</sup>, Charles Beattie<sup>1</sup>, Amir Sadik<sup>1</sup>, Ioannis Antonoglou<sup>1</sup>, Helen King<sup>1</sup>, Dharshan Kumaran<sup>1</sup>, Daan Wierstra<sup>1</sup>, Shane Legg<sup>1</sup> & Demis Hassabis<sup>1</sup>

#### Curriculum Learning

Yoshua Bengio<sup>1</sup> Jérôme Louradour<sup>1,2</sup> Ronan Collobert<sup>3</sup> Jason Weston<sup>3</sup> (1) U. MONTREAL, P.O. Box 6128, MONTREAL, CANADA (2) A2IA SA, 40BIS FABERT, PARIS, FRANCE (3) NEC LABORATORIES AMERICA, 4 INDEPENDENCE WAY, PRINCETON, NJ, USA

When a large language model is trained on a sufficiently large and diverse dataset it is able to perform well across many domains and datasets. GPT-2 zero-shots to state of the art performance on 7 out of 8 tested language modeling datasets. The diversity of tasks the model is able to perform in a zero-shot setting suggests that high-capacity models trained to maximize the likelihood of a sufficiently varied text corpus begin to learn how to perform a surprising amount of tasks without the need for explicit supervision.<sup>5</sup>

#### Special computation properties



Number Representation



- Deep Learning is Empirically Scaleable (Baidu)
- Computationally Homogenous
- Constant runtime & memory use
- Highly Portable
- Easily Baked into silicon → "Semiconductor Rennaisance"



- Relax Precision : Small integers are better
- Relax Synchronization : data races are better
- Relax Communication : sparse communication is better
- Relax Cache Coherence : incoherence is better
   "Olukutan,Stanford Neurips Keynote 2018"

### Data Pipeline for AI Workflow

Scale and Optimize Each Stage of the Data Pipeline



16 NetApp Insight © 2018 NetApp, Inc. All rights reserved. NetApp Confidential - Limited Use Only

### Edge to Core to Cloud

Seamless data management



### Full Scale-out ONTAP AI with DGX-1

24-node A800 cluster, driving 108 DGX-1's





### Full Scale-out ONTAP AI with DGX-2

24-node A800 cluster, driving 36 DGX-2's





### **Dense Cabinet for Al**

### **Deliver Dense Cabinet for Exascale Al**

### Challenge:

• Data centers facilities lack the power and cooling for the latest highperformance AI computing infrastructure.

### New Capability:

- Dense and Modular Dynamic Density Control (DDC) liquid-air cooled cabinet for Al
- This cabinet combines the efficiency of water with the flexibility of air, cooling up to 52kW of power load in a 45U cabinet.
- Cabinets can be deployed in any environment.
- Provides clean-room environment, guaranteed air flow, integrated security, and fire suppression.

## 



scalematrix & ddc cabinets support 45U & 52kW







NetApp

### ARTIFICIAL INTELLIGENCE Trends >

#### Artificial Intelligence Timeline

#### Why Now?



#### **Artificial Intelligence**



#### **Artificial Intelligence**



#### Artificial Intelligence

### Machine Learning

K-Means Logistic Regression Decision Trees Random Forests

### Deep Learning

CNN RNN LSTM

GAN

Q Learning Deep Reinforcement TD Learning Learning DQN Prioritized Experience Replay Actor Critic Policy Gradient







## **AI Requirements Discovery**

## WHAT PROBLEM ARE YOU SOLVING?

### Defining the AI/DL Task

| INPUTS      |        | BUSINESS<br>QUESTION                      | AI/DL TASK      | EXAMPLE OUTPUTS              |                                     |                        |
|-------------|--------|-------------------------------------------|-----------------|------------------------------|-------------------------------------|------------------------|
|             |        |                                           |                 | HEALTHCARE                   | RETAIL                              | FINANCE                |
|             |        | ls "it" <u>present</u><br>or not?         | Detection       | Cancer Detection             | Targeted ads                        | Cybersecurity          |
| Text Data   | Images | What <u>type</u> of thing<br>is "it"?     | Classification  | Image Classification         | Basket Analysis                     | Credit Scoring         |
|             |        | To what <u>extent</u> is<br>"it" present? | Segmentation    | Tumor Size/Shape<br>Analysis | Build 360°<br>Customer View         | Credit Risk Analysis   |
| <b>⊗</b> .⊗ | Ļ      | What is the likely<br><u>outcome</u> ?    | Prediction      | Survivability<br>Prediction  | Sentiment & behavior<br>recognition | Fraud Detection        |
| Video       | Audio  | What will likely satisfy the objective?   | Recommendations | Therapy<br>Recommendation    | Recommendation<br>Engine            | Algorithmic<br>Trading |

## SOME KEY DECISIONS TO MAKE

| FACTOR                   | DESCRIPTION                                                                                                                     |  |  |  |
|--------------------------|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| DL Challenge             | Supervised or unsupervised, classification or regression, # of labels?                                                          |  |  |  |
| Architecture             | What is the simplest architecture I can use?                                                                                    |  |  |  |
| Training Model           | How am I going to tune my neural net? Kinds of non-linearity, loss function and weight initialization? Best training framework? |  |  |  |
| Data Quantity            | How much data will be sufficient to train my model? How do I go about finding that data and is it evenly balanced?              |  |  |  |
| Data Quality             | Is my data directly relevant to the problem & real world data.                                                                  |  |  |  |
| Data Labels              | Is training data is labeled same as raw data sets, how do I 'featurize'?                                                        |  |  |  |
| Data Similarity          | Is data same length vectors or does it require pre-processing?                                                                  |  |  |  |
| Data Storage &<br>Access | Where is it stored, locally and on network Data pipeline? How do I plan to extract, transform and load the data (ETL)?          |  |  |  |
| Infrastructure           | Cloud, On-premise, Hybrid. GPUs, CPUs or both? Single or distributed systems? Integration with languages, ent. apps/ databases. |  |  |  |

## Al Requirements Discovery - 101



## Al Requirements Discovery - Data Science

- What are your top AI use cases / applications?

- Do you use ML or DL or both?

- Data set footprint and growth pattern?

- Data types used – image, video, text, time-series, ...

- How big is the data set?

- Composition of the data set – small files, large files, or a combination?

- Are your GPUs fully utilized?

- Bottleneck in the workflow?
- Use distributed training?
- If yes, environment setting?

- Foot print of your compute cluster – # of GPUs, CPUs

- Physical memory of the m/c
- Cached copy of data?

- Where is the data stored?

- Where/how will training read the data from?
- Any read/write/latency performance targets?
- Maintain versions of datasets?

- ML/DL framework used?

- Software/ framework to speed up data pre-process?

- Software/ framework to control the cluster / environment / storage?

- Version control of library / API for ML/DL?

- NGC or vendor native?
- Container orchestration at scale?

- Success metrics of training?

- Model selection.
- Model footprint?
- # of concurrent models.
- Model deployment platform for Inference.

- How do you pre-process your data set?

- Time spent to process data?
- Tools & vendors used?

## Al Requirements Discovery - Data Engineer



### **DL Model Training Flow**



33 © 2019 NetApp, Inc. All rights reserved.

NetApp

### Meet Diverse Needs across Data Science and Infra Functions

### **Data Scientists**

Real-world Data for AI / DL

### Need Agile Model DevOps :

- Refreshed access to Production Datasets
- Hybrid Cloud for Model Dev
- Distributed Data Science
- Diverse Data Sources
- Model and Data Parallelism
- Multi-Tenant Model Serving
- From Model to Application

### **Data Architects**

Future Proof Architecture

### Seek Extensible Architecture:

- Architecture Scales from PoC to Production
- Future Proof to absorb technology changes
- TCO for Massive Datasets
- Maximize Utilization
- Global Scale

### **Data/IT Admins**

Lowest TCO in face of shrinking budgets

### Balance Cost & TTM :

- Leverage vs. Dedicate HW Infra
- Stable Operations & Upgrades
- Supported Components & Ecosystems
- Diverse needs across Big Data, AI/DL and HPC

### Balanced Architecture to Deliver for Stakeholders

### Deployment Options for Al

Where is the source data?

| Move Data into<br>Al Platform                                                                                                                                                                                                     | Data In-Place                                                                                                                                                       | Co-Lo Solution                                                                                                          | Source Data in<br>Cold Storage                                                                                                                 | Cloud<br>Deployment                                                                                                                                                          |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>80 - 90% deployments</li> <li>HDFS, Splunk, NoSql ,<br/>Lustre, GPFS →<br/>ONTAP AI (NFS,<br/>GPUs)</li> <li>Leverage Data Movers<br/>to move data into<br/>ONTAP AI</li> <li>FabricPool for data<br/>tiering</li> </ul> | <ul> <li>All reside and deploy<br/>on ONTAP</li> <li>Concept of Unified<br/>Data Lake</li> <li>Data on ONTAP AI</li> <li>FabricPool for data<br/>tiering</li> </ul> | <ul> <li>Greater control of data</li> <li>NPS solution</li> <li>Data on NPS, GPUs/<br/>Services on the Cloud</li> </ul> | <ul> <li>Data is moved in from<br/>cold data tiers for<br/>model training</li> <li>Move data from<br/>StorageGrid into<br/>ONTAP AI</li> </ul> | <ul> <li>Data / GPUs<br/>provisioned on the<br/>public clouds</li> <li>Use Cloud Volumes<br/>Service for file<br/>services</li> <li>GPUs on Cloud for<br/>compute</li> </ul> |



## Move Data to AI Platform

#### Data movement from HDFS, MapR-FS, GPFS, Lustre, S3 to AI Platform

Move Data into ONTAP AI



![](_page_35_Picture_4.jpeg)

## In-Place Data with Hybrid Cloud Option

#### Unified data lake serving CPU and GPU Compute Clusters

#### Data In-Place

![](_page_36_Figure_3.jpeg)

![](_page_36_Picture_5.jpeg)

## AI Platform in Co-Location Data Center

Driven by Power, Cooling, Lease options, As-a-Service based, Consumption based

![](_page_37_Figure_2.jpeg)

**Co-lo Solution** 

## Cold Data Tier as Data Source

Source Data in Cold Storage

![](_page_38_Figure_2.jpeg)

![](_page_38_Figure_3.jpeg)

NetApp

### Federating ML & DL

### Unifying Machine Learning & Deep Learning

![](_page_39_Figure_2.jpeg)

![](_page_39_Picture_4.jpeg)

### In-Place Data Pipeline Federating ML & DL

![](_page_40_Figure_1.jpeg)

## Software Platforms for Al

![](_page_41_Picture_2.jpeg)

## H2O.ai with ONTAP AI

NetApp partner for ML platform

**H2O.ai** is transforming the use of AI with software with its category-creating visionary open source machine learning platform.

#### Key Features:

43

- Predictive analytics with visualization
- Build More Models in Less time
- Machine Learning: supervised and unsupervised algorithm

![](_page_42_Figure_7.jpeg)

#### H2O.ai and ONTAP AI Joint Solution

- Tested and validated the H2O software running on ONTAP AI
- Eliminates design complexities and guesswork with a solution brief.

#### Why ONTAP AI for H2O.ai ?

- **Deliver AI at scale:** Scale from zero to 100TB deployments in a matter of seconds with a simple, easy-to-use cloud interface.
- **Reduce Risk:** Instantaneous snapshots & cloning allow data scientists to experiment with datasets without risking data loss.
- **Dynamically change service levels:** Enhance performance or reduce OpEx with the ability to dynamically change storage service levels.
- **Build more models in less time:** Reduce the time it takes to develop accurate, production-ready models by automating time-consuming data science tasks.
- **Train across hybrid cloud :** Seamlessly move H20 Driverless AI workloads between on-premises ONTAP AI infrastructure and Cloud Volumes Service.

![](_page_42_Picture_18.jpeg)

## Allegro.ai with ONTAP AI

NetApp partner for DL platform

Allegro.ai offers the first true end-to-end Al product life-cycle management solution with a focus on DL applied to computer vision.

#### Key Features:

44

- Automated annotation
- Experiment management + data management
- Continuous learning

![](_page_43_Picture_7.jpeg)

#### Allegro and ONTAP AI Joint Solution

- Tested and validated the Allegro software on ONTAP AI.
- Eliminates design complexities and guesswork with a validated reference architecture.

#### Why ONATP AI for Allegro?

- Accelerate time to completion: ONTAP Al's high-throughput AFF and NVIDIA GPUs enable you to train more models in less time while extracting maximum performance from your hardware.
- **Increased GPU utilization:** ONTAP AI helps cut down on GPU idle time by keeping the GPUs engaged more often.
- **Simplified deployment:** ONTAP AI's prescriptive architecture eliminates design complexities and enables independent scaling of compute and storage.
- **Fast and big cache size:** ONTAP AI provides large pools of flash storage that can be used for caching the data further reducing the overall job completion times.

![](_page_43_Picture_17.jpeg)

# Allegro + NetApp

### **Optimizing Deep Learning Pipelines At Scale**

![](_page_45_Picture_0.jpeg)

Deep Learning computer vision & sensor fusion platform

**allegro.ai** helps data scientists / engineers manage & operationalize the full lifecycle of deep learning - from data-set creation to model post deployment self-learning.

# Allegro.ai

- Fully integrated end2end platform
- Data Management / Experiment Management / Resource Management

![](_page_46_Figure_3.jpeg)

# Allegro Data Abstraction

![](_page_47_Figure_1.jpeg)

![](_page_48_Figure_0.jpeg)

Multi-Site Real World Optimized DL Pipeline Allegro + NetApp

### Edge to Core to Cloud

Seamless data management

![](_page_49_Figure_2.jpeg)

### **AI Public Resources**

### Collateral

- ONTAP AI Reference architecture NVA-1121-design
- ONTAP AI Deployment guide NVA-1121-deploy
- Building a Data Pipeline for Deep Learning WP-7299
- Edge to Core to Cloud white paper WP-7271
- Al with GPUs on AWS & Cloud Volumes Service TR-4718
- Scalable AI Infrastructure WP-7267
- Designing a Data Pipeline for Your AI Workflows WP-7264
- Solution brief SB-3939
- IDC Technology Spotlight paper
- Cambridge Consultants success story

### netapp.com/ai

![](_page_50_Picture_13.jpeg)

### Recent Blogs

- Your Guide to Everything NetApp at GTC 2019
- Al Across Industries: Manufacturing, Telecom & Healthcare
- How to Configure ONTAP AI in 20 Minutes with Ansible
- Unifying Machine Learning and Deep Learning
- Bridging the CPU and GPU Universes
- Is Your Infrastructure Ready for AI Workflows in Production?
- Accelerate I/O for Your Deep Learning Pipeline
- Addressing AI Data Lifecycle Challenges with Data Fabric
- Choosing an Optimal Filesystem for the AI Pipeline
- Five Advantages of ONTAP AI for AI and Deep Learning
- Deep Dive into ONTAP AI Performance and Sizing

![](_page_50_Picture_27.jpeg)

## Thank You!

![](_page_51_Picture_2.jpeg)