Allinea Forge
User Guide

Version 7.0

Allinea Forge 7.0

Contents

Contents

I Allinea Forge

1 Introduction

1.1 Allinea DDT o e e e e e e
1.2 Allinea MAP e e e e
1.3 Online ReSOUICeS o vt e e e e e e e e e e e e e e e e

2 Installation

2.1 Linux/Unix Installation e

2.1.1 Graphical Install e

2.1.2 Text-modelInstall e
2.2 MaclInstallation e e e e e e
2.3 Windows Installation e
2.4 Licence Files e e e e e
2.5 Workstation and Evaluation Licences
2.6 Supercomputing and Other Floating Licences
2.7 Architecture Licensing e e e e

3 Connecting to a Remote System

3.1 Remote Connections Dialog
3.2 Remote Launch Settings e e e
3.2.1 Remote SCript. o e e e e e e
3.3 Reverse Connect i i e e e
3.3.1 OVEIVIEW o e e e e e e e e e e e e
3.3.2 Usage o e e e e e e e e e e
3.3.3 Connection Details
3.4 Using X Forwardingor VNC it e i i

4 Starting

II DDT
5 Getting Started
5.1 RunningaProgram e e e e e
5.1.1 Application e e e e e
5.1.2 MPI e e
51.3 O0penMP e e e e e e
5.1.4 CUDA . . . e e e
5.1.5 UPC. e
5151 GCCUPC e e e e
5.1.5.2 Berkeley UPC e
5.1.6 Memory Debugging
5.1.7 Environment Variables oL
5.1.8 Plugins e e e
52 ExpressLaunch e e
52.1 RunDialogBox e

(© 2017 Allinea Software Ltd.

12

12
12
13
13

14
14
14
15
16
16
17
17
18
18

19
19
20
21
21
21
22
22
23

25

27

27
28
28
29
29
29
30
30
30
30
30
30
31
32

5.3
5.4
5.5
5.6
5.7

5.8
59

5.10
5.11
5.12
5.13

Allinea Forge 7.0

remote-exec Required By Some MPIs
Debugging Single-Process Programs
Debugging OpenMP Programs e
Manual Launching of Multi-Process Non-MPI programs
Debugging MPMD Programs i it e e e e
5.7.1 Debugging MPMD Programs without Express Launch
5.7.2 Debugging MPMD Programs in Compatibilitymode
Opening Core Files o e
Attaching To Running Programs
5.9.1 Automatically Detected MPIJobs
5.9.2 Attaching To A Subset Of AnMPIJob
5.9.3 Manual Process Selection
5.9.4 Configuring Attaching to Remote Hosts
5.9.5 Using DDT Command-Line Argumentso oo v ...
Starting AJobIn AQueue e e e
Using Custom MPI Scripts o e
Starting DDT From A Job Script e
Attaching viagdbserver

6 Overview

6.1
6.2

6.3

6.4
6.5

6.6
6.7
6.8

Saving And Loading Sessions e
Source Code e e e
6.2.1 VIeWING o e e e e e e e e e e e e
6.2.2 Editing e
6.2.3 Rebuilding and Restarting oL
6.2.4 Committing changes e e
Project Files e e e e
6.3.1 Application/External Code
Finding Lost Source Files e
Finding Code Or Variables e
6.5.1 Find Filesor Functions
6.52 Find e
6.5.3 FindinFiles
Jump To Line /Jump To Function
Static Analysis e e e e e e e e
Version Control Information

7 Controlling Program Execution

7.1

7.2

7.3
7.4

Process Control And Process GIoups v v v v v vt v i e e e e e
7.1.1 Detailed Viewo e e
7.1.2 Summary VIEW e e e e e e e e e e
Focus Control o e e
7.2.1 Overview of changing focus,
7.2.2 Process Group VIEWEr i i it e e e e e e e e
723 Breakpoints
724 Code Viewer i i i e e e
7.2.5 Parallel Stack View e
7.2.6 Playingand Stepping e e e
7.2.7 Step Threads Together
7.2.8 Stepping Threads Window
Hotkeys o e e e
Starting, Stopping and Restartinga Program

(© 2017 Allinea Software Ltd.

46
46
47
47
47
48
48
48
48
48
49
49
49
50
50
51
52

54
54
54
55
56
56
56
56
57
57
57
57
57
59
59

Allinea Forge 7.0

7.5 Stepping Through AProgram. 59
7.6 StOPMeSSages e e e e e e e e e e e e e e 60
7.7 Setting Breakpoints e e e e e 60
7.7.1 Using the Source Code Viewer v i .. 60

7.7.2 Using the Add Breakpoint Window 60

7.7.3 Pending Breakpoints e 61

7.7.4 Conditional Breakpoints 62

7.8 Suspending Breakpoints e 62
7.9 Deleting A Breakpoint e e e e 62
7.10 Loading And Saving Breakpoints. 63
7.11 Default Breakpoints i i e e e e e e e e 63
7.12 Synchronizing Processes e e 63
7.13 Setting A Watchpoint e e e 64
7.14 Tracepoints oL e e e 65
7.14.1 Setting a Tracepoint v i it e e e e e e e e e 65
7.14.2 Tracepoint Output L e e e e e e e e e e e 66

7.15 Version Control Breakpoints and Tracepoints 66
7.16 Examining The Stack Frame 68
7.17 Align Stacks L e e e e e e e 68
7.18 “Where are my processes?”—Viewing Stacks in Parallel 69
7181 OVEIVIEW L ot o e e e e e e e e e 69
7.18.2 The Parallel Stack View inDetail 69

7.19 Browsing Source Code e e e e e e e 71
7.20 Simultaneously Viewing Multiple Files 72
7.21 Signal Handling e 72
7.21.1 Custom Signal Handling (Signal Dispositions) 73
7.21.2 Sending Signals. e 73

8 Viewing Variables And Data 74
8.1 Sparklines e e e e e 74
8.2 CurrentLine e e e e 74
8.3 Local Variables e 74
8.4 Arbitrary Expressions And Global Variables 75
8.4.1 Fortran Intrinsicso e e e e e e 76

8.4.2 Changing the language of an Expression 76

8.4.3 Macros and #defined Constants 76

8.5 Help With Fortran Modules i 76
8.6 Viewing Complex NumbersinFortran 77
8.7 CH+STL Support o e e e e e e e 78
8.8 Custom Pretty Printers e e e 78
8.8.1 Example e e e 78

8.9 Viewing Array Data e e e e e e e e e 79
8.10 UPC Support o i i i i e e e e e e e e e e e e e 79
8.11 Changing Data Values. i i e e e e e 80
8.12 Viewing Numbers In Different Bases 80
8.13 Examining Pointers e e e e e e e 80
8.14 Multi-Dimensional Arrays in the Variable View 80
8.15 Multi Dimensional Array Viewer (MDA) 81
8.15.1 Array EXpression e e e e e 82
8.15.2 Filteringby Value. e 83
8.15.3 Distributed Arrays e 83
8.15.4 Advanced: How Arrays Are Laid Out in the Data Table 83

(© 2017 Allinea Software Ltd. 3

Allinea Forge 7.0

8.15.,5 AutoUpdate e 86

8.15.6 Comparing Elements Across Processes 86

8.15.7 StatiStiCS . . .« v v v i i e e e e e e e e e e e e e e e e e 86

8.15.8 EXPOrt. o e e e e e e 86

8.15.9 Visualization 87

8.16 Cross-Process and Cross-Thread Comparison 88
8.17 Assigning MPI Ranks 89
8.18 Viewing Registers L e e e e e e e 90
8.19 Process Details L e 90
8.20 Disassembler 90
8.21 Interacting Directly With The Debugger 91

9 Program Input And Output 92
9.1 Viewing Standard Output And Error 92
9.2 Saving Output i v i e e e e e e e e e e e e e e 92
9.3 Sending Standard Input e 92

10 Logbook 94
10.1 Usage ot e e e e e e e 94
10.2 ANNOtation L .o e e e e e e e e e e e e e e e e 95
10.3 Comparison Window i e e e e e e e 95

11 Message Queues 96
11.1 Viewing The Message QUEUES v v v v v i e e e e e e e e e e e e e 96
11.2 Interpreting the Message QUEUES o o v vt v 97
11.3 Deadlock e 98

12 Memory Debugging 99
12.1 Enabling Memory Debugging 99
12.2 CUDA Memory Debugging e 99
12.3 Configuration L e e e 100
12.3.1 StaticLinking 101

12.3.1.1 Static linking on most systems 102

12.3.1.2 StaticlinkingonCray 102

12.3.2 AvailableChecks 103

12.3.3 Changing Settingsat RunTime 103

12.4 Pointer Error Detection and Validity Checking 103
12.4.1 Library Usage Errors o o ittt e e e 103

12.4.2 View Pointer Details e 104

12.4.3 Cross-Process Comparison of Pointers 105

12.4.4 Writing Beyond An Allocated Area L. 106

12.4.5 Fencepost Checking 106

12.4.6 SuppressinganError Lo L L e 106

12.5 Current Memory Usage o o i i i e i e e e e e e e e e e e e e e e e e 106
12.5.1 Detecting Leaks when using Custom Allocators/Memory Wrappers 108

12.6 Memory StatiStiCs v v v v et e 108

13 Checkpointing 110
13.1 What Is Checkpointing? e 110
13.2 How To Checkpoint o e e e 110
13.3 Restoring A Checkpoint e 110

14 Using and Writing Plugins 111

(© 2017 Allinea Software Ltd. 4

Allinea Forge 7.0

14.1 Supported Plugins L e
14.2 Installinga Plugin e e e e e e
143 UsingaPlugin. o o e
14.4 WritingaPlugin e e e e e e e
14.5 Plugin Reference e e e e

15 CUDA GPU Debugging
15.1 Licensing o o v it e e e e e e e e e e e e e e e e
15.2 Preparingto Debug GPU Code i it
15.3 Launching the Application e
15.4 Controlling GPU threads i
15.4.1 Breakpoints e e e
15.4.2 Stepping e e e e e e e e e e e
15.4.3 Runningand Pausing
15.5 Examining GPU ThreadsandData
15.5.1 Selecting GPU Threads
15.5.2 Viewing GPU Thread Locations
15.5.3 Understanding Kernel Progress,
15.5.4 Source Code Viewer ittt
15.6 GPU Devices Information e
15.7 Attaching to running GPU applications
15.8 Opening GPU Core Files it i
15.9 KnownlIssues/Limitations L e
15.9.1 Debugging Multiple GPU processes o v v v v v v v ..
15.9.2 Thread control
15.9.3 General L
15.9.4 Presm 20 GPUs e e e
15.9.5 Debugging Multiple GPU processes on Cray limitations
15.10GPU Language Support v v i v e e e e e e e e e e e e e e
15.10.1Cray OpenACC L o e e e e e e e e e
15.10.2 PGI Accelerators and CUDA Fortran

16 Offline Debugging
16.1 Using Offline Debugging e
16.1.1 Reading a File for Standard Input
16.1.2 Writing a File from Standard Output
16.2 Offline Report Output (HTML) i e e e e e e e e
16.3 Offline Report Output (Plain Text) it ettt
16.4 Run-Time Job Progress Reporting
16.4.1 Periodic Snapshots
16.4.2 Signal-Triggered Snapshots

17 Using DDT with the VisIt Visualization Tool
17.1 Support for VisIt e e e e e e
17.2 Patching and Building VisIt.
17.3 Compatibility e e e e e e e
17.4 Enabling VisIt Support in DDT
17.5 Setting Visualization Points (Vispoints)
17.6 Using Vispoints in DDT o o o s
17.7 Returning to DDT e e e e e e e e e
17.8 Focusing on a Domain & VisltPicks
17.9 Using DDT with a pre-instrumented program

(© 2017 Allinea Software Ltd.

115
115
115
115
116
116
116
117
117
117
117
118
119
119
119
119
120
120
120
120
121
121
121
121
122

123
123
124
124
125
126
126
127
127

128
128
128
128
128
129
131
132
132
133

Allinea Forge 7.0

Inr MAP 134
18 Getting Started 134
18.1 ExpressLaunch e e e e 135
18.1.1 RunDialog Box e 136
18.2 Preparing a Program for Profiling 136
18.2.1 Debugging Symbols L. 136
18.2.2 .eh-frame-hdrsection 137
18.2.3 Linking e e e 137
18.2.4 Dynamic Linking on Cray X-Series Systems 138
18.2.5 StaticLinking e 139
18.2.6 Static Linking on Cray X-Series Systems 141

18.2.7 Dynamic and Static Linking on Cray X-Series Systems using the modules envi-
0] 1108 T 0L 142
18.2.8 map-link modules Installation on Cray X-Series 142
18.3 Profilinga Program L. e 143
18.3.1 Application e e e 143
18.3.2 Duration e e e e 144
1833 MPI e 144
18.3.4 OpenMP L e e e e e 144
18.3.5 Environment Variables oo oL 145
18.3.6 Profiling e e 145
18.3.7 Profiling Only PartofaProgram 146
183.7.1 C . e 146
18.3.7.2 Fortran oL e 146
18.4 remote-exec Required By Some MPIs 146
18.5 Profiling a Single-Process Program 147
18.6 Sending Standard Imput L. e e e 147
18.7 Starting AJobIn AQueue L. e e 148
18.8 Using Custom MPI Scripts o e e 149
18.9 Starting MAP From AJob Script 151
18.10MAP Environment Variables 152
19 Program Output 154
19.1 Viewing Standard Output And Error, 154
19.2 Displaying Selected Processes i i e e e 154
19.3 Restricting Output ot e e e e e e e e e e 154
19.4 Saving OUPUL o v i e e e e e e e e e e 155
20 Source Code 156
20.1 Viewing e e e e e e e e e e 156
20.2 OpenMP Programs v v v v v e e e e e e e e e e e e e e e e e e e 158
20.3 Dealing with complexity: code folding 159
204 Editing e e e e 160
20.5 Rebuilding and Restarting 160
20.6 Committing changes o i i e e e e e e e e 160
21 Selected Lines View 161
21.1 LIimitations o o v i e e e e e e e e e e e e e e e e e e e 162
22 Stacks View 163
23 OpenMP Regions View 164

(© 2017 Allinea Software Ltd. 6

Allinea Forge 7.0

24 Functions View 166
25 Project Files View 167
26 Metrics View 168
26.1 CPUINSIIUCtions v v v v vt e e e e e e e e e e e e e e e e e e e 169
26.1.1 Per-line CPU Instructions 170

26.2 CPUTIME e e e e e e e e e e e e e 170
263 T/O . . o e e e e 171
264 MEIMOTY v v it e 171
26.5 MPI e e e 171
26.6 Detecting MPIimbalance e 172
26.7 Accelerator e e e e e e e e e e e 173
26.8 Energyo L e e e e 173
26.8.1 Requirements v v v v v i e e e e e e e e e e e e e e e 173

26.9 Lustre L e e 173
26.10Z00mMINEG L e e e e e e e e e e e e e e e e e e 174
26.11 Viewing Totals Across Processes /Nodes, 175

27 PAPI Metrics 176
27.1 PAPIConfigfile. 176
27.2 PAPI Overview MetriCs o o i it i e e e s e e e e e e 176
27.3 PAPI Cache MiSSeS i v v v i e e e e e e e e e e e e e e e e 176
27.4 PAPI Branch Prediction e 177
27.5 PAPI Floating-Point e 177

28 Main-thread, OpenMP and Pthread view modes 178
28.1 Mainthreadonlymode 178
28.2 OpenMP mode e e e e e e 178
28.3 Pthreadmode e e e e e e 178

29 Processes and Cores View 180
30 Running MAP from the Command Line 181
30.1 Profiling MPMD Programs v v v v v it e e e e e e e e e e e 182
30.1.1 Profiling MPMD Programs without Express Launch 182

31 Exporting profiler data in JSON format 183
31.1 JSONformat v vt i e e e e e e e e e e e e e e e 183
31.2 ACHiVItieS e e e e e 184
31.2.1 Description of categories i e e e e e 184

31.2.2 Categories available in main_threadactivity 185

31.2.3 Categories available in openmp and pthreads activities 186

31.3 MEtTiCS . . . o v o e e e e e e e e e e 186
31.4 Example JSON output v i it e e e e e e e e 188

IV Appendix 190
A Configuration 190
A.1 Configurationfiles e 190
A.1.1 Site Wide Configuration 190

A.1.2 Startup SCripts L e e e e e e e 191

(© 2017 Allinea Software Ltd. 7

Allinea Forge 7.0

A.1.3 TImporting Legacy Configuration 191
A.1.4 Converting Legacy Site-Wide Configuration Files 191
A.1.5 Using Shared Home Directories on Multiple Systems 191
A.1.6 Using a Shared Installation on Multiple Systems 192

A.2 Integration With Queuing Systems 192
A.3 Template Tutorial e e e e 193
A.3.1 The Template Script e 194
A.3.2 Configuring Queue Commands, 194
A.3.3 Configuring How Job SizeisChosen 194
A3.4 QuickRestart e e 194

A.4 Connecting to remote programs (TeMOte-€XeC) . . . v « v v v v v v v v e e e e e e e 195
A.5 Optional Configuration e 195
AS5T System e e e e e e e e 195
A.5.2 JobSubmission 197
A.5.3 Code Viewer Settings 0 i i i i e e e e 197
A54 ADPearanCe e e e e e e e e e e e e e e e e e 197
AD5S5 Vislt. . oo 197

B Getting Support 199
C Supported Platforms 200
C.1 DDT . . o e e e 200
C.2 MAP . . e e e 201
D MPI Distribution Notes and Known Issues 203
D.1 Berkeley UPC e e e e e e 203
D.2 Bull MPI . . o e e e 203
D.3 Cray MPT e e e e e e 203
D.4 HPMPI . . o e e 204
D.5 IBMPE e e e e 204
D.6 Intel MPI e e e 204
D.7 MPC . . . e e e e 205
D.71 MPCinthe RunWindow 205
D.7.2 MPConthe CommandLine 206

D.8 MPICH I DA e e e e e e e e e e 206
D9 MPICHIpPAMPd o e e e e e e e e e e e e e 206
DIAOMPICH 2 e e e e e e e e e e e e 206
D.11 MPICH 3 . . . o e e e e e e e e e e 206
D12 MVAPICH 1 e e e e e e e e 206
D.I3 MVAPICH 2 . . . e e e 207
D.14 Open MPI e e e e 207
D.15 Platform MPIL e e e e e 208
D.16 SGIMPT /SGIALtix o e e e 208
D.16.1 Using DDT with Cray ATP (the Abnormal Termination Process) 208

D.17 SLURM e e e e e e e e 209
D.18 Spectrum MPI oL e e e e e e 209
E Compiler Notes and Known Issues 211
E.1 AMD OpenCL compiler et 211
E.2 Berkeley UPC Compiler ittt 211
E.3 Cray Compiler Environment 211
E.3.1 Compile Serial ProgramsonCray 212

(© 2017 Allinea Software Ltd. 8

Allinea Forge 7.0

E.4 GNU e e e 212
E4.1 GNUUPC e e e e s 212

E5 IBM XLC/XLE e e e e e e e e 212
E.6 Intel Compilers e e e e e 213
E.7 Pathscale EKO compilers e 214
E.8 Portland Group Compilers e 214
F Platform Notes and Known Issues 217
F.1 CRAY . . . o e 217
F2 GNU/LINuxX Systems o v v v i e e e e e e e e e e e e e e e e 218
F2.1 General e 218

F2.2 SUSELINUX e e e e e e e e e e e e 218

F3 IBMBlue Gene/Q v o e e e e e e 218
F.3.1 Attaching e e 219

F4 Intel Xeon o e e e e e 219
F.4.1 Enabling RAPL energy and power counters when profiling 219

F.5 Intel Xeon Phi (Knight’'s Landing) 220
F.6 Intel Xeon Phi (Knight’s Corner) 220
F.6.1 Requirements o v i v i vt et e e e e e e e e e 220

F.6.2 Installation e 220

F.6.3 Configuration e e 220

F7 Fujitsu FX10 e e e e e e e 225
F.7.1 FX1O0Installation o i e e e 225

F.7.2 FX10 Configuration ittt 226

F.7.3 FX10 Memory Debugging, 226

F.7.4 FX10KnownlIssues @ i i i i i e 227

F.8 NVIDIA CUDA e e e e e e e s e e e e 227
F8.1 CUDAKnownlIssues. i i i i it 227

F9 ARM . . . e e 227
F.9.1 ARMvV8 (ARM 64bit) KnownlIssues. 227

F.10 POWER e e 227
F.10.1 POWERS8 (POWER 64bit) KnownIssues 227

G General Troubleshooting and Known Issues 229
G.1 General Troubleshooting e 229
G.1.1 Problems Startingthe GUI 229
G.1.2 Problems Reading this Document 229

G.2 Starting a Program e e e e e 229
G.2.1 Problems Starting Scalar Programs 229
G.2.2 Problems Starting Multi-Process Programs 230
G.2.3 No Shared Home Directory 230
G.2.4 DDT says it can’t find your hosts or the executable 230
G.2.5 The progress bar doesn’t move and Allinea Forge ‘timesout’ 231

G.3 Attaching e e e e e 231

G.3.1 The system does not allow connecting debuggers to processes (Fedora, Ubuntu) . 231
G.3.2 The system does not allow connecting debuggers to processes (Fedora, Red Hat) 231

G.3.3 Running processes don’t show up in the attach window 232
G4 Source VIEWET o o e e e e e e e e e 232
G.4.1 No variables or line number information 232
G.4.2 Source code does not appear when you start Allinea Forge 232
G.4.3 Code folding does not work for OpenACC/OpenMP pragmas 232
G5 Input/Output. o o o e e e e e e e e e e e 232

(© 2017 Allinea Software Ltd. 9

Allinea Forge 7.0

G.5.1 Output to stderrisnot displayed 232
G.5.2 Unwind Errors e 233
G.6 Controlling a Program e e e 233
G.6.1 Program jumps forwards and backwards when stepping throughit 233
G.6.2 DDT sometimes stop responding when using the Step Threads Together option . 233
G.7 Evaluating Variables e e e 233
G.7.1 Some variables cannot be viewed when the program is at the start of a function . 233
G.7.2 Incorrect values printed for Fortranarray 234
G.7.3 Evaluating an array of derived types, containing multiple-dimension arrays . . . 234
G.7.4 C++ STL types are not pretty printed 234
G.8 Memory Debugging e e e 234
G.8.1 The View Pointer Details window says a pointer is valid but doesn’t show you
which line of code it was allocatedon 234
G.8.2 mprotect fails error when using memory debugging with guard pages . . 234
G.8.3 Allocations made before or during MPI_Init show up in Current Memory Us-
age but have no associated stack back trace 235
G.8.4 Deadlock when calling printf or malloc from asignal handler 235
G.8.5 Program runs more slowly with Memory Debugging enabled 235
G.9 MAP specificissues o v v v i e e e e e e e e e e 235
G.9.1 My compiler is inlining functions 235
G.9.2 Tail Recursion Optimization v ..., 236
G.9.3 MPI Wrapper Libraries e 236
G.9.4 Thread support limitations 236
G.9.5 No thread activity whilst blockingonan MPI call 237
G.9.6 I’'mnot getting enoughsamples 237
G.9.7 TIjust see main (external code) and nothingelse 237
G.9.8 MAP is reporting time spent in a function definition 237
G.9.9 MAP is not correctly identifying vectorized instructions 237
G.9.10 Linking with the static MAP sampler library fails with an undefined reference to
_real.dlopen 238
G.9.11 Linking with the static MAP sampler library fails with FDE overlap errors. . . . 238
G.9.12 MAP harmless linker warningson XeonPhi 238
G.9.13 MAP harmless error messageson XeonPhi 239
G.9.14 MAP adds unexpected overhead to my program 239
G.9.15 MAP takes an extremely long time to gather and analyze my OpenBLAS-linked
application L e 239
G.9.16 MAP over-reports MPI, I/O, accelerator or synchronisation time 240
G.9.17 MAP collects very deep stack traces with boost::coroutine 240
G.10 Obtaining SUPPOIt v v v o e e e e e e e e e e e e e e e e 241
H Queue Template Script Syntax 242
H.1 Queue Template Tags o v i e e e e e e e e e e e e e e 242
H.2 Defining New Tags i i it e e e e e e 243
H.3 Specifying Default Options et 245
H.4 Launching e e e e e e 245
H.4.1 Using AUTOLAUNCH.TAG o0t s e e e e e 245
H.4.2 Usingddt-mpirun e e 246
H.43 MPICH 1based MPT e 246
H.4.4 Scalar Programs i e e 247
H.5 Using PROCS_ PER.NODE. TAG ittt 247
H.6 Job ID Regular Expression i 247
H.7 Allinea IPMI Energy Agent o i i ittt e e e 248

(© 2017 Allinea Software Ltd. 10

H.7.1 Requirements

(© 2017 Allinea Software Ltd.

Allinea Forge 7.0

11

Allinea Forge 7.0

Part |

Allinea Forge

1 Introduction

Welcome to the Allinea Forge user guide, covering Allinea DDT and Allinea MAP.

Allinea DDT is our industry-leading parallel debugger supporting a wide range of parallel architectures
and models, including MPI, UPC, CUDA and OpenMP. Allinea MAP is our low-overhead line-level
profiler for MPI, OpenMP and scalar programs. Both these tools are part of one common environment:
Allinea Forge.

One installation provides you with everything you need to debug, fix and profile programs at any scale,
limited only by your current licence. This simplifies your installation and maintenance overheads and
provides one common, familiar interface for all development tools, making it easy to move between them
while working on a piece of code. You may start Forge with ddt or map and can easily switch to the
other tool with a single click while working.

Allinea Forge has native remote clients for Windows, OS X and Linux that can connect via SSH to any
server or cluster using your existing login process and then run, debug, profile, edit and compile files
directly on the remote machine. Give these a try, we’re sure you’ll prefer the native experience to X
forwarding or VNC-based solutions!

1.1 Allinea DDT

Allinea DDT is a powerful, easy-to-use graphical debugger capable of debugging a wide variety of sce-
narios found in today’s development environments. With Allinea DDT, it is possible to debug:

Single process and multithreaded software

OpenMP

Parallel (MPI) software

e Heterogeneous software such as that written to use GPUs

e Hybrid codes mixing paradigms such as MPI + OpenMP, or MPI + CUDA
e Multi-process software of any form, including client-server applications

Allinea DDT is designed to make you and your team more productive—it includes static analysis that
highlights potential problems in the source code, integrated memory debugging that can catch reads and
writes outside of array bounds, integration with MPI message queues and much more. It provides a com-
plete solution for finding and fixing problems whether on a single thread or hundreds of thousands.

Allinea DDT supports all of the compiled languages that are found in mainstream and high-performance
computing including:

e C, C++, and all derivatives of Fortran, including Fortran 90.

(© 2017 Allinea Software Ltd. 12

Allinea Forge 7.0

e Parallel languages/models including MPI, UPC, and Fortran 2008 Co-arrays.
e GPU languages such as HMPP, OpenMP Accelerators, CUDA and CUDA Fortran.

Whilst many users choose Allinea DDT for desktop development or for debugging on small departmental
parallel machines, it is also scalable and fast to beyond Petascale and depended upon to debug hundreds
of thousands of processes simultaneously by leadership class facilities around the world.

Chapters 5 to 17 of this manual describe DDT in more detail.

1.2 Allinea MAP

Allinea MAP is a parallel profiler that shows you which lines of code took the most time and why, without
requiring careful configuration or prior experience with profiling tools. It features:

e Support for MPI, OpenMP and single-threaded programs.

e Small data files—all data is aggregated on the cluster and only a few megabytes written to disk,
regardless of the size or duration of the run.

e Syntax-highlighted source code with performance annotations, allowing you to collapse blocks of
code and functions or drill down to the performance of a single line.

e Just 5% application slowdown even with thousands of MPI processes.
e Both interactive and batch modes for gathering profile data.

e A rich set of zero-configuration metrics that just work, showing memory usage, floating-point
calculations and MPI usage to be seen through a program run and across processes, including:

— The percentage of vectorized SIMD instructions, including AVX extensions, used in each part
of the code.

— The amount of time spent in memory operations varies over time and processes—is there a
cache bottleneck?

— Click and drag to zoom in to specific regions of computation and explore them in detail.

— A display that enlightens you instead of drowning you in data. Everything is visually scalable,
using aggregation across processes and cores to deliver an immediate overview that highlights
regions of imbalance in the code.

Chapters 18 to 30 of this manual describe MAP in more detail.

1.3 Online Resources

You can find links to tutorials, training material, webinars and white papers in our online knowledge
center:

Knowledge Center http://www.allinea.com/help-and-resources/training

Known issues and the latest version of this user guide may be found on the support web pages:

Support http://www.allinea.com/knowledge-center/get-support

(© 2017 Allinea Software Ltd. 13

http://www.allinea.com/help-and-resources/training
http://www.allinea.com/knowledge-center/get-support

Allinea Forge 7.0

2 Installation

A release of Allinea Forge, containing Allinea DDT and Allinea MAP may be downloaded from the
Allinea website: http://www.allinea.com.

Both a graphical and text-based installer are provided—see the sections below for details.

2.1 Linux/Unix Installation
2.1.1 Graphical Install

Untar the package and run the installer executable using the commands below.

tar xf allinea-forge-7.0-ARCH.tar
cd allinea-forge-7.0-ARCH
./installer

The installer consists of a number of pages where you can choose install options. Use the Next and Back
buttons to move between pages or Cancel to cancel the installation.

The Install Type page lets you choose which user(s) to install Allinea Forge for. If you are an administrator
(root) you may install Allinea Forge for All Users in a common directory such as /opt or /usr/
local, otherwise only the Just For Me option is enabled.

Allinea Forge Installer

Install Type

Who do you want to install Allinea Forge for?
All Users (must be root)

@ Just For Me

[< Back H Next > H Cancel

Figure 1: Installer—Installation type

Once you have selected the installation type, you will be asked which directory you would like to install
Allinea Forge in. If you are installing on a cluster, make sure you choose a directory that is shared between
the cluster login node / frontend and the cluster nodes. Otherwise you must install or copy it to the same
location on each node.

(© 2017 Allinea Software Ltd. 14

http://www.allinea.com

Allinea Forge 7.0

Allinea Forge Installer

Destination

Install Allinea Forge to:

[Ihomefalejandrofallineafforgd] =

This directory must be accessible on all the nodes in your cluster.

[= Back H Next = H Cancel

Figure 2: Installer—Installation directory

You will be shown the progress of the installation on the Install page.

Allinea Forge Installer

Install

Extracting "lib/libTextEditor.s0.1" to "/homefalejandrojallinea/forge/lib/libTextEditor

< Back Install

Figure 3: Install in progress

Icons for DDT and MAP will be added to your desktop environment’s Development menu.

It is important to follow the instructions in the README file that is contained in the tar file. In particular,
you will need a valid licence file. You can obtain an evaluation licence by completing the form at http:
//'www.allinea.com/products/downloads/free-trial.

Due to the vast number of different site configurations and MPI distributions that are supported by Allinea
Forge, it is inevitable that sometimes you may need to take further steps to get the everything fully
integrated into your environment. For example, it may be necessary to ensure that environment variables
are propagated to remote nodes, and ensure that the tool libraries and executables are available on the
remote nodes.

2.1.2 Text-mode Install

The text-mode install script textinstall. sh is useful if you are installing remotely.

tar xf allinea-forge-7.0-ARCH.tar
cd allinea-forge-7.0-ARCH
./text-install.sh

(© 2017 Allinea Software Ltd. 15

http://www.allinea.com/products/downloads/free-trial
http://www.allinea.com/products/downloads/free-trial

Allinea Forge 7.0

Press Return to read the licence when prompted and then enter the directory where you would like to
install Allinea Forge. The directory must be accessible on all the nodes in your cluster.

2.2 Mac Installation

The Allinea Forge client for Mac is supplied as an Apple Disk Image (*.dmg) file. This contains the
documentation folder (with a copy of this user guide and the release notes) and the Allinea Forge client
application bundle icon, which should be drag and dropped into the Applications directory.

_ allinea-forge-5.0-MacQSX-10.7.5-x86_64

Figure 4: Mac Installer—Installation Folder

2.3 Windows Installation
The Allinea Forge client for Windows is installed using a graphical installer. This is a familiar Win-

dows set-up executable, although care needs to be taken with the choice of a destination folder for the
installation.

(© 2017 Allinea Software Ltd. 16

Allinea Forge 7.0

‘ﬁ Setup - Allinea Forge Client EI = @

Select Destination Location
Wwhere should Allinea Forge Client be installed?

Setup will install Alinea Forge Client inta the Follawing Folder.

To continue, click Mext, IF vou would like to select a different Folder, click Browse,

C:iEmplAlinea Forge Clienk Browse. ..

Ak least 102.1 ME of Free disk space is required.

| < Back. ” Mext =]| Cancel |

Figure 5: Windows Installer—Installation Folder

If the user performing the installation has administrative rights, then the default installation folder is
C:\Program Files\Allinea Forge. If administrative rights have not been granted, then the
default will be C:\Users\<user>\AppData\Local

2.4 Licence Files

Allinea Forge products require a licence file for their operation. If you are using the Remote Client you do
not need a licence file on the machine running the Remote Client, but on the machine you are connecting
to instead.

If you do not have a licence file, the GUI will show this in the lower-left corner and you will not be able
to run, debug or profile new programs.

Time-limited evaluation licences are available from the Allinea website: http://www.allinea.com.

2.5 Workstation and Evaluation Licences

Workstation and Evaluation licence files for Allinea Forge do not need a licence server and should
be copied directly to {installation-directory}/licences (e.g. /home/user/allinea/
forge/licences/Licence.ddt). Do not edit the files as this will prevent them working.

If you have separate licence files for Allinea DDT and Allinea MAP you do not need separate instal-
lations of Allinea Forge. You may instead copy the individual licence files to {installation-
directory}/licences. When Allinea Forge is started you may choose between Allinea DDT and
Allinea MAP on the Welcome page. If you have multiple licences for the same product the licence with
the most tokens will be preferred.

You may specify an alternative location of the licence directory using an environment variable: ALLINEA_
LICENCE_DIR. For example:

export ALLINEA_LICENCE_DIR=${HOME}/SomeOtherLicenceDir

ALLINEA_LICENSE_DIR is an alias for ALLINEA_LICENCE_DIR.

(© 2017 Allinea Software Ltd. 17

http://www.allinea.com

Allinea Forge 7.0

2.6 Supercomputing and Other Floating Licences

For users with Supercomputing and other floating licences, the Allinea Licence Server must be running
on the designated licence server machine prior to running Allinea Forge.

The Allinea Licence Server and instructions for its installation and usage may be downloaded from http:
//www.allinea.com/downloads.

A floating licence consists of two files: the server licence (a file name Licence . XxxxX) and a client li-
cence file Licence. The client file should be copiedto {installation-directory}/licences
(e.g. /home/user/allinea/forge/licences/Licence). You will need to edit the host -
name line to contain the host name or IP address of the machine running the Licence Server. See the
Licence Server user guide for instructions on how to install the server licence.

2.7 Architecture Licensing

Licences issued after the release of Allinea Forge 6.1 specify the compute node architectures that they
may be used with. Licences issued prior to this release will enable the x86_64 and i686 architectures by
default. Existing users for other architectures will be supplied with new licences that will enable their
architectures. If there is any problem then contact support@allinea.com .

(© 2017 Allinea Software Ltd. 18

http://www.allinea.com/downloads
http://www.allinea.com/downloads
mailto:support@allinea.com

Allinea Forge 7.0

3 Connecting to a Remote System

Often you will need to login to a remote system in order to run a job. For example you may use SSH to
login from your desktop machine mydesktop to the login node mycluster-login and then start a job using
the queue submission command qgsub.

mydesktop mycluster-login

e

Compute Nodes

Figure 6: Connecting to a Remote System

The Allinea Forge GUI can connect to remote systems using SSH (typically to a login node) and Reverse
Connect (see 3.3 Reverse Connect) (typically to a batch compute node) for you so you can run the user
interface on your local machine without the need for X forwarding. Native remote clients are available
for Windows, Mac OS X and Linux.

No licence file is required by a remote client. The licence of the remote system will be used once con-
nected.

Note: The same versions of Allinea Forge must be installed on the local and remote systems in order to
use DDT or MAP remotely.

OPTIONS

Remote Launch:
off

hod]

Figure 7: Remote Launch—Configure

To connect to a remote system click on the Remote Launch drop down list and select Configure... The Re-
mote Connections Dialog will open where you can edit the necessary settings.

3.1 Remote Connections Dialog

The Remote Connections Dialog allows you to add, remove and edit connections to remote systems.

(© 2017 Allinea Software Ltd. 19

Allinea Forge 7.0

Configure Remote Connections X

Add

login via gateway

loptfalinea'forge

Edit
Duplicate

Bemove

Move Lip

Wove Down

Close

Figure 8: Remote Connections Dialog

When adding or editing a host, you will be presented with the Remote Launch Settings for that host.

You may also remove a remote host from the list by clicking the Remove button, or duplicate an existing
host using the Duplicate button.

You can also change the ordering of the hosts using the Move Up or Move Down buttons.

3.2 Remote Launch Settings

Remote Launch Settings. x

Cannection Name: [\ugin via gateway]

HostName; [gateway2022 login]

How do | connect via a gateway (mutti-hop)?

Remate Jnstallation Directory [/upﬁallmea}furge]

Remote Script [/humeﬂuserf.a\Iinea/remute-scﬂm]

Always ook for source files locally

Test Remote Launch

Figure 9: Remote Launch Options

Connection Name: An optional name for this connection. If no name is specified, the Host Name will
be used.

Host Name: The host name of the remote system you wish to connect to.
The syntax of the host name field is:

[username]@hostname[:port]...

username is an optional user name to use on the remote system. If not specified your local user name
will be used instead.

hostname is the host name of the remote system.

port is the optional port number that the remote host’s SSH daemon is listening on. If not specified the
default of 22 is used.

To login via one or more intermediate hosts (e.g. a gateway) enter the host names in order, separated by
spaces, e.g. gateway.allinea.com cluster.lan

(© 2017 Allinea Software Ltd. 20

Allinea Forge 7.0

Note: You must be able to login to the third and subsequent hosts without a password.

Additional SSH options may be specified in the remote - exec script covered in section A.4 Connecting
to remote programs (remote-exec).

Remote Installation Directory: The full path to the Allinea Forge installation on the remote system.

Remote Script: This optional script will be run before starting the remote daemon on the remote system.
You may use this script to load the required modules for DDT and MAP, your MPI and compiler. See
below for more details. The script is usually not necessary when using Reverse Connect.

Always look for source files locally: Check this box to use the source files on the local system instead
of the remote system.

3.2.1 Remote Script

The script may load modules using the module command or otherwise set environment variables.
Allinea Forge will source this script before running its remote daemon (your script does not need to
start the remote daemon itself).

The script will be run using /bin/sh (usually a Bourne-compatible shell). If this is not your usual login
shell, make allowances for the different syntax it might require.

You may install a site-wide script that will be sourced for all users at
/path/to/allinea/forge/remote-init.

You may also install a user-wide script that will be sourced for all of your connections at
$ALLINEA_CONFIG_DIR/remote-init.

Note: $SALLINEA_CONFIG_DIR will default to $HOME/ . allinea if not set.
Example Script

Note: This script file should be created on the remote system and the full path to the file entered in the
Remote Script field box.

module load allinea-forge
module load mympi
module load mycompiler

3.3 Reverse Connect
3.3.1 Overview

The Reverse Connect feature allows you to submit your job from a shell terminal as you already do and
with a small tweak to your mpirun (or equivalent) allow that job to connect back to Allinea Forge
GUL

Reverse Connect makes it easy to debug and profile jobs with the right environment. You can easily load
the required modules and prepare all setup steps necessary before launching your job.

Please note that node-locked licences such as workstation or Allinea DDT Cluster licences do not include
the Reverse Connect feature.

(© 2017 Allinea Software Ltd. 21

Allinea Forge 7.0

3.3.2 Usage

1. Start Allinea Forge and let it connect to your remote system (typically a login node) with SSH.

2. Modify your current mpirun (or equivalent) command line inside your interactive queue alloca-
tion or queue submission script to enable Reverse Connect. In most of the cases it is sufficient to
prefix it with ddt/map --connect. Almost all Allinea Forge arguments beside - -offline
and - -profile are supported by Reverse Connect.

Example:

$ mpirun -n 512 ./examples/wave_f

To debug the job using Reverse Connect and 5.2 Express Launch run:

$ ddt --connect mpirun -n 512 ./examples/wave_f

To profile the job using Reverse Connect and 18.1 Express Launch run:

$ map --connect mpirun -n 512 ./examples/wave_f

If your MPI is not yet supported by Express Launch mode you can use Compatibility Mode:
Debug:
$ ddt --connect -n 512 ./examples/wave_f

Profile:
$ map --connect -n 512 ./examples/wave_f
3. After a short period of time the Allinea Forge GUI will show the Reverse Connect request including

the host (typically a batch compute node) from where the request was made and a command line
summary.

Reverse Connect Request

i A new Reverse Connect request is available from mycluster-batch:4201 for Allinea DDT.
Command Line: —-connect mpirun -n 512 ./examples/wave_f

Do you want to accept this request?

Figure 10: Reverse Connect request

4. You can accept the request with a click on Accept. Allinea Forge will then connect to the specified
host and execute what you specified with the command line. If you don’t want to accept the request
just click on Reject.

3.3.3 Connection Details

If a Reverse Connect is done (for example with ddt --connect), Allinea Forge will start a server
listening on a port in the range between 4201 and 4240. If this port range is not suitable (e.g. ports
already taken by other services) you can override the port range with environment variable ALLINEA
REMOTED_PORTS.

$ export ALLINEA_REMOTED_PORTS=4400-4500
$ ddt --connect

The server will now pick a free port between 4400 and 4500 (inclusive).

(© 2017 Allinea Software Ltd. 22

Allinea Forge 7.0

3.4 Using X Forwarding or VNC

In the event you do not want to use the Remote Launch feature here are two other methods for running
DDT or MAP on a remote system: X forwarding and VNC (or similar Unix-supporting remote desktop
software).

X forwarding is effective when the network connection is low latency (e.g. same physical site). VNC is
strongly recommended when the network connection is moderate or slow.

e Apple users accessing a Linux or other Unix machine whilst using a single-button mouse should
be advised that pressing the Command key and the single mouse button will have the same effect
as right clicking on a two button mouse. Right clicking allows access to some important features
in DDT and MAP.

You can use X forwarding to access the Allinea Forge instance running on a remote Linux/Unix
system from an Apple:

— Start the X11 server (available in the X11User . pkg).

— Set the display variable correctly to allow X applications to display by opening a terminal in
0S/X and typing:

export DISPLAY=:0

Then ssh to the remote system from that terminal, with ssh options - X and - C (X forwarding
and compression). For example:

ssh -CX username@login.mybigcluster.com

— Now start DDT or MAP on the remote system and the window will appear on your Mac.

e Windows users can use any one of a number of commercial and open source X servers, but may find
VNC a viable alternative (http://www.realvnc.com/) which is available under free and commercial
licensing options.

e VNC allows users to access a desktop running on a remote server (e.g. a cluster login node or front
end) and is more suitable than X forwarding for medium to high latency links. By setting up an
SSH ‘tunnel’ users are usually able to securely access this remote desktop from anywhere. To use
VNC and Allinea Forge:

— Log in to the remote system and set up a tunnel for port 5901 and 5801. On Apple or any
Linux/Unix systems use the ssh command. If you are using Putty on Windows use the GUI
to setup the tunnel.

ssh -L 5901:1localhost:5901 -L 5801:localhost:5801 \
username@login.mybigcluster.com

— At the remote prompt, start vicserver. If this is the first time you have used VNC it will ask
you to set an access password.

vncserver

The output from vncserver will tell you which ports VNC has started on—5800+n and 5900+n,
where n is the number given as hostname:n in the output. If this number, n, is not 1, then an-
other user is already using VINC on that system, and you should set a new tunnel to these
ports by logging in to the same host again and changing the settings to the new ports (or use
SSH escape codes to add a tunnel, see the SSH manual pages for details).

(© 2017 Allinea Software Ltd. 23

http://www.realvnc.com/

Allinea Forge 7.0

— Now, on the local desktop/laptop, either use a browser and access the desktop within the
browser by entering the URL http://localhost:5801/, or (better) you may use a
separate VNC client such as krdc or vncviewer.

krdc localhost:1

or

vhcviewer localhost:1

If n is not 1, as described above, use :2, :3 etc. as appropriate instead.

e Note that a bug in the browser based access method means the Tab key does not work correctly in
VNC. but krdc or vncviewer users are not affected by this problem.

e VNC frequently defaults to an old X window manager (twm) which requires you to manually place
windows; this can be changed by editing the ~/.vnc/xstartup file to use KDE or GNOME
and restarting the VNC server.

(© 2017 Allinea Software Ltd. 24

Allinea Forge 7.0

4 Starting

To start Allinea Forge simply type one of the following into a shell window:

forge
forge program_name [arguments]

To start Allinea Forge on Mac OS X, use the Allinea Forge icon or type in the shell window:

open /Applications/Allinea\ Forge/Allinea Forge.app [--args
program_name [arguments]]

To launch additional instances of the Allinea Forge application, right click the Dock icon of a running
instance of Allinea Forge, and choose “Launch a new instance of Allinea Forge”. Alternatively, you can
use the following terminal command:

open -n /Applications/Allinea\ Forge/Allinea Forge.app [--args
program_name [arguments]]

Note: Unless in Express Launch mode, you should not attempt to pipe input directly to the Allinea Forge
program—for information about how to achieve the effect of sending input to your program, please read
section 9 Program Input And Output (DDT) or 30 Running MAP from the Command Line (MAP).

Once Allinea Forge has started it will display the Welcome Page.

Note: In Express Launch mode (see 5.2 Express Launch (DDT) or 18.1 Express Launch (MAP)) the
Welcome Page is not shown and the user is brought directly to the Run Dialog instead. If no valid licence
is found, the program is exited and the appropriate message is shown in the console output.

= _allinea

2% FORGE

RUN
Run and debug a program

ATTACH
Attach to an already running program
allinea
|—\I _\‘T OPEN CORE
J Open a core file from a previous run.

MANUAL LAUNCH (ADVANCED)

Manually launch the backend yourself.

allinea

A A OPTIONS
MAP °

Remote Launch
i :

quit

Support
Tutorials
allinea.com

€D Licence Status... ?

Figure 11: DDT Welcome Page

(© 2017 Allinea Software Ltd. 25

Allinea Forge 7.0

The Welcome Page allows you to choose what tool you would like to use (DDT or MAP). Click the icons
on the left hand side to switch tools.

Once you have selected the tool you want to use use the buttons in the menu to select a debugging or
profiling activity.

(© 2017 Allinea Software Ltd. 26

Allinea Forge 7.0

Part Il

DDT

5 Getting Started

As always, when compiling the program that you wish to debug, you must add the debug flag to your
compile command. For most compilers this is - g. It is also advisable to turn off compiler optimisations
as these can make debugging appear strange and unpredictable. If your program is already compiled
without debug information you will need to make the files that you are interested in again.

The Welcome Page allows you to choose what kind of debugging you want to do. You can:

e run a program from DDT and debug it

debug a program you launch manually (e.g. on the command line)

attach to an already running program

open core files generated by a program that crashed

connect to a remote system and accept a Reverse Connect request

(© 2017 Allinea Software Ltd. 27

Allinea Forge 7.0

5.1 Running a Program

Application: /homejuser/ddtfexamples/hello sleepy Details

Application: [fhomefuserfddtfexamples,.fhellul v l
vl

Arguments: [sleepy

stdin file: v | 3
Working Directory: [- l
¥| MPI: 512 processes, Open MPI Details

OpenMP

CUDA

Memory Debugging

Submit to Queue

Environment Variables: none Details
Plugins: none Details
Help l [Options l [Bun l [Cancel

Figure 12: Run Window

If you click the Run button on the Welcome Page you will see the window above. The settings are grouped
into sections. Click the Details. .. button to expand a section. The settings in each section are described
below.

5.1.1 Application

Application: The full path name to your application. If you specified one on the command line, this will
already be filled in. You may browse for an application by clicking on the Browse & button.

Note: Many MPIs have problems working with directory and program names containing spaces. We
recommend avoiding the use of spaces in directory and file names.

Arguments: (optional) The arguments passed to your application. These will be automatically filled if
you entered some on the command line.

I

Note: Avoid using quote characters such as ' and ", as these may be interpreted differently by DDT
and your command shell. If you must use these and cannot get them to work as expected, please contact
support@allinea.com .

stdin file: (optional) This allows you to choose a file to be used as the standard input (stdin) for your
program. DDT will automatically add arguments to mpirun to ensure your input file is used.

(© 2017 Allinea Software Ltd. 28

mailto:support@allinea.com

Allinea Forge 7.0

Working Directory: (optional) The working (i.e. current directory) to use when debugging your appli-
cation. If this is blank then DDT’s working directory will be used instead.

5.1.2 MPI

Note: If you only have a single process licence or have selected none as your MPI Implementation the
MPI options will be missing. The MPI options are not available when DDT is in single process mode.
See section 5.4 Debugging Single-Process Programs for more details about using DDT with a single
process.

Number of processes: The number of processes that you wish to debug. DDT supports hundreds of
thousands of processes but this is limited by your licence.

Number of nodes: This is the number of compute nodes that you wish to use to run your program.
Processes per node: This is the number of MPI processes to run on each compute node.

Implementation: The MPI implementation to use. If you are submitting a job to a queue the queue
settings will also be summarised here. You may change the MPI implementation by clicking on the
Change. .. button.

Note: The choice of MPI implementation is critical to correctly starting DDT. Your system will normally
use one particular MPI implementation. If you are unsure as to which to pick, try generic, consult your
system administrator or Allinea. A list of settings for common implementations is provided in Appendix
D MPI Distribution Notes and Known Issues.

Note: If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can configure this using the Options window (See section A.5.1 System).

mpirun arguments: (optional): The arguments that are passed to mpirun or your equivalent—usually
prior to your executable name in normal mpirun usage. You can place machine file arguments—if
necessary—here. For most users this box can be left empty. You can also specify mpirun arguments
on the command line (using the - -mpiargs command line argument) or using an environment variable
(using the ALLINEA_MPIRUN_ARGUMENTS environment variable) if this is more convenient.

Note: You should not enter the - np argument as DDT will do this for you.

Note: You should not enter the - -task-nb or - -process-nb arguments as DDT will do this for
you.

5.1.3 OpenMP

Number of OpenMP threads: The number of OpenMP threads to run your application with. The OMP_
NUM_THREADS environment variable is set to this value.

5.1.4 CUDA

If your licence supports it, you may also debug GPU programs by enabling CUDA support. For more
information on debugging CUDA programs, please see section 15 CUDA GPU Debugging.

Track GPU Allocations: Tracks CUDA memory allocations made using cudaMalloc, etc. See 12.2
CUDA Memory Debugging for more information.

Detect invalid accesses (memcheck): Turns on the CUDA-MEMCHECK error detection tool. See 12.2
CUDA Memory Debugging for more information.

(© 2017 Allinea Software Ltd. 29

Allinea Forge 7.0

5.1.5 UPC

The DDT configuration depends on the UPC compiler used.

5.1.5.1 GCC UPC
DDT can debug applications compiled with GCC UPC 4.8 with TLS disabled. See section E.4 GNU.

To run a UPC program in DDT you have to select the MPI implementation “GCC libupc SMP (no
TLS)”

5.1.5.2 Berkeley UPC

To run a Berkeley UPC program in DDT you have to compile the program using - tv flag and then select
the same MPI implementation used in the Berkeley compiler build configuration.

The Berkeley compiler must be build using the MPI transport.

See section E.2 Berkeley UPC Compiler.

5.1.6 Memory Debugging

Clicking the Details... button will open the Memory Debugging Settings window. See section 12.3
Configuration for full details of the available Memory Debugging settings.

5.1.7 Environment Variables

The optional Environment Variables section should contain additional environment variables that should
be passed to mpirun or its equivalent. These environment variables may also be passed to your pro-
gram, depending on which MPI implementation your system uses. Most users will not need to use this
box.

Note: on some systems it may be necessary to set environment variables for the DDT backend itself. For
example: if /tmp is unusable on the compute nodes you may wish to set TMPDIR to a different direc-
tory. You can specify such environment variables in /path/to/ddt/1ib/environment. Enter one
variable per line and separate the variable name and value with =, e.g. TMPDIR=/work/user.

5.1.8 Plugins

The optional Plugins section allows you to enable plugins for various third-party libraries, such as the Intel
Message Checker or Marmot. See section 14 Using and Writing Plugins for more information.

Click Run to start your program—or Submit if working through a queue (See section A.2 Integration
With Queuing Systems). This will run your program through the debug interface you selected and will
allow your MPI implementation to determine which nodes to start which processes on.

Note: If you have a program compiled with Intel 1fort or GNU g77 you may not see your code
and highlight line when DDT starts. This is because those compilers create a pseudo MAIN function,
above the top level of your code. To fix this you can either open your Source Code window and add a
breakpoint in your code—then run to that breakpoint, or you can use the Step into function to step into
your code.

(© 2017 Allinea Software Ltd. 30

Allinea Forge 7.0

When your program starts, DDT will attempt to determine the MPI world rank of each process. If this
fails, you will see the following error message:

I Allinea DDT x|

Allinea DDT couldn't find complete MPI rank information for these
processes and has assigned an arbitrary number to each process
instead. You can manually assign ranks with the "Use as MPI rank"
button inside the cross-process comparison window - check the user
guide for details. Set the environment variable
ALLINEA_IGNORE_MPI_RANK_ERRORS to 1 to avoid seeing this warning

again.

Figure 13: MPI rank error

This means that the number DDT shows for each process may not be the MPI rank of the process. To
correct this you can tell DDT to use a variable from your program as the rank for each process—see
section 8.17 Assigning MPI Ranks for details.

To end your current debugging session select the End Session menu option from the File menu. This will
close all processes and stop any running code. If any processes remain you may have to clean them up
manually using the kil1l command (or a command provided with your MPI implementation).

5.2 Express Launch

Each of the Allinea Forge products can be launched by typing its name in front of an existing mpiexec
command:

$ ddt mpiexec -n 128 examples/hello memcrash

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see a error message like this:

$ '"MPICH 1 standard' programs cannot be started using Express
Launch syntax (launching with an mpirun command).

Try this instead:
ddt --np=256 ./wave_c 20

Type ddt --help for more information.
This is referred to as Compatibility Mode, in which the mpiexec command is not included and the

arguments to mpiexec are passed viaa - -mpiargs="args here'" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts to
run your program under one of the Allinea Forge products. This works best for Allinea DDT with Reverse
Connect (ddt --connect, see 3.3 Reverse Connect for more details) for interactive debugging or in
offline mode (ddt --offline).

If you can not use Reverse Connect and wish to use interactive debugging from a queue you may need
to configure DDT to generate job submission scripts for you. More details on this can be found in 5.10
Starting A Job In A Queue and A.2 Integration With Queuing Systems.

The following lists the MPI implementations currently supported by Express Launch:
e BlueGene/Q

(© 2017 Allinea Software Ltd. 31

Allinea Forge 7.0

e bullx MPI

e Cray X-Series (MPI/SHMEM/CAF)
e Intel MPI

e MPICH 2

e MPICH 3

e Open MPI (MPI/SHMEM)

e Oracle MPT

e Open MPI (Cray XT/XE/XK)

e Cray XT/XE/XK (UPC)

5.2.1 Run Dialog Box

In Express Launch mode, the Run dialog has a restricted number of options:

Run

Run: mpirun -n 4 examples/wave_c Details
Command: | mpirun -n 4 examplesjwave_c

OpenMP

CUDA

Memory Debugging

Plugins: none Details

Figure 14: Express Launch DDT Run dialog box

5.3 remote-exec Required By Some MPIs

When using SGI MPT, MPICH 1 Standard or the MPMD variants of MPICH 2, MPICH 3 or Intel
MPI, DDT will allow mpirun to start all the processes, then attach to them while they’re inside MPI__
Init.

This method is often faster than the generic method, but requires the remote -exec facility in DDT to
be correctly configured if processes are being launched on a remote machine. For more information on
remote-exec, please see section A.4 Connecting to remote programs (remote-exec).

Important: If DDT is running in the background (e.g. ddt &) then this process may get stuck (some
SSH versions cause this behaviour when asking for a password). If this happens to you, go to the terminal
and use the g or similar command to make DDT a foreground process, or run DDT again, without using
‘(&),'

If DDT can’t find a password-free way to access the cluster nodes then you will not be able to use the spe-
cialised startup options. Instead, You can use generic, although startup may be slower for large numbers
of processes.

(© 2017 Allinea Software Ltd. 32

Allinea Forge 7.0

In addition to the listed MPI implementations above, all MPI implementations except for Bluegene/Q
and Cray MPT DDT requires password-free access to the compute nodes when explicitly starting by
attaching.

5.4 Debugging Single-Process Programs

Application: /homefuser/ddt/examples/simple Details

Application: [/home/user/ddt/examples/simple| -]
v]

Arguments: [

stdin file:

v 3
Working Directory: [vl

OpenMP

CUDA
Memory Debugging

Submit to Queue

Environment Variables: none Details
Plugins: none Details
Help l [Options l [Run l [Cancel

Figure 15: Single-Process Run Window

Users with single-process licences will immediately see the Run Window that is appropriate for single-
process applications.

Users with multi-process licences can uncheck the MPI check box to run a single process program.

Select the application—either by typing the file name in, or selecting using the browser by clicking the
browse & button. Arguments can be typed into the supplied box.

Finally click Run to start your program.

Note: If you have a program compiled with Intel ifort or GNU g77 you may not see your code
and highlight line when DDT starts. This is because those compilers create a pseudo MAIN function,
above the top level of your code. To fix this you can either open your Source Code window and add a
breakpoint in your code—then play to that breakpoint, or you can use the Step Into function to step into
your code.

To end your current debugging session select the End Session menu option from the File menu. This will
close all processes and stop any running code.

5.5 Debugging OpenMP Programs

When running an OpenMP program, set the Number of OpenMP threads value to the number of threads
you require. DDT will run your program with the OMP_NUM_THREADS environment variable set to the

(© 2017 Allinea Software Ltd. 33

Allinea Forge 7.0

appropriate value.

There are several important points to keep in mind while debugging OpenMP programs:

1.

10.

11.

Parallel regions created with #pragma omp parallel (C) or !$OMP PARALLEL (For-
tran) will usually not be nested in the Parallel Stack View under the function that contained the
#pragma. Instead they will appear under a different top-level item. The top-level item is often in
the OpenMP runtime code, and the parallel region appears several levels down in the tree.

Some OpenMP libraries only create the threads when the first parallel region is reached. Don’t
worry if you can only see one thread at the start of the program.

You cannot step into a parallel region. Instead, tick the Step threads together box and use the Run to
here command to synchronise the threads at a point inside the region—these controls are discussed
in more detail in their own sections of this document.

You cannot step out of a parallel region. Instead, use Run to here to leave it. Most OpenMP libraries
work best if you keep the Step threads together box ticked until you have left the parallel region.
With the Intel OpenMP library, this means you will see the Stepping Threads window and will have
to click Skip All once.

Leave Step threads together off when you are outside a parallel region (as OpenMP worker threads
usually do not follow the same program flow as the main thread).

To control threads individually, use the Focus on Thread control. This allows you to step and play
one thread without affecting the rest. This is helpful when you want to work through a locking
situation or to bring a stray thread back to a common point. The Focus controls are discussed in
more detail in their own section of this document.

Shared OpenMP variables may appear twice in the Locals window. This is one of the many un-
fortunate side-effects of the complex way OpenMP libraries interfere with your code to produce
parallelism. One copy of the variable may have a nonsense value—this is usually easy to recognise.
The correct values are shown in the Evaluate and Current Line windows.

Parallel regions may be displayed as a new function in the stack views. Many OpenMP libraries
implement parallel regions as automatically-generated “outline” functions, and DDT shows you
this. To view the value of variables that are not used in the parallel region, you may need to switch
to thread 0 and change the stack frame to the function you wrote, rather than the outline function.

. Stepping often behaves unexpectedly inside parallel regions. Reduction variables usually require

some sort of locking between threads, and may even appear to make the current line jump back
to the start of the parallel region! Don’t worry about this—step over another couple of times and
you’ll see it comes back to where it belongs.

Some compilers optimise parallel loops regardless of the options you specified on the command
line. This has many strange effects, including code that appears to move backwards as well as
forwards, and variables that have nonsense values because they have been optimised out by the
compiler.

The thread IDs displayed in the Process Group Viewer and Cross-Thread Comparison window will
match the value returned by omp_get_thread_num() for each thread, but only if your OpenMP
implementation exposes this data to DDT. GCC'’s support for OpenMP (GOMP) needs to be built
with TLS enabled with our thread IDs to match the return omp_get_thread_num(), whereas
your system GCC most likely has this option disabled. The same thread IDs will be displayed as
tooltips for the threads in the thread viewer, but only your OpenMP implementation exposes this
data.

(© 2017 Allinea Software Ltd. 34

Allinea Forge 7.0

If you are using DDT with OpenMP and would like to tell us about experiences, we would appreciate
your feedback. Please email support@allinea.com with the subject title OpenMP feedback.

5.6 Manual Launching of Multi-Process Non-MPI programs

DDT can only launch MPI programs and scalar (single process) programs itself. The Manual Launch
(Advanced) button on the Welcome Page allows you to debug multi-process and multi-executable pro-
grams. These programs don’t necessarily need to be MPI programs. You can debug programs that use
other parallel frameworks, or both the client and the server from a client/server application in the same
DDT session, for example.

You must run each program you want to debug manually using the ddt-client command, similar to
debugging with a scalar debugger like the GNU debugger (gdb). However, unlike a scalar debugger, you
can debug more than one process at the same time in the same DDT session (licence permitting). Each
program you run will show up as a new process in the DDT window.

For example to debug both client and server in the same DDT session:
1. Click on the Manual Launch (Advanced) button.

2. Select 2 processes

Runtime: manual launch Details
Number of Processes:
CUDA

Memory Debugging

Plugins: none Details

Help H Ogtions] [Listen H Cancel

Figure 16: Manual Launch Window

3. Click the Listen button.
4. At the command line run:

ddt-client server &
ddt-client client &

The server process will appear as process 0 and the client as process 1 in the DDT window.

Al o [1]
client II'
server IZ'

Figure 17: Manual Launch Process Groups

After you have run the initial programs you may add extra processes to the DDT session (for example
extra clients) using ddt-client in the same way.

(© 2017 Allinea Software Ltd. 35

mailto:support@allinea.com

Allinea Forge 7.0

ddt-client client2 &

If you check Start debugging after the first process connects you do not need to specify how many pro-
cesses you want to launch in advance. You can start debugging after the first process connects and add
extra processes later as above.

5.7 Debugging MPMD Programs
The easiest way to debug MPMD programs is by using Express Launch to start your application. To use
Express Launch, simply prefix your normal MPMD launch line with ddt, for example:

ddt mpirun -n 1 ./master : -n 2 ./worker

For more information on Express Launch, and compatible MPI implementations, see section 5.2.

5.7.1 Debugging MPMD Programs without Express Launch
If you are using Open MPI, MPICH 2, MPICH 3 or Intel MPI, DDT can be used to debug multiple
program, multiple data (MPMD) programs. To start an MPMD program in DDT:

1. MPICH 2 and Intel MPI only: Select the MPMD variant of the MPI Implementation on the System
page of the Options window, e.g. for MPICH 2 select MPICH 2 (MPMD).

2. Click the Run button on the Welcome Page.

3. Select one of the MPMD programs in the Application box, it doesn’t matter what executable you
choose.

4. Enter the total amount of processes for the MPMD job in the Number of processes box.

5. Enter an MPMD style command line in the mpirun Arguments box in the MPI section of the Run
window, for example:

-np 4 hello : -np 4 program2

or:

--app /path/to/my_app_file

6. Click the Run button.

Note: be sure that the sum of processes in step 5 is equal to the number of processes set in step 4.

5.7.2 Debugging MPMD Programs in Compatibility mode

If you are using Open MPI in Compatibility mode (e.g. because you don’t have SSH access to the compute
nodes) then replace:

-np 2 ./progc.exe : -np 4 ./progf90.exe

in the mpirun Arguments / appfile with this:

-np 2 /path/to/ddt/bin/ddt-client ./progc.exe : -np 4
/path/to/ddt/bin/ddt-client ./progf90.exe

(© 2017 Allinea Software Ltd. 36

Allinea Forge 7.0

5.8 Opening Core Files

DDT - Open Core Files

Executable: | /home/user/ddt/examples/a.out

Corefiles: | home/user/core.1234 =1 Add
/home/userfcore.2345 -
/home/user/core.3456
fhome/userfcore. 4567 3 Remove

aOK @) cancel

Figure 18: The Open Core Files Window

DDT allows you to open one or more core files generated by your application.

To debug using core files, click the Open Core Files button on the Welcome Page. This opens the Open
Core Files window, which allows you to select an executable and a set of core files. Click OK to open
the core files and start debugging them.

While DDT is in this mode, you cannot play, pause or step (because there is no process active). You
are, however, able to evaluate expressions and browse the variables and stack frames saved in the core
files.

The End Session menu option will return DDT to its normal mode of operation.
5.9 Attaching To Running Programs

DDT can attach to running processes on any machine you have access to, whether they are from MPI
or scalar jobs, even if they have different executables and source pathnames. Clicking the Attach to a
Running Program button on the Welcome Page will show DDT’s Attach Window:

(© 2017 Allinea Software Ltd. 37

Allinea Forge 7.0

Attach to local and remote processes X

MPI: OpenMPI | Change MPI... Debug CUDA
Hosts: localhost | Choose Hosts...

Automatically-detected jobs List of all processes | GDB Server]

Filter for process names containing: [|
+ Hide forked children (these may not be part of your job)
Process name Host PID PPID | Fo Executable B
- ash localhost 15121 5110 no /bin/bash
--bash localhost 15175 5110 no /bin/bash]
- bash localhost 16546 5110 no /bin/bash
- ash localhost 23641 5110 no /bin/bash
- bash localhost 3091 5110 no /bin/bash
- bash localhost 5118 5110 no /bin/bash
- bash localhost 870 5110 no /bin/bash
- bash localhost 7214 5110 no /bin/bash
- flbin/cat localhost 3270 3262 no /bin/cat
- ffbin/d bus-daemon localhost 2650 1 no /binfdbus-daesmon =
[lnvert selection] [Clear selection] BRemove selected

1 nodes scanned.

[Rescan godesl [gttach to listed processes] [Cancel

Figure 19: Attach Window

There are two ways to select the processes you want to attach to: you can either choose from a list of
automatically detected MPI jobs (for supported MPI implementations) or manually select from a list of
processes.

5.9.1 Automatically Detected MPI Jobs

DDT can automatically detect MPI jobs started on the local host for selected MPI implementations (and
other hosts you have access to if an Attach Hosts File is configured—see section A.5.1 System for more
details).

The list of detected MPI jobs is shown on the Automatically-detected MPI jobs tab of the Attach Window.
Click the header for a particular job to see more information about that job. Once you have found the job
you want to attach to simply click the Attach button to attach to it.

5.9.2 Attaching To A Subset Of An MPI Job

You may want to attach only to a subset of ranks from your MPI job. You can choose this subset using the
Attach to ranks box on the Automatically-detected MPI jobs tab of the Attach Window. You may change
the subset later by selecting the File — Change Attached Processes... menu item.

5.9.3 Manual Process Selection

You can manually select which processes to attach to from a list of processes using the List of all processes
tab of the Attach Window. If you want to attach to a process on a remote host see section A.4 Connecting
to remote programs (remote-exec) first.

Initially the list of processes will be blank while DDT scans the nodes, provided in your node list file, for
running processes. When all the nodes have been scanned (or have timed out) the window will appear

(© 2017 Allinea Software Ltd. 38

Allinea Forge 7.0

as shown above. Use the Filter box to find the processes you want to attach to. On non-Linux platforms
you will also need to select the application executable you want to attach to. Ensure that the list shows all
the processes you wish to debug in your job, and no extra/unnecessary processes. You may modify the
list by selecting and removing unwanted processes, or alternatively selecting the processes you wish to
attach to and clicking on Attach to Selected Processes. If no processes are selected, DDT uses the whole
visible list.

On Linux you may use DDT to attach to multiple processes running different executables. When you
select processes with different executables the application box will change to read Multiple applications
selected. DDT will create a process group for each distinct executable

With some supported MPI implementations (e.g. Open MPI) DDT will show MPI processes as children
of the mpirun (or equivalent) command (see figure below). Clicking the mpirun command will auto-
matically select all the MPI child processes.

Process name Host PID PPID Fo Executable

= mpirun loginl 1001 999 no fusr/bin/mpirun
hello loginl 1002 1001 no /homefuser/ddt/...
hello loginl 1003 1001 no /homefuser/ddt/...

Figure 20: Attaching with Open MPI

Some MPI implementations (such as MPICH 1) create forked (child) processes that are used for com-
munication, but are not part of your job. To avoid displaying and attaching to these, make sure the Hide
Forked Children box is ticked. DDT’s definition of a forked child is a child process that shares the par-
ent’s name. Some MPI implementations create your processes as children of each other. If you cannot
see all the processes in your job, try clearing this checkbox and selecting specific processes from the
list.

Once you click on the Attach to Selected/Listed Processes button, DDT will use remote -exec to attach
a debugger to each process you selected and will proceed to debug your application as if you had started it
with DDT. When you end the debug session, DDT will detach from the processes rather than terminating
them—this will allow you to attach again later if you wish.

DDT will examine the processes it attaches to and will try to discover the MPI__COMM_WORLD rank of
each process. If you have attached to two MPI programs, or a non-MPI program, then you may see the
following message:

[Allinea DDT x|

& Allinea DDT couldn't find complete MPI rank information for these
processes and has assigned an arbitrary number to each process
instead. You can manually assign ranks with the "Use as MPI rank"
button inside the cross-process comparison window - check the user
guide for details. Set the environment variable
ALLINEA_IGNORE_MPI_RANK_ERRORS to 1 to avoid seeing this warning

again.

Figure 21: MPI rank error

If there is no rank (for example, if you’ve attached to a non-MPI program) then you can ignore this
message and use DDT as normal. If there is, then you can easily tell DDT what the correct rank for each
process via the Use as MPI Rank button in the Cross-Process Comparison Window—see section 8.17
Assigning MPI Ranks for details.

Note that the stdin, stderr and stdout (standard input, error and output) are not captured by DDT

(© 2017 Allinea Software Ltd. 39

Allinea Forge 7.0

if used in attaching mode. Any input/output will continue to work as it did before DDT attached to the
program (e.g. from the terminal or perhaps from a file).

5.9.4 Configuring Attaching to Remote Hosts

To attach to remote hosts in DDT, click the Choose Hosts button in the attach dialog. This will display
the list of hosts to be used for attaching.

Host Name

¥ hostl

¥| host2

¥| host3
host4

Add Remove
ok [concl

Figure 22: Choose Hosts Window

From here you can add and remove hosts, as well as unchecking hosts that you wish to temporarily
exclude.

You can also import a list of hosts from a file by clicking the Import button.

The hosts list is initially populated from the attach Hosts File, which can be configured from the Options
window: File — Options (Allinea Forge — Preferences on Mac OS X) .

Each remote host is then scanned for processes, and the result displayed in the attach window. If you
have trouble connected to remote hosts, please see section A.4 Connecting to remote programs (remote-
exec).

5.9.5 Using DDT Command-Line Arguments

As an alternative to starting DDT and using the Welcome Page, DDT can instead be instructed to attach
to running processes from the command-line.

To do so, you will need to specify a list of hostnames and process identifiers (PIDs). If a hostname is
omitted then localhost will be assumed.

(© 2017 Allinea Software Ltd. 40

Allinea Forge 7.0

The list of hostnames and PIDs can be given on the command-line using the - -attach option:

mark@holly:~$ ddt --attach=116057,node5:11352

Another command-line possibility is to specify the list of hostnames and PIDs in a file and use the - -
attach-file option:

mark@holly:~$ cat /home/mark/ddt/examples/hello.list

nodel:11057
nodel:11094
node2:11352
node2:11362
node3:12357

mark@holly:~$ ddt --attach-file=/home/mark/ddt/examples/hello.list

Inboth cases, if just a number is specified fora hostname:PID pair, then localhost: is assumed.

These command-line options work for both single- and multi-process attaching.

5.10 Starting A Job In A Queue

In most cases you can debug a job simply by putting ddt - -connect in front of the existing mpiexec
or equivalent command in your job script. If a GUI is running on the login node or it is connected to it
via the remote client, the a message will appear asking if you wish to debug this job when it starts.

See 5.2 Express Launch and 3.3 Reverse Connect for more details.

If DDT has been configured to be integrated with a queue/batch environment, as described in section A.2
Integration With Queuing Systems then you may use DDT to submit your job directly from the GUI. In
this case, a Submit button is presented on the Run Window, instead of the ordinary Run button. Clicking
Submit from the Run Window will display the queue status until your job starts. DDT will execute the
display command every second and show you the standard output. If your queue display is graphical or
interactive then you cannot use it here.

If your job does not start or you decide not to run it, click on Cancel Job. If the regular expression you
entered for getting the job id is invalid or if an error is reported then DDT will not be able to remove your
job from the queue—it is strongly recommend you check the job has been removed before submitting
another as it is possible for a forgotten job to execute on the cluster and either waste resources or interfere
with other debug sessions.

Once your job is running, it will connect to DDT and you will be able to debug it.

5.11 Using Custom MPI Scripts

On some systems a custom ‘mpirun’ replacement is used to start jobs, such as mpiexec. DDT will
normally use whatever the default for your MPI implementation is, so for MPICH 1 it would look for
mpirun and not mpiexec. This section explains how to configure DDT to use a custom mpirun
command for job start up.

There are typically two ways you might want to start jobs using a custom script, and DDT supports them
both. Firstly, you might pass all the arguments on the command-line, like this:

mpiexec -n 4 /home/mark/program/chains.exe /tmp/mydata

(© 2017 Allinea Software Ltd. 41

Allinea Forge 7.0

There are several key variables in this line that DDT can fill in for you:
1. The number of processes (4 in the above example)
2. The name of your program (/home/mark/program/chains.exe)
3. One or more arguments passed to your program (/tmp/mydata)

Everything else, like the name of the command and the format of its arguments remains constant. To use
a command like this in DDT, we adapt the queue submission system described in the previous section.
For this mpiexec example, the settings would be as shown here:

Syst n q q
EE ystem Job Submission Settings
;%T‘ Job Submission Submission template file: []
Submit command: [DEBUGGER_TAG DDT_DEBUGGER_ARGUMENTS PROGRAM_ARGUMENTS_TAG]
D Code Viewer o
Regexp for job id: []
@ Appearance Cancel command: []

Display command: []

_é Vislt Edit Queue Parameters...

+| Quick Restart What is Quick Restart?

(o) o

Figure 23: DDT Using Custom MPI Scripts

As you can see, most of the settings are left blank. Let’s look at the differences between the Submit
Command in DDT and what you would type at the command-line:

1. The number of processes is replaced with NUM_PROCS_TAG
2. The name of the program is replaced by the full path to ddt -debugger
3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG

Note, it is NOT necessary to specify the program name here. DDT takes care of that during its own
startup process. The important thing is to make sure your MPI implementation starts ddt -debugger
instead of your program, but with the same options.

The second way you might start a job using a custom mpirun replacement is with a settings file:

mpiexec -config /home/mark/myapp.nodespec

(© 2017 Allinea Software Ltd. 42

Allinea Forge 7.0

where myfile.nodespec might contains something like this:

comp00@ comp0l comp02 comp03 : /home/mark/program/chains.exe /tmp/
mydata

DDT can automatically generate simple configuration files like this every time you run your program—you
just need to specify a template file. For the above example, the template filemyfile.ddt would contain
the following:

comp@O compO@1l compO2 compO3 : DDTPATH_TAG/bin/ddt-debugger
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

This follows the same replacement rules described above and in detail in section A.2 Integration With
Queuing Systems. The options settings for this example might be:

System Job Submission Settings

o9 = Job Submission Submission template file: [;‘home;‘user{ddt}‘tempIates,.fmytemplate.ddt]
"Q

Submit command: []
D Code Viewer L

Regexp for job id: []
@ Appearance Cancel command: []

Display command: []
_é Visit Edit Queue Parameters..

+| Quick Restart What is Quick Restart?

o o |

Figure 24: DDT Using Substitute MPI Commands

Note the Submit Command and the Submission Template File in particular. DDT will create a new file and
append it to the submit command before executing it. So, in this case what would actually be executed
might be mpiexec -config /tmp/ddt-temp-0112 or similar. Therefore, any argument like
-config must be last on the line, because DDT will add a file name to the end of the line. Other
arguments, if there are any, can come first.

We recommend reading the section on queue submission, as there are many features described there that
might be useful to you if your system uses a non-standard start up command. If you do use a non-standard
command, please email us at support@allinea.com and let us know about it—you might find the next
version supports it out-of-the-box!

(© 2017 Allinea Software Ltd. 43

mailto:support@allinea.com

Allinea Forge 7.0

5.12 Starting DDT From A Job Script

The usual way of debugging a program with DDT in a queue/batch environment is to use DDT with
Reverse Connect (see 3.3 Reverse Connect for more details) and let it connect back from inside the
queue to the GUI.

To do this replace your usual program invocation with a DDT - -connect command such as

ddt --connect --start MPIEXEC -n NPROCS PROGRAM [ARGUMENTS]

or

ddt --connect --start --once --np=NPROCS -- PROGRAM [ARGUMENTS]

where MPTEXEC is the MPI launch command, NPROCS is the number of processes to start, PROGRAM
is the program to run, and ARGUMENTS are the arguments to the program. The - -once argument tells
DDT to exit when the session ends.

The alternative to Reverse Connect for debugging a program in a queue/batch environment is to con-
figure DDT to submit the program to the queue for you (See section 5.10 Starting A Job In A Queue
above).

Some users may wish to start DDT itself from a job script that is submitted to the queue/batch environ-
ment. To do this:

1. Configure DDT with the correct MPI implementation.
2. Disable queue submission in the DDT options.

3. Create a job script that starts DDT using a command such as:

ddt --start MPIEXEC -n NPROCS PROGRAM [ARGUMENTS]

or
ddt --start --no-queue --once --np=NPROCS -- PROGRAM [
ARGUMENTS]
where MPTEXEC is the MPI launch command, NPROCS is the number of processes to start, PROGRAM
is the program to run, and ARGUMENTS are the arguments to the program.

4. Submit the job script to the queue. The - -once argument tells DDT to exit when the session ends.

5.13 Attaching via gdbserver

DDT can attach to debugging sessions that have been started by gdbserver.

This is typically used for debugging embedded devices only. This should be considered as an expert
mode and would not normally be used to debug an application running on a server or workstation.

To prepare for using this mode, you must first start a gdbserver on the target device. Please see https:
//sourceware.org/gdb/onlinedocs/gdb/Server.html for further details—invocation may be system depen-
dent.

You may then attach to a running application either via the command line or the user interface.
To attach via the command line use:

ddt --attach-gdbserver=host:port target-executable

(© 2017 Allinea Software Ltd. 44

https://sourceware.org/gdb/onlinedocs/gdb/Server.html
https://sourceware.org/gdb/onlinedocs/gdb/Server.html

Allinea Forge 7.0

Note that the arguments are not optional.

To attach via the user interface, select the Attach dialog on DDT’s welcome page. Select the GDB Server
tab and substitute the appropriate settings.

If the gdbserver has been used to launch an application, then it will have been stopped before starting the
user code. In this case, add a breakpoint in the main function using the Add Breakpoint button, and then
play until this is reached. After this point is reached, source code will be displayed.

(© 2017 Allinea Software Ltd. 45

Allinea Forge 7.0

6 Overview

DDT uses a tabbed-document interface—a method of presenting multiple documents that is familiar from
many present day applications. This allows you to have many source files open, and to view one (or two,
if the Source Code Viewer is ‘split’) in the full workspace area.

Each component of DDT (labelled and described in the key) is a dockable window, which may be dragged
around by a handle (usually on the top or left-hand edge). Components can also be double-clicked, or
dragged outside of DDT, to form a new window. You can hide or show most of the components using the
View menu. The screen shot shows the default DDT layout.

Allinea DDT - Allinea Forge 5.1

Fle Edit View Control Tools Window Help

s B8 S K ELEEIE ! A 2]

Current Group: [% |Focus on current: @ Group () Process () Thread | | Step Threads Together
512 processes (0-511) Paused: 512 Playing: 0 Finished: 0
256 processes (0,2,4,6,8,10,12,14,16,18,20,... (256 total)) Paused: 256 Playing: 0 Finished: 0
171 processes (0,3,6,9.12,15,18,21,24.27,30.... (171 total) Paused: 171 Playing: 0 Finished: 0

Create Group

Project Files B® | ¢ helloc X ¢ hello.c X Locals | currentLine(s) | current stack |
Search (Ctrl+K) e LS beinghatched = 1; leel ol
e Variable Name Value -
[+ test.anotherList.subList.charStar = "hello"; arge —
test.c = '
£ c = +argv Ox7fffifdcse o
. beinghateh -beingwatched —0
5} send-rec; +bigArray
dest —0
func2() - int 4 dynamicArray 0x818020
func3() : void
+-environ Ox7fffffffdea0
= main(int argc, char++ ° =
[« I IDINAKII [[*) Type: none selected
Input/Output | Breakpoints | Watchpoints | Parallel Stack View | Tracepoints | Tracepoint Output | Logbook | Evaluate @&
Faralle| Stack View e [| Expression Value
Processes Function ~ i-bigArray(3] —80003
511 mmm—main (hello.c:L41) s myrank ! (o]
1 man (hello.c.148) e x+y —10012

Allinea Forge 5.1 758309d9d9ea+ Jun 23 2015

Figure 25: DDT Main Window

Key

(1) Menu Bar

(2) Process Controls

(3) Process Groups

(4) Find File or Function

(5) Project Files

(6) Source Code

(7) Variables and Stack of Current Process/Thread
(8) Parallel Stack, IO and Breakpoints
(9) Evaluate Window

(10) Status Bar

Please note that on some platforms, the default screen size can be insufficient to display the status bar—if
this occurs, you should expand the DDT window until DDT is completely visible.

6.1 Saving And Loading Sessions

Most of the user-modified parameters and windows are saved by right-clicking and selecting a save option
in the corresponding window.

(© 2017 Allinea Software Ltd. 46

Allinea Forge 7.0

However, DDT also has the ability to load and save all these options concurrently to minimize the incon-
venience in restarting sessions. Saving the session stores such things as Process Groups, the contents of
the Evaluate window and more. This ability makes it easy to debug code with the same parameters set
time and time again.

To save a session simply use the Save Session option from the File menu. Enter a file name (or select
an existing file) for the save file and click OK. To load a session again simply choose the Load Session
option from the File menu, choose the correct file and click OK.

6.2 Source Code

Allinea Forge provides code viewing, editing and rebuilding features. It also integrates with the Git,
Subversion and Mercurial version control systems and provides static analysis to automatically detect
many classes of common errors.

The code editing and rebuilding capabilities are not designed for developing applications from scratch,
but they are designed to fit into existing debugging or profiling sessions that are running on a current
executable.

The same capabilities are available for source code whether running remotely (using the remote client)
or whether connected directly to your system.

6.2.1 Viewing

When DDT begins a session, source code is automatically found from the information compiled in the
executable.

Source and header files found in the executable are reconciled with the files present on the front-end
server, and displayed in a simple tree view within the Project Files tab of the Project Navigator window.
Source files can be loaded for viewing by clicking on the file name.

Whenever a selected process is stopped, the Source Code Viewer will automatically leap to the correct
file and line, if the source is available.

The source code viewer supports automatic colour syntax highlighting for C and Fortran.

You can hide functions or subroutines you are not interested in by clicking the—glyph next to the first
line of the function. This will collapse the function. Simply click the + glyph to expand the function
again.

6.2.2 Editing

Source code may be edited in the code viewer windows of DDT. The actions Undo, Redo, Cut, Copy,
Paste, Select all, Go to line, Find, Find next, Find previous, and Find in files are available from the Edit
menu. Files may be opened, saved, reverted and closed from the File menu. Note that information from
DDT will not match edited source files until the changes are saved, the binary is rebuilt, and the session
restarted.

If the currently selected file has an associated header or source code file, it can be open by right-clicking
in the editor and choosing Open <filename>.<extension>. There is a global shortcut on function key F4,
available in the Edit menu as Switch Header/Source option.

To edit a source file in an external editor, right-click the editor for the file and choose Open in external
editor. To change the editor used, or if the file doesn’t open with the default settings, open the Options

(© 2017 Allinea Software Ltd. 47

Allinea Forge 7.0

window by selecting File — Options (Allinea Forge — Preferences on Mac OS X) and enter the path to
the preferred editor in the Editor box, e.g. /usr/bin/gedit.

If a file is edited the following warning will be displayed at the top of the editor.

M This file has been edited.

Figure 26: File Edited Warning

This is merely to warn that the source code shown is not the source that produced the currently executing
binary.

6.2.3 Rebuilding and Restarting

If source files are edited, the changes will not take effect until the binary is rebuilt and the session restarted.
To configure the build command choose File — Configure Build. .., enter a build command and a direc-
tory in which to run the command, and click Apply. To issue the build command choose File — Build,
or press Ctrl+B (Cmd+B on Mac OS X). When a build is issued the Build Output view is shown. Once a
rebuild succeeds it is recommended to restart the session with the new build by choosing File — Restart
Session.

6.2.4 Committing changes

Changes to source files may be committed using one of Git, Mercurial, and Subversion. To commit
changes choose File — Commit..., enter a commit message to the resulting dialog and click the commit
button.

6.3 Project Files

The Project Files tree shows a list of source files for your program. Click on a file in the tree to open it
in the Code Viewer. You may also expand a source file to see a list of functions / procedures defined in
that source file (C / C++ / Fortran only).

6.3.1 Application | External Code

DDT automatically splits your source code into Application Code (source code from your application
itself) and External Code (code from third party libraries). This allows you to quickly distinguish between
your own code and, for example, third party libraries.

You can control exactly which directories are considered to contain Application Code using the Applica-
tion / External Directories window. Right-click on the Project Files tree to open the window.

The checked directories are the directories containing Application Code. Once you have configured them
to your satisfaction click Ok to update the Project Files tree.

6.4 Finding Lost Source Files

On some platforms, not all source files are found automatically. This can also occur, for example, if the
executable or source files have been moved since compilation. Extra directories to search for source files

(© 2017 Allinea Software Ltd. 48

Allinea Forge 7.0

can be added by right-clicking whilst in the Project Files tab, and selecting Add/view Source Directory(s).
You can also specify extra source directories on the command line using the - - source - dirs command
line argument (separate each directory with a colon).

It is also possible to add an individual file—if, for example, this file has moved since compilation or is
on a different (but visible) file system—by right-clicking in the Project Files tab and selecting the Add
File option.

Any directories or files you have added are saved and restored when you use the Save Session and Load
Session commands inside the File menu. If DDT doesn’t find the sources for your project, you might
find these commands save you a lot of unnecessary clicking.

6.5 Finding Code Or Variables
6.5.1 Find Files or Functions

The Find Files Or Functions box appears above the source file tree. You can type the name of a file,
function, or other source code element (such as classes, Fortran modules, etc) in this box to search for
that item in the source tree. You can also type just part of a name to see all the items whose name contains
the text you typed. Double-click on a result to jump to the corresponding source code location for that
item.

Find Files Or Functions x

3 Matches Found

MName

Fextreme.fa0
[extremes

¥ Type
File
Function

@ extremes_mod Module

Path
/homefuser/codel/extreme.f90
[(homefusercode/extreme.f90
/homefusertode/extreme.f90

oo | |

Figure 27: Find Files Or Functions dialog

6.5.2 Find

The Find menu item can be found in the Edit menu, and can be used to find occurrences of an expression
in the currently visible source file.

DDT will search from the current cursor position for the next or previous occurrence of the search term.
Click on the magnifying glass icon for more search options.

Case Sensitive: When checked, DDT will perform a case sensitive search (e.g. He110 will not match
hello).

Whole Words Only: When checked, DDT will only match your search term against whole ‘words’ in
the source file. For example He1l1lo would not match Hel1loWor 1d while searching for whole words
only.

Use Regular Expressions: When this is checked, your search may use Perl style regular expressions.

(© 2017 Allinea Software Ltd. 49

Allinea Forge 7.0

6.5.3 Find in Files

The Find In Files window can be found in the Edit menu, and can be used to search all source and header
files associated with your program. The search results are listed and can be clicked to display the file and
line number in the main Source Code Viewer; this can be of particular use for setting a breakpoint at a
function.

Eind:[iarr2d| v” Search]
Options

Case sensitive Regular Expression Whole words only

Search Results:

Name Line Linein file [«]
edit_variables.f30 55 INTEGER, TARGET :: iarr2d(-1:1,-2:2)
edit_variables.f90 67 | pld => iarr2d(1,0:)

edit_variables.f90 72 iarr2d(:,:) = -1
external mod.f90 22 INTEGER :: em iarr2d(-1:1,-2:2)
external_mod.f90 28 INTEGER :: iarr2d(-1:1,-2:2)
external_mod.f80 36 INTEGER :: iarr2d(-1:1,-2:2)
test_linear.f90 26 INTEGER :: im_iarr2d(-1:1,-2:2)
test_linear.f90 35 INTEGER :: iarr2d(-1:1,-2:2)
test_linear.fo0 43 INTEGER :: iarr2d(-1:1,-2:2)
test_linear.f90 74 im_iarr2d, &

test linear.f90 a0 em iarr2d, &

test linear.f90 111 INTEGER :: iarr2d(-1
test_linear.f90 119 INTEGER :: iarr2d(-1
test linear.f90 135 INTEGER :: | iarr2d(-1
(ETIIN

Figure 28: Find in Files dialog

:1,-2:2)
:1,-2:2)
:1,-2:2)

(4]

Case sensitive: When checked, DDT will perform a case sensitive search (e.g. He110 will not match
hello).

Whole words only: When checked, DDT will only match your search term against whole ‘words’ in
the source file. For example Hel1lo would not match Hel1loWor 1d while searching for whole words
only.

Regular Expression: When checked, DDT will interpret the search term as a regular expression rather
than a fixed string. The syntax of the regular expression is identical to that described in the appendix H.6
Job ID Regular Expression.

6.6 Jump To Line / Jump To Function

DDT has a jump to line function which enables the user to go directly to a line of code. This is found in
the Edit menu. A window will appear in the centre of your screen. Enter the line number you wish to see
and click OK. This will take you to the correct line providing that you entered a line that exists. You can
use the hotkey CTRL-G to access this function quickly.

DDT also allows you to jump directly to the implementation of a function. In the Project Files tab of
the Project Navigator window on the left side of the main screen you should see small + symbols next to
each file:

(© 2017 Allinea Software Ltd. 50

Allinea Forge 7.0

-- @ Application Code
/
=+ 7 Sources
-+ £ hello.c
=i funcl : void
=l func? :int
= func3 : void
=l main(int argc, char** an

[4] [D

Figure 29: Function Listing

Clicking on a the + will display a list of the functions in that file. Clicking on any function will display
it in the Source Code viewer.

6.7 Static Analysis

Static analysis is a powerful companion to debugging. Whilst Allinea DDT enables the user to discover
errors by code and state inspection along with automatic error detection components such as memory
debugging, static analysis inspects the source code and attempts to identify errors that can be detected
from the source alone—independently of the compiler and actual process state.

Allinea DDT includes the static analysis tools cppcheck and ftnchek. These will by default auto-
matically examines source files as they are loaded and display a warning symbol if errors are detected.
Typical errors include:

o Buffer overflows—accessing beyond the bounds of heap or stack arrays

e Memory leaks—allocating memory within a function and there being a path through the function
which does not deallocate the memory and the pointer is not assigned to any externally visible
variable, nor returned.

e Unused variables, and also use of variables without initialization in some cases.

181

182 return 0;

983 Y} /* main */

error Memory leak: t2
[4]

rror Memory leak: dynamicArray |
| Wat_e, it Y T y] Tracepo

Figure 30: Static Analysis Error Annotation

Static analysis is not guaranteed to detect all, or any, errors, and an absence of warning triangles should

(© 2017 Allinea Software Ltd. 51

Allinea Forge 7.0

not be considered to be an absence of bugs.

6.8 Version Control Information

The version control integration in DDT and MAP allows users to see line-by-line information from Git,
Mercurial or Subversion next to source files. Information is colour-coded to indicate the age of the source
line.

File View Control Search Tools Window Help

sl A A EEE ! O

Focus on current: @ Process Thread Step Threads Together
®
Project Files @@ | ¢ hello.c 3 Locals | Current Line(s) | Current Stack
caarch (CHrl+K ¢. 4 years ago = T (x=0;x<10000; x++) | Current Line(s) 6
search (ctrl ® f=4
- - 4 years age {
= & Application Code 4 years ago dynamicArray[x] = x%10; Variable Name Value
i ; 4 years ago 3 } my_rank o
A 5 years ago
= B Sources 4 years ago
B hello.c 9 years ago -
a1 funcl : void i\n (unsignel
1 func2 :int
=1 func3 : void 4 years ago

& mainint arge, char ar & YSars ago
= 4 years agoe

+ @ External Code 4 years agoe

4 vears ago
ol

€ hello.c %

9 years ago Bint
9 years ago
4 years ago
4 years ago A -
4 years ago
4 years ago

(]

4 years ago
4 years ago
4 years ago
4 years ago A&

tag = 50;
message[100];

bighrray[
at tabl

0001 ;

(T

4 vears aoq £1 [H
(€1l [[v] L I [*] Type: none selected
Input/Output | Breakpoints | Watchpoints | Stacks | Tracepoints | Tracepoint Output | Evaluate @®
Stacks @ 8 | Expression Value
Function <@
main (hello.c:85)
Ready

Figure 31: DDT running with Version Control Information enabled

To enable select the Version Control Information option from the View menu. When enabled columns to
left of source code viewers are shown. In these columns are displayed how long ago the line was added/-
modified. Each line in the information column is highlighted in a colour to indicate its age. The lines
changed in the current revision are highlighted in red. Where available lines with changes not committed
are highlighted in purple. All other lines are highlighted with a blend of transparent blue and opaque
green where blue indicates old and green young. Currently uncommitted changes are only supported for
Git. Allinea Forge will not show ANY version control information for files with uncommitted changes
when using Mercurial or Subversion.
years ago

YEars ago 3 printf ("my rank is %d\n", my_rank);
ears f

2
4
9

changeset: 1793:e26cd9847e85
user: e
date: Wed May 14 17:26:37 2003 +0000

summary: stuff for walk through

years a
years a
years a
a
a

years
years
years a
years ago 1
YyEars ago 106 B
years ago 1

L e R LI

Figure 32: Version Control Information—Tooltips

(© 2017 Allinea Software Ltd. 52

Allinea Forge 7.0

A folded block of code displays the annotation for the most recently modified line in the block.

Hovering the cursor over the information column reveals a tool-tip containing a preview of the commit
message for the commit that last changed the line.

[+ Copy Commit Message |E; .
int dest; * Rank of receiver #

Figure 33: Version Control Information—Context Menu

To copy the commit message right-click the column on the desired row and from the menu select Copy
Commit Message.

See also Version Control Breakpoints and Tracepoints.

(© 2017 Allinea Software Ltd. 53

Allinea Forge 7.0

7 Controlling Program Execution

Whether debugging a multi-process or a single process code, the mechanisms for controlling program
execution are very similar.

In multi-process mode, most of the features described in this section are applied using Process Groups,
which we describe now. For single process mode, the commands and behaviours are identical, but apply
to only a single process—freeing the user from concerns about process groups.

7.1 Process Control And Process Groups

MPI programs are designed to run as more than one process and can span many machines. DDT allows
you to group these processes so that actions can be performed on more than one process at a time. The
status of processes can be seen at a glance by looking at the Process Group Viewer.

The Process Group Viewer is (by default) at the top of the screen with multi-coloured rows. Each row re-
lates to a group of processes and operations can be performed on the currently highlighted group (e.g. play-
ing, pausing and stepping) by clicking on the toolbar buttons. Switch between groups by clicking on them
or their processes—the highlighted group is indicated by a lighter shade. Groups can be created, deleted,
or modified by the user at any time, with the exception of the All group, which cannot be modified.

Groups are added by clicking on the Create Group button or from a context-sensitive menu that appears
when you right-click on the process group widget. This menu can also be used to rename groups, delete
individual processes from a group and jump to the current position of a process in the code viewer.
You can load and save the current groups to a file, and you can create sub-groups from the processes
currently playing, paused or finished. You can even create a sub-group excluding the members of another
group—for example, to take the complement of the Workers group, select the All group and choose Copy,
but without Workers.

You can also use the context menu to switch between the two different ways of viewing the list of groups
in DDT—the detailed view and the summary view:

7.1.1 Detailed View

The detailed view is ideal for working with smaller numbers of processes. If your program has less than
32 processes, DDT will default to the detailed view. You can switch to this view using the context menu
if you wish.

FOEG
Rook III
EERlEx

Create Group

Figure 34: The Detailed Process Group View

In the detailed view, each process is represented by a square containing its MPI rank (0 through n-1).
The squares are colour-coded; red for a paused process, green for a playing process and grey for a fin-
ished/dead process. Selected processes are highlighted with a lighter shade of their colour and the current
process also has a dashed border.

(© 2017 Allinea Software Ltd. 54

Allinea Forge 7.0

When a single process is selected the local variables are displayed in the Variable Viewer and displayed
expressions are evaluated. You can make the Source Code Viewer jump to the file and line for the current
stack frame (if available) by double-clicking on a process.

To copy processes from one group to another, simply click and drag the processes. To delete a process,
press the delete key. When modifying groups it is useful to select more than one process by holding down
one or more of the following:

Key Description

Control | Click to add/remove process from selection
Shift Click to select a range of processes

Alt Click to select an area of processes

Note: Some window managers (such as KDE) use Alt and drag to move a window—you must disable this
feature in your window manager if you wish to use the DDT's area select.

7.1.2 Summary View

The summary view is ideal for working with moderate to huge numbers of processes. If your program
has 32 processes or more, DDT will default to this view. You can switch to this view using the context
menu if you wish.

All 4 processes (0-3) Paused: 3 Playing: 1

Rook 1 process (0) Playing: 1

Workers 3 processes (1-3) Paused: 3 Playing: 0 Finished: 0

Currently selected: L1

Create Group

Figure 35: The Summary Process Group View

In the summary view, individual processes are not shown. Instead, for each group, DDT shows:
e The number of processes in the group.

e The processes belonging that group—here 1-2048 means processes 1 through 2048 inclusive, and
1-10, 12-1024 means processes 1-10 and processes 12—-1024 (but not process 11). If this list
becomes too long, it will be truncated with a ‘...”. Hovering the mouse over the list will show
more details.

e The number of processes in each state (playing, paused or finished). Hovering the mouse over each
state will show a list of the processes currently in that state.

e The rank of the currently selected process. You can change the current process by clicking here,
typing a new rank and pressing Enter. Only ranks belonging to the current group will be accepted.

The Show processes toggle button allows you to switch a single group into the detailed view and back
again—handy if you’re debugging a 2048 process program but have narrowed the problem down to just
12 processes, which you’ve put in a group.

(© 2017 Allinea Software Ltd. 55

Allinea Forge 7.0

7.2 Focus Control

Focus on current: @ Group Process Thread

Figure 36: Focus options

The focus control allows you to focus on individual processes or threads as well as process groups. When
focused on a particular process or thread, actions such as stepping, playing/pausing, adding breakpoints
etc. will only apply to that process/thread rather than the entire group. In addition, the DDT GUI will
change depending on whether you’re focused on group, process or thread. This allows DDT to display
more relevant information about your currently focused object.

7.2.1 Overview of changing focus
Focusing in DDT affects a number of different controls in the DDT main window. These are briefly
described below:

Note: Focus controls do not affect DDT windows such as the Multi Dimensional Array Viewer, Memory
Debugger, Cross Process Comparison etc.

7.2.2 Process Group Viewer

The changes to the process group viewer amongst the most obvious changes to the DDT GUI. When
focus on current group is selected you will see your currently created process groups. When switching
to focus on current process or thread you will see the view change to show the processes in the currently
selected group, with their corresponding threads.

tat CEEE
rocessosunesis MG

Figure 37: The Detailed Process Group View Focused on a Process

If there are 32 threads or more, DDT will default to showing the threads using a summary view (as in the
Process Group View). The view mode can also be changed using the context menu.

During focus on process, a tooltip will be shown that identifies the OpenMP thread ID of each thread, if
the value exists.

7.2.3 Breakpoints

The breakpoints tab in DDT will be filtered to only display breakpoints relevant to your current group,
process, thread. When focused on a process, The breakpoint tab will display which thread the break-
point belongs to. If you are focused on a group, the tab will display both the process and the thread the
breakpoint belongs to.

(© 2017 Allinea Software Ltd. 56

Allinea Forge 7.0

7.2.4 Code Viewer

The code viewer in DDT shows a stack back trace of where each thread is in the call stack. This will also
be filtered by the currently focused item, for example when focused on a particular process, you will only
see the back trace for the threads in that process.

Also, when adding breakpoints using the code viewer, they will be added for the group, process or thread
that is currently focused.

7.2.5 Parallel Stack View

The parallel stack view can also be filtered by focusing on a particular process group, process or thread.

7.2.6 Playing and Stepping

The behaviour of playing, stepping and the Run to here feature are also affected by your currently focused
item. When focused on a process group, the entire group will be affected, whereas focusing on a thread
will mean that only current thread will be executed. The same goes for processes, but with an additional
option which is explained below.

7.2.7 Step Threads Together

The step threads together feature in DDT is only available when focused on process. If this option is
enabled then DDT will attempt to synchronise the threads in the current process when performing actions
such as stepping, pausing and using Run to here.

For example, if you have a process with 2 threads and you choose Run to here, DDT will pause your
program when either of the threads reaches the specified line. If Step threads together is selected DDT
will attempt to play both of the threads to the specified line before pausing the program.

Important note: You should always use Step threads together and Run to here to enter or move within
OpenMP parallel regions. With many compilers it is also advisable to use Step threads together when
leaving a parallel region, otherwise threads can get ‘left behind’ inside system-specific locking libraries
and may not enter the next parallel region on the first attempt.

7.2.8 Stepping Threads Window

When using the step threads together feature it is not always possible for all threads to synchronise at
their target. There are two main reasons for this:

1. One or more threads may branch into a different section of code (and hence never reach the target).
This is especially common in OpenMP codes, where worker threads are created and remain in
holding functions during sequential regions.

2. As most of DDT’s supported debug interfaces cannot play arbitrary groups of threads together,
DDT simulates this behaviour by playing each thread in turn. This is usually not a problem, but
can be if, for example, thread 1 is playing, but waiting for thread 2 (which is not currently playing).
DDT will attempt to resolve this automatically but cannot always do so.

If either of these conditions occur, the Stepping Threads Window will appear, displaying the threads
which have not yet reached their target.

(© 2017 Allinea Software Ltd. 57

Allinea Forge 7.0

DDT is waiting for thread 2 to finish before it
can step the rest. You can wait, skip it, or try
it again after the other threads have stepped.

Thread Status
thread 0 done
thread 1 skipped

thread 2 running

thread 3 waiting

Skip | Try Later | Skip All |

Figure 38: The Stepping Threads Window

The stepping threads window also displays the status of threads, which may be one of the following:

e Done: The thread has reached it target (and has been paused).

e Skipped: The thread has been skipped (and paused). DDT will no longer wait for it to reach its
target.

e Playing: This is the thread that is currently being executed. Only one thread may be playing at a
time while the Stepping Threads Window is open.

e Waiting: The thread is currently awaiting execution. When the currently playing thread is done
or has been skipped, the highest waiting thread in the list will be executed.

The stepping threads window also lets you interact with the threads with the following options:

e Skip: DDT will skip and pause the currently playing thread. If this is the last waiting thread the
window will be closed.

e Try Later: The currently playing thread will be paused, and added to the bottom of the list of
threads to be retried later. This is useful if you have threads which are waiting on each other.

o Skip All: This will skip (and pause) all of the threads and close the window.

(© 2017 Allinea Software Ltd. 58

Allinea Forge 7.0

7.3 Hotkeys

DDT comes with a pre-defined set of hotkeys to enable easy control of your debugging. All the features
you see on the toolbar and several of the more popular functions from the menus have hotkeys assigned
to them. Using the hotkeys will speed up day to day use of DDT and it is a good idea to try to memorize

these.

Key Function
F9 Play

F10 Pause

F5 Step into
F8 Step over
F6 Step out

CTRL-Shift-D

Down stack frame

CTRL-Shift-U

Up stack frame

CTRL-Shift-B

Bottom stack frame

CTRL-Shift-A

Align stack frames with current

CTRL-G

Go to line number

CTRL-F

Find

7.4 Starting, Stopping and Restarting a Program

The File menu can be accessed at almost any time while DDT is running. If a program is running you can
end it and run it again or run another program. When DDT’s start up process is complete your program
should automatically stop either at the main function for non-MPI codes, or at the MPI_Init function
for MPI.

When a job has run to the end DDT will show a window box asking if you wish to restart the job. If you
select yes then DDT will kill any remaining processes and clear up the temporary files and then restart
the session from scratch with the same program settings.

When ending a job, DDT will attempt to ensure that all the processes are shut down and clear up any
temporary files. If this fails for any reason you may have to manually kil1l your processes using kill, or
a method provided by your MPI implementation such as 1lamclean for LAM/MPI.

7.5 Stepping Through A Program

To continue the program playing click Play/Continue ¥ and to stop it at any time click Pause [i .For
multi-process DDT these start/stop all the processes in the current group (see Process Control and Process
Groups).

Like many other debuggers there are three different types of step available. The first is Step Into that will
move to the next line of source code unless there is a function call in which case it will step to the first
line of that function. The second is Step Over that moves to the next line of source code in the bottom
stack frame. Finally, Step Out will execute the rest of the function and then stop on the next line in the
stack frame above. The return value of the function is displayed in the Locals view. When using Step
Out be careful not to try and step out of the main function, as doing this will end your program.

(© 2017 Allinea Software Ltd. 59

Allinea Forge 7.0

7.6 Stop Messages
In certain circumstances your program may be automatically paused by the debugger. There are five
reasons your program may be paused in this way:

1. Tt hit one of DDT’s default breakpoints (e.g. exit or abort). See section 7.11 Default Break-
points for more information on default breakpoints.

It hit a user-defined breakpoint (a breakpoint shown in the Breakpoints view).
The value of a watched variable changed.

It was sent a signal. See section 7.21 Signal Handling for more information on signals.

o > W

It encountered a Memory Debugging error. See section 12.4 Pointer Error Detection and Validity
Checking for more information on Memory Debugging errors.

DDT will display a message telling you exactly why the program was paused. The text may be copied
to the clipboard by selecting it with the mouse, then right-clicking and selecting Copy. You may want to
suppress these messages in certain circumstances, for example if you are playing from one breakpoint to
another. Use the Control — Messages menu to enable/disable stop messages.

7.7 Setting Breakpoints
7.7.1 Using the Source Code Viewer

First locate the position in your code that you want to place a breakpoint at. If you have a lot of source
code and wish to search for a particular function you can use the Find/Find In Files window. Clicking the
right mouse button in the Source Code Viewer displays a menu showing several options, including one to
add or remove a breakpoint. In multi-process mode this will set the breakpoint for every member of the
current group. Breakpoints may also be added by left clicking margin to the left of the line number.

Every breakpoint is listed under the breakpoints tab towards the bottom of DDT’s window.

If you add a breakpoint at a location where there is no executable code, DDT will highlight the line
you selected as having a breakpoint. However when hitting the breakpoint, DDT will stop at the next
executable line of code.

7.7.2 Using the Add Breakpoint Window

You can also add a breakpoint by clicking the Add Breakpoint 4 icon in the toolbar. This will open the
Add Breakpoint window.

(© 2017 Allinea Software Ltd. 60

Allinea Forge 7.0

Add Breakpoint X

Location:

@ Line File: fuser/ddt/fexamples/hello.c
Line Number: E

Function

Applies To:

Process Group: |All s
Process: All E
Thread: =

Hit Limits:

Start on the n-th pass:

Trigger every n-th pass: | 1

Stop after n hits: E
Condition:
Language: s

[add || cancel |

Figure 39: The Add Breakpoint window

You may wish to add a breakpoint in a function for which you do not have any source code: for example
inmalloc, exit, or printf from the standard system libraries. Select the Function radio button and
enter the name of the function in the box next to it.

You can specify what group/process/thread you want the breakpoint to apply in the Applies To section.
You may also make the breakpoint conditional by checking the Condition check box and entering a
condition in the box.

7.7.3 Pending Breakpoints

Note: This feature is not supported on all platforms.

If you try to add a breakpoint on a function that is not defined, DDT will ask if you want to add it anyway.
If you click Yes the breakpoint will be applied to any shared objects that are loaded in the future.

(© 2017 Allinea Software Ltd. 61

Allinea Forge 7.0

7.7.4 Conditional Breakpoints

Breakpoints aB®E
Processes Threads File Line Function Condition Start After Trigger Every Stop After Full path

¥ process 0 all hello.c 133 0 1 - /home/user/ddt/examples/hello.c

v Al all hello.c 148 my_rank == 3 0 1 - /home/user/ddt/examples/hello.c

Figure 40: The Breakpoints Table

Select the breakpoints tab to view all the breakpoints in your program. You may add a condition to any
of them by clicking on the condition cell in the breakpoint table and entering an expression that evaluates
to true or false. Each time a process (in the group the breakpoint is set for) passes this breakpoint it will
evaluate the condition and break only if it returns true (typically any non-zero value). You can drag an
expression from the Evaluate window into the condition cell for the breakpoint and this will be set as the
condition automatically.

Breakpoints @®
Processes Threads File Line Function Condition Start After Trigger Every Stop After Full path

v process 0 all hello.f 55 0 1 - /homefuser/ddt/examples/hello.f

v Al all hello.f 49 my_rank .EQ. 3 0 1 - fhomefuser/ddt/examples/hello.f

Figure 41: Conditional Breakpoints In Fortran

Conditions may be any valid expression for the language of the file containing the breakpoint. This
includes other variables in your program and function calls. You may want to avoid using functions with
side effects as these will be executed every time the breakpoint is reached.

The expression evaluation may be more pedantic than your compiler; to ensure the correct interpretation
of e.g. boolean operations it is advisable to bracket them amply.

7.8 Suspending Breakpoints

A breakpoint can be temporarily deactivated and reactivated by checking/unchecking the activated col-
umn in the breakpoints panel.

7.9 Deleting A Breakpoint

Breakpoints may be deleted by right-clicking on the breakpoint in the breakpoints panel, or by right-
clicking at the file/line of the breakpoint whilst in the correct process group and right-clicking and select-
ing delete breakpoint. They may also be deleted by left clicking the breakpoint icon in the margin to the
left of the line number in the code viewer.

(© 2017 Allinea Software Ltd. 62

Allinea Forge 7.0

7.10 Loading And Saving Breakpoints

To load or save the breakpoints in a session right-click in the breakpoint panel and select the load/save
option. Breakpoints will also be loaded and saved as part of the load/save session.

7.11 Default Breakpoints

DDT has a number of default breakpoints that will stop your program under certain conditions which
are described below. You may enable/disable these while your program is running using the Control —
Default Breakpoints menu.

e Stop at exit/_exit

When enabled, DDT will pause your program as it is about to end under normal exit conditions.
DDT will pause both before and after any exit handlers have been executed. (Disabled by default.)

e Stop at abort/fatal MPI Error

When enabled, DDT will pause your program as it about to end after an error has been triggered.
This includes MPI and non-MPI errors. (Enabled by default.)

e Stop on throw (C++ exceptions)

When enabled, DDT will pause your program whenever an exception is thrown (regardless of
whether or not it will be caught). Due to the nature of C++ exception handling, you may not be
able to step your program properly at this point. Instead, you should play your program or use the
Run to here feature in DDT. (Disabled by default.)

e Stop on catch (C++ exceptions)

As above, but triggered when your program catches a thrown exception. Again, you may have
trouble stepping your program. (Disabled by default.)

e Stop at fork

DDT will stop whenever your program forks (i.e. calls the fork system call to create a copy of the
current process). The new process is added to your existing DDT session and can be debugged
along with the original process.

e Stop at exec

When your program calls the exec system call, DDT will stop at the main function (or program
body for Fortran) of the new executable.

e Stop on CUDA kernel launch

When debugging CUDA GPU code, this will pause your program at the entry point of each kernel
launch.

e Stop on Xeon Phi offload

Stops your program when an offload process is started and attaches to the offload process. You can
then set breakpoints in offloaded code.

7.12 Synchronizing Processes

If the processes in a process group are stopped at different points in the code and you wish to re-synchronize
them to a particular line of code this can be done by right-clicking on the line at which you wish to syn-

(© 2017 Allinea Software Ltd. 63

Allinea Forge 7.0

chronize them to and selecting Run To Here. This effectively plays all the processes in the selected group
and puts a break point at the line at which you choose to synchronize the processes at, ignoring any
breakpoints that the processes may encounter before they have synchronized at the specified line.

If you choose to synchronize your code at a point where all processes do not reach then the processes that
cannot get to this point will play to the end.

Note: Though this ignores breakpoints while synchronizing the groups it will not actually remove the
breakpoints.

Note: If a process is already at the line which you choose to synchronize at, the process will still be set to
play. Be sure that your process will revisit the line, or alternatively synchronize to the line immediately
dfter the current line.

7.13 Setting A Watchpoint

Watchpoints ®
Scope Expression Trigger On

¥ #0 main beingWatched read and write

Figure 42: The Watchpoints Table

A watchpoint is a variable or expression that will be monitored by the debugger such that when it is
changed or accessed the debugger pauses the application.

Distributed Debugging Tool x

Processes 1-3:

o Process stopped at watchpoint
"beingWatched"” in main (hello.c:135).
New value: -1

¥| Always show this window for watchpoints

[Continue Pause

Figure 43: Program Stopped At Watchpoint being watched

Unlike breakpoints, watchpoints are not displayed in the Source Code Viewer. Instead they are created by
right-clicking on the Watchpoints view and selecting the Add Watchpoint menu item. It is also possible
to add watchpoints automatically dragging a variable to the Watchpoints view from the Local Variables,
Current Line and Evaluate views, or right-clicking over the variable in the Source Code Viewer and then
selecting Add Watchpoint. The automatic watchpoints are write-only by default.

Upon adding a watchpoint the Add Watchpoint dialog appears allowing you to apply restrictions to the
watchpoint. Process Group restricts the watch point to the chosen process group (see 7.1 Process Control
And Process Groups). Process restricts the watchpoint to the chosen process. Expression is the variable
name in the program to be watched. Language is the language of the portion of the program containing
the expression. Trigger On alllows you to select whether the watchpoint will trigger when the expression
is read, written or both.

(© 2017 Allinea Software Ltd. 64

Allinea Forge 7.0

You can set a watchpoint for either a single process, or every process in a process group.

DDT will automatically remove a watchpoint once the target variable goes out of scope. If you are
watching the value pointed to by a variable, i.e. * p—you may want to continue watching the value at
that address even after p goes out of scope. You can do this by right-clicking on *p in the Watchpoints
view and selecting the Pin to address menu item. This replaces the variable p with its address so the
watch will not be removed when p goes out of scope.

Modern processors have hardware support for a handful of watchpoints that are set to watch the contents
of a memory location. Consequently watchpoints can normally be used with no performance penalty.
Where the number of watchpoints used is over this quantity, or the expression being watched is too
complex to tie to a fixed memory address, the implementation is through software monitoring, which
will impose significant performance slowdown on the application being debugged.

The number of hardware watchpoints available depends on the system. The read watchpoints are only
available as hardware watchpoints.

Consequently, watchpoints should where possible be a single value that is stored in a single memory
location. Whilst it is possible to watch the whole contents of non-trivial user defined structures or an
entire array simultaneously, or complex statements involving multiple addresses, these can cause extreme
application slow down during debugging.

7.14 Tracepoints

Tracepoints allow you to see what lines of code your program is executing—and the variables—without
stopping it. Whenever a thread reaches a tracepoint it will print the file and line number of the tracepoint
to the Input/Output view. You can also capture the value of any number of variables or expressions at
that point.

Examples of situations in which this feature will prove invaluable include

e Recording entry values in a function that is called many times, but crashes only occasionally. Set-
ting a tracepoint makes it easier to correlate the circumstances that cause a crash.

e Recording entry to multiple functions in a library—enabling the user (or library developer) to check
which functions are being called, and in which order. An example of this is the MPI History Plugin
(see Section 14.3 Using a Plugin, Section of this guide) which records MPI usage.

e Observing progress of an application and variation of values across processes without having to
interrupt the application.

7.14.1 Setting a Tracepoint

Tracepoints are added by either right-clicking on a line in the Source Code Viewer and selecting the Add
Tracepoint menu item, or by right-clicking in the Tracepoints view and selecting Add Tracepoint. If you
right-click in the Source Code Viewer a number of variables based on the current line of code will be
captures by default.

Tracepoints can lead to considerable resource consumption by the user interface if placed in areas likely
to generate a lot of passing. For example, if a tracepoint is placed inside of a loop with N iterations, then
N separate tracepoint passings will be recorded. Whilst Allinea DDT will attempt to merge such data
scalably, when alike tracepoints are passed in order between processes, where process behaviour is likely
to be divergent and unmergeable then a considerable load would then be caused.

(© 2017 Allinea Software Ltd. 65

Allinea Forge 7.0

If it is necessary to place a tracepoint inside a loop, set a condition on the tracepoint to ensure you only log
what is of use to you. Conditions may be any valid expression in the language of the file the tracepoint
is placed in and may include function calls, although you may want to be careful to avoid functions with
side effects as these will be evaluated every time the tracepoint is reached.

Tracepoints also momentarily stop processes at the tracepoint location in order to evaluate the expressions
and record their values, and hence if placed inside (for example) a loop with a very large number of iter-
ations—or a function executed many times per second, then a slow down in the pace of your application
will be noticed.

7.14.2 Tracepoint Output

The output from the tracepoints can be found in the Tracepoint Output view.

Tracepoint Processes Values logged
subdomain.f:... 1, rank O jend: — 0 ny: — 9
blts.f:74 16, ranks 0-15 jend: — 8 Ildmx: — 9 } — 9 |Idmy — 9 jst: *__ 1-2 Idmz: — 33
blts.f:74 16, ranks 0-15 jend: ~— 8 ldmx: — 9 j — 9 Idmy — 9 jstt ~_ 1-2 Idmz: — 33
blts.f:74 16, ranks 0-15 jend: — 8 Ildmx: — 9 } — 9 |Idmy — 9 jst: *__ 1-2 Idmz: — 33
blts.f:74 16, ranks 0-15 jend: ~— 8 ldmx: — 9 j — 9 Idmy — 9 jstt ~_ 1-2 Idmz: — 33

Figure 44: Output from Tracepoints in a Fortran application

Where tracepoints are passed by multiple processes within a short interval, the outputs will be merged.
Sparklines of the values recorded are shown for numeric values—along with the range of values ob-
tained—showing the variation across processes.

As alike tracepoints are merged then this can lose the order/causality between different processes in trace-
point output. For example, if process 0 passes a tracepoint at time T, and process 1 passes the tracepoint
at T + 0.001, then this will be shown as one passing of both process 0 and process 1, with no ordering
inferred.

Sequential consistency is preserved during merging, in that for any process, the sequence of tracepoints
for that process will be in order.

To find particular values or interesting patterns, use the Only show lines containing box at the bottom of
the panel. Tracepoint lines matching the text entered here will be shown, the rest will be hidden. To search
for a particular value, for example, try “my_var: 34”—in this case the space at the end helps distinguish
between my_var: 34 and my_var: 345.

For more detailed analysis you may with to export the tracepoints—right-click and choose Export from
the pop-up menu. A HTML tracepoint log will be written using the same format as DDT’s offline
mode.

7.15 Version Control Breakpoints and Tracepoints

Version control breakpoint/tracepoint insertion allows you to quickly record the state of the parts of the
target program that were last modified in a particular revision. The resulting tracepoint output may be
viewed in the Tracepoint Output tab or the Logbook tab and may be exported or saved as part of a logbook
or offline log.

(© 2017 Allinea Software Ltd. 66

Allinea Forge 7.0

File View Control Search Tools Window Help

»[]a " B EEIE ! O

Current Group: (Al | + |Focus on current: ® Group) Process () Thread | (] Step Threads Together
o CIEIEIE]

Create Group

Project Files B E® | £ hello.c 3 Locals | Current Line(s) | Current Stack
__ e ¢ Ad'yearsiage’ |Qiiz test.c = 'p's <] Current Linels) BE
Search (CITHE) ® 4 years ago Q- beingWatched = 0 Wl lerebe n =
riable Name ue
2 & application Code 8 years ago G . . ‘ L § I
T = 4 years ago g if (my_rank 1= 0 && !(p ch send-recv with my_rank —0
: . 4 years ago {
. _E- ¥ Sources 4 years ago Q. ntf (message,
1 years age G
: funcl : void 4 years ago G
func2 : int 4 years ago Q@
. [func3 : void 4 years ago G , dest, tag, MPI_COMM_WORLD);
i " [z mainfint argc, char** an ,%g
o [e 2
- & External Code 4 years ago
4 years ago G
4 years ago G
4 years ago G £ (me d) \n", source); |
4 years ago Q . CHAR, source, tag, MPI_COMM WORLD, &status);
4 years ago G H
4 years ago G
4 years ago G
years ago =
5 vears ado L3
(I | [+ (o] [*] Type: none selected
| Input/Output | Breakpoints | Watchpoints | Stacks | Tracepoints | Tracepoint Output | Logbook Evaluate B
Tracepoints [® |Expression | Value
Processes Threads File Line Actual Line Function Condition Start After Trigger Every Stop After Full path=
¥ Al all hello.c 45 45 funcl 0 1 20 Jhomey/s
v Al all hello.c 49 49 func3 0 1 20 Jhome/s:
v Al all hello.c 50 50 func3 0 1 20 homeys:
~ Al all hello.c 51 51 func3 0 1 20 Jhomeys:
v Al all hello.c 52 52 func3 0 1 20 Jhome/s:
v Al all hello.c 56 63 main 0 1 20 /home/s:
[(‘ All all hello.c 57 63 main 0 1 20 fhnm(-iﬂ'
“ 3
Ready

Figure 45: DDT with version control tracepoints

Version control tracepoints may be inserted either in the graphical interactive mode or in offline mode
via a command line argument.

In interactive mode enable “Version Control Information” from the “View” menu and wait for the annota-
tion column to appear in the code editor (this does not appear for files that are not tracked by a supported
version control system).

file Control Search Tools Window Help

B Fold all ﬂ ﬁ <£| g ! ﬂ - @ -

Unfold all

Cur ent: @ Group (' Process | Thread Step Threads Together
Increase zoom Ctri++

All Decrease zoom Ctrl+-] EI

Cred Reset zoom Ctrl+0

Projg show whitespace Alt+. £ hello.c

0 years ago 713

years ago TG t2 = malloc(sizeof (typeThree));
10 years ago
4 years ago for (p=0; p<100; p++)

- 4 years ago 9 bigArray[p]l=80000+p;
+| Sources 10 vears ago BC

Figure 46: Version Control—Enable from Menu

Right click a line last modified by the revision of interest and choose “Trace Variables At This Revi-
sion”.

4 years ago B2 for(y=0;y<12;y++)

4 years —]Iyl = (x+1)=(y+1);

4 years Copy Commit Message rgc, &argv);

4 years) . nk (MPTI_COMM WORLD, &my rank);
4 years Break At This Revision Ee (MPI_COMM_WORLD, &p);

e EEEL Trace Variables At This Revision

10 years k

4 years ago B dynamic y = malloc(sizeof (int)*100000);
4 years ago = for (x=0;x<10000; x++)

4 years ago {

A wrazve amm a7 AvnamirArrawliv]l — «&10-

Figure 47: Version Control—Trace at this revision

(© 2017 Allinea Software Ltd. 67

Allinea Forge 7.0

DDT will find all the source files modified in the revision, detect the variables on the lines modified in
the revision and insert tracepoints (pending if necessary). A progress dialog may be shown for lengthy
tasks.

Both the tracepoints and the tracepoint output in the Tracepoints, Tracepoint Output, and Logbook tabs
may be double-clicked during a session to jump to the corresponding line of source in the code viewer.

In offline mode supply the additional argument - -trace-changes and DDT will apply the same
process as in interactive mode using the current revision of the repository.

By default version control tracepoints are removed after 20 hits. To change this hit limit set the environ-
ment variable ALLINEA_VCS_TRACEPOINT_HIT_LIMIT to an integer greater than or equal to 0.
To configure version control tracepoints to have no hit limit set this to 0.

See also Version Control Information.

7.16 Examining The Stack Frame

Current Stack ®

Stack Arguments

#9 0x0000000000400d91 in main (ar
#8 0x00007ffff7ad2ef0 in PMPL_Init () 1
#7 0x00007ffff7abd183 in ompi_mpi i
#6 0x00007ffff7abad89 in ompi_proc_
#5 0x00007ffff7abf7al in ompi_mode:
#4 0x00007ffff5de03c5 in orte_grpcor
#3 0x00007ffff7b4f439 in opal progre
#2 0x00007ffff7b78c5a in opal_event
#1 0x00007ffff7b43eeb in epoll_dispa
#0 0x00007ffffed0dce3 in epoll_wait (

[[D

Figure 48: The Stack Tab

The stack back trace for the current process and thread are displayed under the Stack tab of the Variables
Window. When you select a stack frame DDT will jump to that position in the code (if it is available) and
will display the local variables for that frame. The toolbar can also be used to step up or down the stack,
or jump straight to the bottom-most frame.

7.17 Align Stacks

The align stacks button, or CTRL-A hotkey, sets the stack of the current thread on every process in a
group to the same level—where possible—as the current process.

This feature is particularly useful where processes are interrupted—Dby the pause button—and are at differ-
ent stages of computation. This enables tools such as the Cross-Process Comparison window to compare
equivalent local variables, and also simplifies casual browsing of values.

(© 2017 Allinea Software Ltd. 68

Allinea Forge 7.0

7.18 “Where are my processes?”—Viewing Stacks in Parallel

7.18.1 Overview

To find out where your program is, in one single view, look no further than the Parallel Stack View. 1t’s
found in the bottom area of DDT’s GUI, tabbed alongside Input/Output, Breakpoints and Watches:

Processes Function hd
1 —Imain() (hello.c:123)
1 funcl() (hello.c:40)
3 -Imain() (hello.c:125)
3 func2() (hello.c:31)

Figure 49: DDT Parallel Stack View

Do you want to know where a group’s processes are? Click on the group and look at the Parallel Stack
View—it shows a tree of functions, merged from every process in the group (by default). If there’s only
one branch in this tree—one list of functions—then all your processes are at the same place. If there are
several different branches, then your group has split up and is in different parts of the code! Click on
any branch to see its location in the Source Code Viewer, or hover your mouse over it and a little popup
will list the processes at that location. Right-click on any function in the list and select New Group to
automatically gather the processes at that function together in a new group, labelled by the function’s
Oown name.

The best way to learn about the Parallel Stack View is to simply use it to explore your program. Click on it
and see what happens. Create groups with it, and watch what happens to it as you step processes through
your code. The Parallel Stack View’s ability to display and select large numbers of processes based on
their location in your code is invaluable when dealing with moderate to large numbers of processes.

7.18.2 The Parallel Stack View in Detail

The Parallel Stack View takes over much of the work of the Stack display, but instead of just showing
the current process, this view combines the call trees (commonly called stacks) from many processes
and displays them together. The call tree of a process is the list of functions (strictly speaking frames or
locations within a function) that lead to the current position in the source code. For example, if main()
calls read_input(), and read_input () calls open_file(), and you stop the program inside
open_file(), then the call tree will look like this:

main()
read_input()
open_file()

If a function was compiled with debug information (usually - g) then DDT adds extra information, telling
you the exact source file and line number that your code is on. Any functions without debug information
are greyed-out and are not shown by default. Functions without debug information are typically library
calls or memory allocation subroutines and are not generally of interest. To see the entire list of functions,
right-click on one and choose Show Children from the pop-up menu.

(© 2017 Allinea Software Ltd. 69

Allinea Forge 7.0

You can click on any function to select it as the ‘current’ function in DDT. If it was compiled with debug
information, then DDT will also display its source code in the main window, and its local variables and
so on in the other windows.

One of the most important features of the Parallel Stack View is its ability to show the position of many
processes at once. Right-click on the view to toggle between:

1. Viewing all the processes in your program at once
2. Viewing all the processes in the current group at once (default)
3. Viewing only the current process

The function that DDT is currently displaying and using for the variable views is highlighted in dark blue.
Clicking on another function in the Parallel Stack View will select another frame for the source code and
variable views. It will also update the Stack display, since these two controls are complementary. If the
processes are at several different locations, then only the current process’ location will be shown in dark
blue. The other processes’ locations will be shown in a light blue:

Processes Threads Function v

4 4 =imain (hello.c:122)
4 = funcl (hello.c:39)

Figure 50: Current Frame Highlighting in Parallel Stack View

In the example above, the program’s processes are at two different locations. 1 process is in the main
function, at line 85 of hello. c. The other 15 processes are inside a function called funcz2, at line 34
of hello.c. The 15 processes reached func?2 in the same way—main called funcl on line 123 of
hello.c, then funcl called func?2 on line 40 of hello.c. Clicking on any of these functions will
take you to the appropriate line of source code, and display any local variables in that stack frame.

There are two optional columns in the Parallel Stack View. The first, Processes shows the number of
processes at each location. The second, Threads, shows the number of threads at each location. By
default, only the number of processes is shown. Right-click to turn these columns on and off. Note that
in a normal, single-threaded MPI application, each process has one thread and these two columns will
show identical information.

Hovering the mouse over any function in the Parallel Stack View displays the full path of the filename,
and a list of the process ranks that are at that location in the code:

Processes Threads Function he

4 4 -Imain (hello.c:122)
4 4 = funcl (hello.c:39)

/home/alejandro/code/bugfixes-60/ddt/examples/hello.c:39

4 Processes: ranks 0-3

Figure 51: Parallel Stack View tool tip

DDT is at its most intuitive when each process group is a collection of processes doing a similar task.
The Parallel Stack View is invaluable in creating and managing these groups. Simply right-click on any
function in the combined call tree and choose the New Group option. This will create a new process
group that contains only the processes sharing that location in code. By default DDT uses the name of
the function for the group, or the name of the function with the file and line number if it’s necessary to
distinguish the group further.

(© 2017 Allinea Software Ltd. 70

Allinea Forge 7.0

7.19 Browsing Source Code
Source code will be automatically displayed—when a process is stopped, when you select a process or
change position in the stack. If the source file cannot be found you will be prompted for its location.

DDT highlights lines of the source code to show where your program currently is. Lines that contain
processes from the current group are shaded in that group’s colour. Lines only containing processes from
other groups are shaded in grey.

This pattern is repeated in the focus on process and thread modes. For example, when you focus on a
process, DDT highlights lines containing that process in the group colour, and other processes from that

group in grey.

DDT also highlights lines of code that are on the stack—functions that your program will return to when
it has finished executing the current one. These are drawn with a faded look to distinguish them from the
currently-executing lines.

You can hover the mouse over any highlighted line to see which processes/threads are currently on that
line. This information is presented in a variety of ways, depending on the current focus setting:

Focus on Group

A list of groups that are on the selected line, along with the processes in them on this line, and a list of
threads from the current process on the selected line.

Focus on Process

A list of the processes from the current group that are on this line, along with the threads from the current
process on the selected line.

Focus on Thread
A list of threads from the current process on the selected line.

The tool tip distinguishes between processes and threads that are currently executing that line, and ones
that are on the stack by grouping them under the headings On the stack and On this line.

Variables and Functions

Right-clicking on a variable or function name in the Source Code Viewer will make DDT check whether
there is a matching variable or function, and then display extra information and options in a sub-menu.

In the case of a variable, the type and value are displayed, along with options to view the variable in the
Cross-Process Comparison Window (CPC) or the Multi-Dimensional Array Viewer (MDA), or to drop
the variable into the Evaluate Window—each of which are described in the next chapter.

Add to Evaluations A

View Across Processes (CPC)

View Across Threads (CTC)

Add breakpoint for All

Run to here

View Array (MDA)
Close

Type is: int
Split view Value is: 1

Open file in editor [

Figure 52: Right-Click Menu—Variable Options

In the case of a function, it is also possible to add a breakpoint in the function, or to the source code of
the function when available.

(© 2017 Allinea Software Ltd. 71

Allinea Forge 7.0

Add to Evaluations

Add breakpoint for All View Across Processes (CPC)

View Across Threads (CTC)

Run to here

View Array (MDA)
Close

Type is: void ()
Split view

View source funcl

Open file in editor

Add breakpoint in funcl [,

Figure 53: Right-Click Menu—Function Options

7.20 Simultaneously Viewing Multiple Files

DDT presents a tabbed pane view of source files, but occasionally it may be useful to view two files
simultaneously—whilst tracking two different processes for example.

Inside the code viewing panel, right-click to split the view. This will bring a second tabbed pane which
can be viewed beneath the first one. When viewing further files, the currently ‘active’ panel will display
the file. Click on one of the views to make it active.

The split view can be reset to a single view by right-clicking in the code panel and deselecting the split
view option.

£ hello.c 3¢

sprintfimessage, "Greetings from procis
printf{"sending message from CRdiwn”,
dest = 0}
/* Use strienimessagei+1 to include
MPI_Send{message, strilenimessagelr+1,
beingWatched——;]
3 else §
oo/
1,

S omy_rank ==
for {source = SOUFCE < P SoUFCe++)
I [+]

(]

I

£ hello.c ¥

£ omy_rank == o
for {source = 1; soUrce < P SOUFCE++D
i

[v]

printf{"waiting for message from %

Q MPI_Recw(message, 100, MPI CHAR, so
printf"sshn", messagel;]
beingWatched++; 1|

3 l
3 &4

[4] [[»

Figure 54: Horizontal Alignment Of Multiple Source Files

7.21 Signal Handling

By default DDT will stop a process if it encounters one of the standard signals (but see section 7.21.1
Custom Signal Handling (Signal Dispositions) below). For example:

e SIGSEGV — Segmentation fault

The process has attempted to access memory that is not valid for that process. Often this will be
caused by reading beyond the bounds of an array, or from a pointer that has not been allocated yet.
The DDT Memory Debugging feature may help to resolve this problem.

e SIGFPE - Floating Point Exception

This is raised typically for integer division by zero, or dividing the most negative number by —1.
Whether or not this occurs is Operating System dependent, and not part of the POSIX standard.

(© 2017 Allinea Software Ltd. 72

Allinea Forge 7.0

Linux platforms will raise this.

Note that floating point division by zero will not necessarily cause this exception to be raised,
behaviour is compiler dependent. The special value Inf or - Inf may be generated for the data,
and the process would not be stopped.

e SIGPIPE - Broken Pipe
A broken pipe has been detected whilst writing.
e SIGILL - Illegal Instruction

SIGUSR1, SIGUSR2, SIGCHLD, SIG63 and SIG64 are passed directly through to the user process
without being intercepted by DDT.

7.21.1 Custom Signal Handling (Signal Dispositions)

You can change the way individual signals are handled using the Signal Handling window. To open the
window select the Control — Signal Handling... menu item.

Signal Handling X

Signal ~ Description Action (]
SIGABRT Avoted [EACTOMEE
SIGALRM Alarm clock Default (ignore)
SIGBUS Bus error Default (stop)

SIGCHLD Child exited Default (ignore)
SIGCONT Continued Default (ignore)]
SIGFPE Floating point exception Default (stop)

SIGHUP Hangup Default (stop)

SIGILL lllegal instruction Default (stop)

SIGIO 1O possible Default (ignore)
SIGKILL Killed Default (stop)

SIGPIPE Broken pipe Default (stop)

SIGPROF Profiling timer expired Default (ignore)
SIGPWR Power failure Default (stop)

SIGQUIT Quit Default (stop)
SIGSEGV Segmentation fault Default (stop)
SIGSTOP Stopped (signal) Default (ignore)
clr-cvo DaAd evetam ~sll Niafault fetand L=
[0k][cance

Figure 55: Signal Handling dialog

Set a signal’s action to Stop to stop a process whenever it encounters the given signal, or Ignore to let the
process receive the signal and continue playing without being stopped by the debugger.

7.21.2 Sending Signals

The Send Signal window (select the Control — Send Signal... menu item) allows a signal to be sent to
the debugged processes. Select the signal you want to send from the drop-down list and click the Send
to process button.

(© 2017 Allinea Software Ltd. 73

Allinea Forge 7.0

8 Viewing Variables And Data

The Variables Window contains two tabs that provide different ways to list your variables. The Locals
tab contains all the variables for the current stack frame, while the Current Line(s) tab displays all the
variables referenced on the currently selected lines. Please notice that several compilers and libraries
(such as Cray Fortran, OpenMP and others) will generate extra code, including variables that will be
visible in DDT’s windows.

Right clicking in these windows brings up additional options—including the ability to edit values (in the
Evaluations window), to change the display base, or to compare data across processes and threads. The
right-click menu will also allow you to choose whether the fields in structures (classes or derived types)
should be displayed alphabetically by element name or not—which is useful for when structures have
very many different fields.

Locals ®

Variable Name Value =
argc —1

+ argv Ox 7 fififffdc58
beingWatched —0

+ bigArray
dest —0

+ dynamicArray 0x818020

environ Ox7fffffffdeald |
i —0
message "
my_rank ~0
p —512 ||
source — 32767 b

Type: none selected

Figure 56: Displaying Variables

8.1 Sparklines

Numerical values may have sparklines displayed next to them. A sparkline is a line graph of process
rank or thread index against value of the related expression. The exact behaviour is determined by the
focus control (see section 7.2 Focus Control). If focussed on process groups, then process ranks are used.
Otherwise, thread indices are used. The graph is bound by the minimum and maximum values found, or
in the case that all values are equal the line is drawn across the vertical center of the highlighted region.
Erroneous values such as Nan and Inf are represented as red, vertical bars. If focus is on process groups,
then clicking on a sparkline will display the Cross-Process Comparison window for closer analysis. Oth-
erwise, clicking on a sparkline will display the Cross-Thread Comparison window.

8.2 CurrentLine
You can select a single line by clicking on it in the code viewer—or multiple lines by clicking and drag-
ging. The variables are displayed in a tree view so that user-defined classes or structures can be expanded

to view the variables contained within them. You can drag a variable from this window into the Evaluate
Window; it will then be evaluated in whichever stack frame, thread or process you select.

8.3 Local Variables

The Locals tab contains local variables for the current process’s currently active thread and stack frame.

(© 2017 Allinea Software Ltd. 74

Allinea Forge 7.0

For Fortran codes the amount of data reported as local can be substantial—as this can include many
global or common block arrays. Should this prove problematic, it is best to conceal this tab underneath
the Current Line(s) tab as this will not then update after ever step.

It is worth noting that variables defined within common blocks may not appear in the local variables tab
with some compilers, this is because they are considered to be global variables when defined in a common
memory space.

The Locals view compares the value of scalar variables against other processes. If a value varies across
processes in the current group the value is highlighted in green.

When stepping or switching processes if the value of a variable is different from the previous position or
process it is highlighted in blue.

After stepping out of function the return value is displayed at the top of the Locals view (for selected
debuggers).

8.4 Arbitrary Expressions And Global Variables

Evaluate 5]

Expression Value
bigArray[3] — 80003
my_rank -0
X+y — 10012

Figure 57: Evaluating Expressions

Since the global variables and arbitrary expressions do not get displayed with the local variables, you
may wish to use the Current Line(s) tab in the Variables window and click on the line in the Source Code
Viewer containing a reference to the global variable.

Alternatively, the Evaluate panel can be used to view the value of any arbitrary expression. Right-click on
the Evaluate window, click on Add Expression, and type in the expression required in the current source
file language. This value of the expression will be displayed for the current process and stack/thread, and
is updated after every step.

Note: at the time of writing DDT does not apply the usual rules of precedence to logical Fortran expres-
sions, suchas X .ge. 32 .and. x .le. 45. For now, please bracket such expressions
thoroughly: (X .ge. 32).and. (x .le. 45). Itis also worth noting that although the Fortran
syntax allows you to use keywords as variable names, DDT will not be able to evaluate such variables
on most platforms. Please contact support@allinea.com if this is a problem for you.

Expressions containing function calls are only evaluated for the current process/thread and sparklines
will not displayed for those expressions, because of possible side effects caused by calling functions. Use
Cross-Process or Cross-Thread Comparison (see section 8.16 Cross-Process and Cross-Thread Compar-
ison) for functions instead.

(© 2017 Allinea Software Ltd. 75

mailto:support@allinea.com

Allinea Forge 7.0

8.4.1 Fortran Intrinsics

The following Fortran intrinsics are supported by the default GNU debugger included with DDT:

ABS AIMAG CEILING CMPLX
FLOOR IEEE_IS_FINITE | IEEE_IS_INF | IEEE_IS_NAN
IEEE_IS_NORMAL | ISFINITE ISINF ISNAN
ISNORMAL MOD MODULO REALPART

Support in other debuggers, including the CUDA debugger variants, may vary.

8.4.2 Changing the language of an Expression

Ordinarily, expressions in the Evaluate window and Locals/Current windows are evaluated in the lan-
guage of the current stack frame. This may not always be appropriate—for example a pointer to user
defined structure may be passed as value within a Fortran section of code, and you may wish to view the
fields of the C structure. Alternatively, you may wish to view a global value in a C++ class whilst your
process is in a Fortran subroutine.

You can change the language that DDT uses for your expressions by right clicking on the expression, and
clicking Change Type/Language—selecting the appropriate language for the expression. To restore the
default behaviour, change this back to Auto.

8.4.3 Macros and #defined Constants

By default, many compilers will not output sufficient information to allow the debugger to display the
values of “#defined” constants or macros—as including this information can greatly increase executable
sizes.

With the GNU compiler, adding the “-g3” option to the command line options will generate extra defi-
nition information which DDT will then be able to display.

8.5 Help With Fortran Modules

An executable containing Fortran modules presents a special set of problems for developers:

o If there are many modules, each of which contains many procedures and variables (each of which
can have the same name as something else in a separate Fortran module), keeping track of which
name refers to which entity can become difficult

e When the Locals or Current Line(s) tabs (within the Variables window) display one of these vari-
ables, to which Fortran module does the variable belong?

e How do you refer to a particular module variable in the Evaluate window?
e How do you quickly jump to the source code for a particular Fortran module procedure?
To help with this, DDT provides a Fortran Modules tab in the Project Navigator window.

When DDT begins a session, Fortran module membership is automatically found from the information
compiled into the executable.

(© 2017 Allinea Software Ltd. 76

Allinea Forge 7.0

A list of Fortran modules found is displayed in a simple tree view within the Fortran Modules tab of the
Project Navigator window.

Each of these modules can be ‘expanded’ (by clicking on the + symbol to the left of the module name)
to display the list of member procedures, member variables and the current values of those member
variables.

Clicking on one of the displayed procedure names will cause the Source Code Viewer to jump to that
procedure’s location in the source code. In addition, the return-type of the procedure will be displayed at
the bottom of the Fortran Modules tab—Fortran subroutines will have a return-type of VOID ().

Similarly, clicking on one of the displayed variable names will cause the type of that variable to be
displayed at the bottom of the Fortran Modules tab.

A module variable can be dragged and dropped into the Evaluate window. Here, all of the usual Evaluate
window functionality applies to the module variable. To help with variable identification in the Evaluate
window, module variable names are prefixed with the Fortran module name and two colons ::.

Right-clicking within the Fortran Modules tab will bring up a context menu. For variables, choices on
this menu will include sending the variable to the Evaluate window, the Multi-Dimensional Array Viewer
and the Cross-Process Comparison Viewer.

Some caveats apply to the information displayed within the Fortran Modules tab:

1. The Fortran Modules tab will not be displayed if the underlying debugger does not support the
retrieval and manipulation of Fortran module data.

2. The Fortran Modules tab will display an empty module list if the Fortran modules debug data is
not present or in a format understood by DDT.

One limitation of the Fortran Modules tab is that the modules debug data compiled into the executable
does not include any indication of the module USE hierarchy (e.g. if module A USEs module B, the
inherited members of module B are not shown under the data displayed for module A). Consequently,
the Fortran Modules tab shows the module USE hierarchy in a flattened form, one level deep.

8.6 Viewing Complex Numbers in Fortran

When working with complex numbers, you may wish to view only the real or imaginary elements of
the number. This can useful when evaluating expressions, or viewing an array in the Multi Dimensional
Array Viewer (See section 8.15 Multi Dimensional Array Viewer (MDA)).

You can use the Fortran intrinsic functions REALPART and AIMAG to get the real or imaginary parts of
a number, or their C99 counterparts creal and cimag.

Complex numbers in Fortran can also be accessed as an array, where element 1 is the real part, and element
2 is the imaginary part.

(© 2017 Allinea Software Ltd. 77

Allinea Forge 7.0

Evaluate @®
Expression Value

C (3.4)

c(1) 3

c(2) 4

Figure 58: Viewing the Fortran complex number 3+4i

8.7 C++ STL Support

DDT uses pretty printers for the GNU C++ STL implementation (versions 4.7 and greater), Nokia’s Qt
library, and Boost, designed for use with the GNU Debugger. These are used automatically to present
such C++ data in a more understandable format.

For some compilers, the STL pretty printing can be confused by non-standard implementations of STL
types used by a compiler’s own STL implementation. In this case, and in the case where you wish to see
the underlying implementation of an STL type, you can disable pretty printing by running DDT with the
environment variable setting ALLINEA_DISABLE_PRETTY _PRINT=1.

Expanding elements in std: :map (including unordered and multimap variants) is not supported
when using object keys or pointer values.

8.8 Custom Pretty Printers

In addition to the pre-installed pretty printers you may also use your own GDB pretty printers.

Note: custom pretty printers are only supported when using the GDB 7.6.2 debugger. You must select
this debugger on the System Settings page of the Options window.

A GDB pretty printer consists of an auto-load script that is automatically loaded when a particular
executable or shared object is loaded and the actual pretty printer Python classes themselves. To make a
pretty printer available in DDT copy it to ~/ .allinea/gdb.

8.8.1 Example

An example pretty printer may be found in {installation-directory }/examples.
Compile the fruit example program using the GNU C++ compiler as follows:
cd {installation-directory}/examples

make -f fruit.makefile

Now start DDT with the example program as follows:

ddt --start {installation-directory}/examples/fruit

(© 2017 Allinea Software Ltd. 78

Allinea Forge 7.0

After the program has started right-click on line 20 and click the Run to here menu item. Click on the
Locals tab and notice that the internal variable of myFruit are displayed.

Now install the fruit pretty printer by copying the files to ~/ .allinea/gdb as follows:
cp -r {installation-directory}/examples/fruit-pretty-printer/* ~/.
allinea/gdb/

Re-run the program in DDT and run to line 20, as before. Click on the Locals tab and notice that now,
instead of the internal variable of myFruit, the type of fruit is displayed instead.

8.9 Viewing Array Data

Fortran users may find that it is not possible to view the upper bounds of an array. This is due to a lack
of information from the compiler. In these circumstances DDT will display the array with a size of 0,
or simply <unknown_bounds>. It is still possible to view the contents of the array however using the
Evaluate window to view array (1), array(2), etc. as separate entries.

To tell DDT the size of the array right-click on the array and select the Edit Type... menu option. This
will open a window like the one below. Enter the real type of the array in the New Type box.

Variable: arr
Original Type: integer arr(kind=4)(10,*)

New Type: integer arr(kind=4)(10,10)
Language:
ok) cona

Figure 59: Edit Type window

Alternatively the MDA can be used to view the entire array.

8.10 UPC Support

Allinea DDT supports many different UPC compilers—including the GNU UPC combpiler, the Berkeley
UPC compiler and those provided by Cray. Note that in order to enable UPC support, you may need to
select the appropriate MPI/UPC implementation from DDT’s Options/System menu. See Section 5.1.5
UPC

Debugging UPC applications introduces a small number of changes to the user interface.

e Processes will be identified as UPC Threads, this is purely a terminology change for consistency
with the UPC language terminology. UPC Threads will have behaviour identical to that of separate
processes: groups, process control and cross-process data comparison for example will apply across
UPC Threads.

e The type qualifier shared is given for shared arrays or pointers to shared.

e Shared pointers are printed as a triple (address, thread, phase). For indefinitely blocked pointers
the phase is omitted.

e Referencing shared items will yield a shared pointer and pointer arithmetic may be performed on
shared pointers.

(© 2017 Allinea Software Ltd. 79

Allinea Forge 7.0

e Dereferencing a shared pointer (e.g. dereferencing * (&x[n] + 17])) will correctly evaluate and
fetch remote data where required.

e Values in shared arrays are not automatically compared across processes: the value of x[1] is
by definition identical across all processes. It is not possible to identify pending read/write to
remote data. Non-shared data types such as local data or local array elements will still be compared
automatically.

e Distributed arrays are handled implicitly by the debugger. There is no need to use the explicit
distributed dimensions feature in the MDA.

All other components of DDT will be identical to debugging any multi-process code.

8.11 Changing Data Values

In the Evaluate window, the value of an expression may be set by right-clicking and selecting Edit Value.
This will allow you to change the value of the expression for the current process, current group, or for all
processes.

Note: The variable must exist in the current stack frame for each process you wish to assign the value
to.

8.12 Viewing Numbers In Different Bases

When you are viewing an integer numerical expression you may right-click on the value and use the View
As sub menu to change which base the value is displayed in. The View As — Default option displays the
value in its original (default) base.

8.13 Examining Pointers

You can examine pointer contents by clicking the + next to the variable or expression. This will expand
the item and dereference the pointer.

In the Evaluate window, you can also use the View As Vector, Reference, and Dereference menu items.

See also Multi Dimensional Array Viewer (MDA).

8.14 Multi-Dimensional Arrays in the Variable View

When viewing a multi-dimensional array in either the Locals, Current Line(s) or Evaluate windows it is
possible to expand the array to view the contents of each cell. In C/C++ the array will expand from left
to right (X, y, z will be seen with the x column first, then under each X cell a y column etc.) whereas in
Fortran the opposite will be seen with arrays being displayed from right to left as you read it (so X, Yy, z
would have z as the first column with y under each z cell etc.)

The first million elements in an array will be shown in the Locals or Current Line(s) view. Larger arrays
are truncated, but elements past the millionth can be viewed by evaluating an expression or using the
multi-dimensional array viewer.

(© 2017 Allinea Software Ltd. 80

Allinea Forge 7.0

Current Line(s) 3]
Variable Name Value
- array
= [0]
[01] 1
[1] 2
[2] 3
=[11]
[0] 2
[1] 4
[2] 6
=[2]
[01] 3
[1] 6
[2] 9

1 — D
Type: none selected

Figure 60: 2D Array In C: type of array is int[4][3]

Current Line(s) @
Variable Name Value
-Itwodee
=[11]
[1] 1
[2] 2
[3] 3
[4] 4
[5] 5
=[2]
[1] 2
[2] 4
[3] 6
[4] 8
[5] 10

G D
Type: none selected

Figure 61: 2D Array In Fortran: type of twodee is integer(3,5)

8.15 Multi Dimensional Array Viewer (MDA)

DDT provides a Multi-Dimensional Array (MDA) Viewer (fig. 62) for viewing multi-dimensional ar-
rays.

To open the Multi-Dimensional Array Viewer, right-click on a variable in the Source Code, Locals, Cur-
rent Line(s) or Evaluate views and select the View Array (MDA) context menu option. You can also
open the MDA directly by selecting the Multi-Dimensional Array Viewer menu item from the View
menu.

(© 2017 Allinea Software Ltd. 81

Allinea Forge 7.0

Multi-Dimensional Array Viewer

Array Expression: | tables[$il[$]] v] [Evaluate
Distributed Array Dimensions: How do | view distributed arrays? Cancel
Staggered Array: What does this de? +| Align Stack Frames
Range of $i Range of §j Auto-update
v e [m B
Only show if: See Examples
Data Table | Statistics]
= Goto @ Visualize [Export . Full Window

[

j
0 1 B 3 4 5 6 o -] 9 10 11

("= T R« TR ¥ B Y <N FE R I e |

6 8 10| 12| 14| 1s| 18| 20 22| 24

Wl | &M

12| 16| 20| 24| 28| 32| 38 40| 44| 48
10| 15| 20| 25| 30[35| 40| 45| 500 55| 60
12| 18| 24| 30| 36| 42| 48| 54| 60| 66] 72
14| 21| 28| 35| 42| 49| 56| 63 70 77| 84
16| 24| 32| 40| 48[56| 64| 72| 80 88 096
18| 27| 36| 45| 54| 63| 72| 81| 90| 99| 108
200 30l 4ol 500 &0 70l &80l 90l 100l 110 17n|

DWW || []W|M

(4]

-

=
iy
=l

Close

Figure 62: Multi-Dimensional Array Viewer

If you open the MDA by right clicking on a variable, DDT will automatically set the Array Expression
and other parameters based on the type of the variable. Click the Evaluate button to see the contents of
the array in the Data Table.

The Full Window button hides the settings at the top of the window so the table of values occupies the
full window, allowing you to make full use of your screen space. Click the button again to reveal the
settings again.

8.15.1 Array Expression

The Array Expression is an expression containing a number of subscript metavariables that are substituted
with the subscripts of the array. For example, the expressionmyArray ($i, $j) hastwo metavariables,
$1i and $j. The metavariables are unrelated to the variables in your program.

The range of each metavariable is defined in the boxes below the expression, e.g. Range of $i. The Array
Expression is evaluated for each combination of $1, $J, etc. and the results shown in the Data Table. You
can also control whether each metavariable is shown in the Data Table using Rows or Columns.

By default, the ranges for these metavariables are integer constants entered using spin boxes. However,
the MDA also supports specifying these ranges as expressions in terms of program variables. These ex-
pressions are then evaluated in the debugger. To allow the entry of these expressions, check the Staggered
Array check box. This will convert all the range entry fields from spin boxes to line edits allowing the
entry of freeform text.

(© 2017 Allinea Software Ltd. 82

Allinea Forge 7.0

The metavariables may be re-ordered by dragging and dropping them. For C/C++ expressions the major
dimension is on the left and the minor dimension on the right, for Fortran expressions the major dimension
is on the right and the minor dimension on the left. Distributed dimensions may not be re-ordered—they
must always be the most major dimensions.

8.15.2 Filtering by Value

You may want the Data Table to only show elements that fit a certain criteria, e.g. elements that are zero.
If the Only show if box is checked then only elements that match the boolean expression in the box are
displayed in the Data Table, e.g. $value == 0. The special metavariable $value in the expression
is replaced by the actual value of each element. The Data Table automatically hides rows or columns in
the table where no elements match the expression.

Any valid expression for the current language may be used here, including references to variables in
scope and function calls. You may want to be careful to avoid functions with side effects as these will be
evaluated many times over.

8.15.3 Distributed Arrays

A distributed array is an array that is distributed across one or more processes as local arrays.

The Multi-Dimensional Array Viewer can display certain types of distributed arrays, namely UPC shared
arrays (for supported UPC implementations), and general arrays where the distributed dimensions are
the most major (i.e. the distributed dimensions change the most slowly) and are independent from the
non-distributed dimensions.

UPC shared arrays are treated the same as local arrays, simply right-click on the array variable and select
View Array (MDA).

To view a non-UPC distributed array first create a process group containing all the processes that the array
is distributed over. If the array is distributed over all processes in your job then you can simply select
the All group instead. Right-click on the local array variable in the Source Code, Locals, Current Line(s)
or Evaluate views. The Multi-Dimensional Array Viewer window will open with the Array Expression
already filled in. Enter the number of distributed array dimensions in the corresponding box. A new
subscript metavariable ($p, $q, etc.) will be automatically added for each distributed dimension. Enter
the ranges of the distributed dimensions so that the product is equal to the number of processes in the
current process group, then click the Evaluate button.

8.15.4 Advanced: How Arrays Are Laid Out in the Data Table

The Data Table is two dimensional, but the Multi-Dimensional Array Viewer may be used to view arrays
with any number of dimensions, as the name implies. This section describes how multi-dimensional
arrays are displayed in the two dimensional table.

Each subscript metavariable ($1, $j, $p, $q, etc.) maps to a separate dimension on a hypercube. Usually
the number of metavariables is equal to the number of dimensions in a given array, but this does not
necessarily need to be the case, e.g. myArray($i, $j) * $k introduces an extra dimension, $k, as
well as the two dimensions corresponding to the two dimensions of myArray.

The figure below corresponds to the expression myArray($i, $j) with$i = 0..3 and $j =
0..4.

(© 2017 Allinea Software Ltd. 83

Allinea Forge 7.0

Figure 63: myArray($i, $j) with $i = 0..3 and $j = 0..4.

Now let’s say myArray is part of a three dimensional array distributed across three processes. The figure
below shows what the local arrays look like for each process.

Rank 0 Rank 1 Rank 2

F

Figure 64: The local array myArray($i, $j) with $i = 0..3 and $j = 0..4 on ranks 0-2

And as a three dimensional distributed array with $p the distributed dimension:

(© 2017 Allinea Software Ltd. 84

Allinea Forge 7.0

$)

Figure 65: A three dimensional distributed array comprised of the local array myArray($i, $j) with $i =
0..3 and $j = 0..4 on ranks 0-2 with $p the distributed dimension

This cube is projected (just like 3D projection) onto the two dimensional Data Table. Dimensions marked
Display as Rows are shown in rows, and dimensions marked Display as Columns are shown in columns,
as you would expect.

More than one dimension may viewed as Rows, or more than one dimension viewed as Columns. The
dimension that changes fastest depends on the language your program is written in. For C/C++ programs
the leftmost metavariable (usually $i for local arrays or $p for distributed arrays) changes the most
slowly (just like with C array subscripts). The rightmost dimension changes the most quickly. For Fortran
programs the order is reversed (the rightmost is most major, the leftmost most minor).

The figure below shows how the three dimensional distributed array above is projected onto the two
dimensional Data Table:

(© 2017 Allinea Software Ltd. 85

Allinea Forge 7.0

F - .

Figure 66: A three dimensional distributed array comprised of the local array myArray($i, $j) with $i =
0..3 and $j = 0..4 on ranks 0-2 projected onto the Data Table with $p (the distributed dimension) and $j
displayed as Columns and $i displayed as Rows.

8.15.5 Auto Update

If you check the Auto Update check box the Data Table will be automatically updated as you switch
between processes/threads and step through the code.

8.15.6 Comparing Elements Across Processes

When viewing an array in the Data Table, you may double-click or choose Compare Element Across
Processes from the context menu for a particular element.

This will bring up the Cross-Process Comparison dialog for the specified element.

(See 8.16 Cross-Process and Cross-Thread Comparison for more information.)

8.15.7 Statistics

The Statistics tab displays information which may be of interest, such as the range of the values in the
table, and the number of special numerical values, such as nan or inf.

8.15.8 Export

You may export the contents of the results table to a file in the Comma Separated Values (CSV) or HDF5
format that can be plotted or analysed in your favourite spreadsheet or mathematics program.

There are two CSV export options: List (one row per value) and Table (same layout as the on screen
table).

Note: If you export a Fortran array from DDT in HDF5 format the contents of the array are written in
column major order. This is the order expected by most Fortran code, but the arrays will be transposed if
read with the default settings by C-based HDF'5 tools. Most HDF5 tools have an option to switch between
row major and column major order.

(© 2017 Allinea Software Ltd. 86

Allinea Forge 7.0

8.15.9 Visualization

If your system is OpenGL-capable then a 2-D slice of an array, or table of expressions, may be displayed
as a surface in 3-D space through the Multi-Dimensional Array (MDA) Viewer. You can only plot one
or two dimensions at a time—if your table has more than two dimensions the Visualise button will be
disabled. After filling the table of the MDA Viewer with values (see previous section), click Visualise to
open a 3-D view of the surface. To display surfaces from two or more different processes on the same
plot simply select another process in the main process group window and click Evaluate in the MDA
window, and when the values are ready, click Visualize again. The surfaces displayed on the graph may
be hidden and shown using the check boxes on the right-hand side of the window.

The graph may be moved and rotated using the mouse and a number of extra options are available from
the window toolbar.

The mouse controls are:
e Hold down the left button and drag the mouse to rotate the graph.

e Hold down the right button to zoom—drag the mouse forwards to zoom in and backwards to zoom
out.

e Hold the middle button and drag the mouse to move the graph.

Please note: DDT requires OpenGL to run. If your machine does not have hardware OpenGL support,
software emulation libraries such as MesaGL are also supported.

In some configurations OpenGL is known to crash—a work around if the 3D visualization crashes is to
set the environment variable LIBGL_ALWAYS_INDIRECT to 1—the precise configuration which triggers
this problem is not known.

Figure 67: DDT Visualization

The toolbar and menu offer options to configure lighting and other effects, including the ability to save an
image of the surface as it currently appears. There is even a stereo vision mode that works with red-blue
glasses to give a convincing impression of depth and form. Contact Allinea if you need to get hold of
some 3D glasses.

(© 2017 Allinea Software Ltd. 87

Allinea Forge 7.0

8.16 Cross-Process and Cross-Thread Comparison

The Cross-Process Comparison and Cross-Thread Comparison windows can be used to analyse expres-
sions calculated on each of the processes in the current process group. Each window displays information
in three ways: raw comparison, statistically, and graphically.

This is a more detailed view than the sparklines that are automatically drawn against a variable in the
evaluations and locals/current line windows for multi-process sessions.

To compare values across processes or threads, right-click on a variable inside the Source Code, Locals,
Current Line(s) or Evaluate windows and then choose one of the View Across Processes (CPC) or View
Across Threads (CTC) options. You can also bring up the CPC or CTC directly from the View menu in
the main menu bar. Alternatively, clicking on a sparkline will bring up the CPC if focus in on process
groups and the CTC otherwise.

DDT - Cross-Process Comparison View:

Expression: [my_rank v]
Processes in current group (All, 4 procs) | Align stack frames
Limitcomparisonto |1 |~ sf.
Only show if: See Examples T
¥ Useas MPIRank = Create Groups [] Export Full window
Values Process(es) Statistics
o 0
1 1 Count: 4
2 2 Notshown: 0
3 3 Errors: 0
Aggregake: 0
Mumerical: 4
Sum: 6
Minimum: 0
Maximum: 3
Range: 3
Mean: 15
Variance: 1.66667
nan: 0
-nan: 0
inf: 0
-inf: 0
<0: 0
=0: 1
=0 3

Figure 68: Cross-Process Comparison—Compare View

Processes and threads are grouped by expression value when using the raw comparison. The precision
of this grouping can be specified (for floating point values) by filling the Limit box.

If you are comparing across processes, you can turn each of these groupings of processes into a DDT pro-
cess group by clicking the create groups button. This will create several process groups—one for each line
in the panel. Using this capability large process groups can be managed with simple expressions to create
groups. These expressions are any valid expression in the present language (i.e. C/C++/Fortran).

(© 2017 Allinea Software Ltd. 88

Allinea Forge 7.0

For threaded applications, when using the CTC, if Allinea DDT is able to identify OpenMP thread IDs, a
third column will also display the corresponding OpenMP thread IDs for each thread that has each value.
The value displayed in this third column for any non-OpenMP threads that are running will depends on
your compiler but is typically -1 or 8. OpenMP thread IDs should be available when using Intel and
PGI compilers provided compiler optimisations have not removed the required information (recompile
with - 00 if necessary). OpenMP thread IDs can only be obtained from GCC compiled programs if the
compiler itself was compiled with TLS enabled, unfortunately this is not the case for the packaged GCC
installs on any of the major Linux distributions at time of writing (Redhat 7, SUSE 12 or Ubuntu 14.04).
The display of OpenMP thread IDs is not currently supported when using the Cray compiler.

You can enter a second boolean expression in the Only show if box to control which values are displayed.
Only values for which the boolean expression evaluates to true / . TRUE. are displayed in the results
table. The special metavariable $value in the expression is replaced by the actual value. Click the Show
Examples link to see examples.

The Align Stack Frames check box tries to automatically make sure all processes and threads are in the
same stack frame when comparing the variable value. This is very helpful for most programs, but you
may wish to disable it if different processes/threads run entirely different programs.

The Use as MPI Rank button is described in the next section, Assigning MPI Ranks.

You can create a group for the ranks corresponding to each unique value by clicking the Create Groups
button.

The Export button allows you to export the list of values and corresponding ranks as a Comma Separated
Values (CSV) file.

The Full Window button hides the settings at the top of the window so the list of values occupies the full
window, allowing you to make full use of your screen space. Click the button again to reveal the settings
again.

The Statistics panel shows Maximum, Minimum, Variance and other statistics for numerical values.

8.17 Assigning MPI Ranks

Sometimes, DDT cannot detect the MPI rank for each of your processes. This might be because you are
using an experimental MPI version, or because you have attached to a running program, or only part of a
running program. Whatever the reason, it is easy to tell DDT what each process should be called.

To begin, choose a variable that holds the MPI world rank for each process, or an expression that calculates
it. Use the Cross-Process Comparison window to evaluate the expression across all the processes. If the
variable is valid, the Use as MPI Rank button will be enabled. Click on it; DDT will immediately relabel
all its processes with these new values.

What makes a variable or expression valid? These criteria must be met:
1. It must be an integer
2. Every process must have a unique number afterwards

These are the only restrictions. As you can see, there is no need to use the MPI rank if you have an
alternate numbering scheme that makes more sense in your application. In fact you can relabel only a
few of the processes and not all, if you prefer, so long as afterwards every process still has a unique
number.

(© 2017 Allinea Software Ltd. 89

Allinea Forge 7.0

8.18 Viewing Registers

To view the values of machine registers on the currently selected process, select the Registers window
from the View pull-down menu. These values will be updated after each instruction, change in thread or
change in stack frame.

Registers
Register Value (o]
- rax 0x0 0
-rbx 0x7... 7
- TEX 0x3...
- rax Ox11
- ISl 0x6 6
- rdi 0x2 2
-rbp 0x7...
- TSP 0x7...
-8 0x2 2
-9 0x0 0 -

Figure 69: Register View

8.19 Process Details

To view the process details dialog select the Process Details menu item from the Tools menu. Details can
be sorted by any columns, in ascending or descending order.

® Process Details

Rank ¥ Host PID Main Thread

‘ubi-XPs 384 LWP 384

1 ubi-XPS 385 LWP 385

Figure 70: Process Details

8.20 Disassembler

To view the disassembly (assembly instructions) of a function select the Disassemble menu item from
the Tools menu. By default you will see the disassembly of the current function, but you can view the
disassembly of another function by entering the function name in the box at the top and clicking the
Disassemble button.

Disassembly x

Function: [sweep1d|

(Dissssembie)

Help \ Close

Figure 71: Disassemble Tool

(© 2017 Allinea Software Ltd. 90

Allinea Forge 7.0

8.21 Interacting Directly With The Debugger

Faw Command [E5]

Command: - H Send

Command senttoAll: bt

[]

It

#0 0:0000000000400d%9¢ in main (arge=1,
argv=0x7 iiffifd008, environ=0x7{iffffd018) at
homeluser/ddiexamples/hello.c.84

-

(4] DN

Figure 72: Raw Command Window

DDT provides a Raw Command window that will allow you to send commands directly to the debugger
interface. This window bypasses DDT and its book-keeping—if you set a breakpoint here, DDT will not
list this in the breakpoint list, for example.

Be careful with this window; we recommend you only use it where the graphical interface does not
provide the information or control you require. Sending commands such as quit or kill may cause

the interface to stop responding to DDT.

Each command is sent to the current group or process (depending on the current focus). If the current
group or process is running, DDT will prompt you to pause the group or process first.

(© 2017 Allinea Software Ltd. 91

Allinea Forge 7.0

9 Program Input And Output

DDT collects and displays output from all processes under the Input/Output tab. Both standard output
and error are shown, although on most MPI implementations, error is not buffered but output is and
consequently can be delayed.

9.1 Viewing Standard Output And Error

Input/Output | Breakpoints | Watchpoints | Stacks | Tracepoints | Tracepoint Output | Logbook |
Input/Output 3]
OPAL_OUTPUT STDERR_FD=30

sending message from (2)

I can write to stderr too

I can write to stderr too

I can write to stderr too
I can write to stderr too

[« [D

Note: Allinea DDT can only send input to the mpiexec process with this MPI implementation

Type here ('Enter' to send):

Figure 73: DDT Standard Output Window

The Input/Output tab is at the bottom of the screen (by default).
The output may be selected and copied to the clipboard.

MPI users should note that most MPI implementations place their own restrictions on program output.
Some buffer it all until MPI_Finalize is called, and others may ignore it. If your program needs to
emit output as it runs, Allinea suggest writing to a file.

All users should note that many systems buffer stdout but not stderr. If you do not see your stdout
appearing immediately, try adding an fflush(stdout) or equivalent to your code.

9.2 Saving Output

By right-clicking on the text it is possible to save it to a file. You also have the option to copy a selection
to the clipboard.

9.3 Sending Standard Input

DDT provides an stdin file box in the Run window. This allows you to choose a file to be used as the
standard input (stdin) for your program. (DDT will automatically add arguments to mpirun to ensure
your input file is used.)

Alternatively, you may enter the arguments directly in the mpirun Arguments box. For example, if using
MPI directly from the command-line you would normally use an option to the mpirun suchas -stdin
filename, then you may add the same options to the mpirun Arguments box when starting your DDT
session in the Run window.

It is also possible to enter input during a session. Start your program as normal, then switch to the
Input/Output panel. Here you can see the output from your program and type input you wish to send.
You may also use the More button to send input from a file, or send an EOF character.

(© 2017 Allinea Software Ltd. 92

Allinea Forge 7.0

Remember: Although input can be sent while your program is paused, the program must then be played
to read the input and act upon it.

The input you type will be sent to all processes.

Input/Output | Breakpoints] Watchpoints] Stacks] Tracepoints] Tracepoint Qutput] Logbook]
Input/Output)

Enter a value for a:
5

Enter a value for b:
10

Enter a value for c:
15

sum is: 30

[4]
Type here ('Enter' to send): [|

Figure 74: DDT Sending Input

Note: If DDT is running on a fork-based system such as Scyld, or a - comm=shared compiled MPICH 1,
your program may not receive an EOF correctly from the input file. If your program seems to hang while

waiting for the last line or byte of input, this is likely to be the problem. See the G General Troubleshooting
and Known Issues or contact Allinea for a list of possible fixes.

(© 2017 Allinea Software Ltd. 93

Allinea Forge 7.0

10 Logbook

The logbook automatically generates a log of the user’s interaction with DDT, e.g. setting a breakpoint
or playing the program. For each stop of the program, the reason and location is recorded together with
the parallel stacks and local variables for one process.

Tracepoint values and output are logged as well.

Time Ranks Message H
Launching pregram /homejalejandro/code/ddt/examples/wave c

) =+ at Wed Jun 5 13:08:45 2013
~0:00 0-3 \lt) Executable modified on Fri May 31 11:37:51 2013
0-3) startup complete.
nfa Select process group All '
nfa Select process group All -
nfa Select process 0
0-3 E] Add tracepoint for wave.c:126
Vars: values[il
™ output
0 treeserver: Cancel command uid 284, but | sent it 8 response(s) ago. Probably nothing to w...
0-3 B Play
= output
Tracepoints
0-3 79 walues[il: - -_ from -0.99999999998892208 to 0.9999999999987691
0-3 79 walueslil: - -_ from -0.99999999771924686 to 0.99999999792626082
0-3 79 walues[il: —-_ from -0.99999999150172192 to 0.99999999190590294
0-3 79 walueslil: - -_ from -0.99999998133634749 to 0.99999998193769535
0-3 79 walues[il: --_ from -0.99999996722312345 to 0.99999996802163826
0-3 [l Pause
B 0-3 Process paused
[*- Stacks
[#- Current Stack
= Locals
allt <value optimized out>
communication_usec T_"_ 524569 (from 270180 to 524569)
end {tv_sec = 73920, tv_nsec = 251558686} ({tv_sec = 73920, tv_nsec = 250650651})
iterations <value optimized out>
i <value optimized out>
left = -2 (from -2 to 2)
overhead {tv_sec = 73920, tv_nsec = 552755649} ({tv_sec = 73920, tv_nsec = 549176810})
overhead_nsec <value optimized out>
right —_ 1 (from -2 to 3)
start {tv_sec = 73917, tv_nsec = 517389840} ({tv_sec = 73917, tv_nsec = 520761373})
stop — 0
tvl {tv_sec = 73920, tv_nsec = 554226887} ({tv_sec = 73920, tv_nsec = 552338168})
tv2 {tv_sec = 73920, tv_nsec = 552755615} ({tv_sec = 73920, tv_nsec = 549176764})
- 2:17 n/a ¥ My comment after first run
-2:19 0-3 = Play
- 2:20 nfa j) Every process in your program has terminated.
[#-2:20 ™ output

Figure 75: Logbook example of a debug session

The user can export the current logbook as HTML or compare it to a previously exported one.

This enables comparative debugging and repeatability—it is always clear how a certain situation in the
debugger was caused as the previous steps are visible.

10.1 Usage

The logbook is always on and does not require any additional configuration. It is integrated as Logbook
tab at the bottom of the main window beside the Tracepoint Output tab.

To export the logbook click on file icon on RHS and choose a filename. A previously saved logbook can
be opened using a Tools menu option.

(© 2017 Allinea Software Ltd. 94

Allinea Forge 7.0

10.2 Annotation

Annotations may be recorded to the logbook using either the button with the pencil icon in the right-hand
margin or by right-clicking the logbook and choosing Add annotation.

10.3 Comparison Window

Two logbooks can be compared side by side with the logbook comparison window. Either click the
‘compare’ icon on the right-hand side of the Logbook View from the Tools menu or use the same icon from
the Logbook tab. The current logbook can be compared with a file, or two files can be compared.

To easily spot differences the user can first align both logbooks to corresponding entries and then press the
Sync button. This ensures both vertical and horizontal scrollbars of the logbooks are tied together.

Logbook Files Comparison x

examples/logbook-compare-example-right.html l =] @

examplesflogbook-compare-example-eft.html l =

Time Ranks Message Time Ranks Message

Launching program Launching program
\i.) Jhomefalejandro/code/ddt/examples/memdebug

- 0:00 0O 3 fhome/alejandro/code/ddt/examples/memdebug
- N) at Wed Jun 5 14:01:14 2013 at Wed Jun 5 14:10:45 2013
Executable modified on Wed Jun 5 14:01:04 2... Executable modified on Wed Jun 5 14:10:38 20...
- 0:00 0 \i) Startup complete. \i) Startup complete.
* 0:00 nja Select process group All Select process group All
0:01 ™ output ™ output
- 0:02 0 B Play Play
N;em?lry error det‘ected in operator delete L) Every process in your program has terminated.
5-0:02 0 ' {dmallocc.cc:77):
a previous write overwrote the reserved memo...
[+ Stacks
Current Stack
= Locals

0x4005f7 "\270"
0x7ffff7fc4fc8

Figure 76: Logbook comparison window with tracepoint difference selected

(© 2017 Allinea Software Ltd. 95

Allinea Forge 7.0

11 Message Queues

DDT’s Message Queue debugging feature shows the status of the message buffers of MPI—for example
showing the messages that have been sent by a process but not yet received by the target.

You can use DDT to detect common errors such as deadlock—where all processes are waiting for each
other, or for detecting when messages are present that are unexpected, which can correspond to two
processes disagreeing about the state of progress through a program.

This capability relies on the MPI implementation supporting this via a debugging support library: the
majority of MPIs do this. Furthermore, not all implementations support the capability to the same degree,
and a variance between the information provided by each implementation is to be expected.

11.1 Viewing The Message Queues

Open the Message Queues window by selecting Message Queues from the Tools menu. The Message
Queues window will query the MPI processes for information about the state of the queues.

Whilst the window is open, you can click Update to refresh the current queue information. Please note
that this will stop all playing processes. While DDT is gathering the data a “Please Wait” dialog may be
displayed and you can cancel the request at any time.

DDT will automatically load the message queue support library from your MPI implementation (provided
one exists). If it fails, an error message will be shown. Common reasons for failure to load include:

e The support library does not exist, or its use must be explicitly enabled.

Most MPIs will build the library by default, without additional configuration flags. MPICH 2 and
MPICH 3 must be configured with the - -enable-debuginfo argument. MPICH 1.2.x must
be configured with the - -enable-debug argument. MVAPICH 2 must be configured with
the - -enable-debug and - -enable-sharedlib arguments. Some MPIs—notably Cray’s
MPI—do not support message queue debugging at all.

Intel MPI includes the library, but debug mode must be enabled. See D.6 Intel MPI for details.
LAM and Open MPI automatically compile the library.
e The support library is not available on the compute nodes where the MPI processes are running.

Please ensure the library is available—and set ALLINEA_QUEUE_DLL if necessary to force using
the library in its new location.

e The support library has moved from its original installation location.

Please ensure the proper procedure for the MPI configuration is used—this may require you to
specify the installation directory as a configuration option.

Alternatively, you can specifically include the path to the support library in the LD_LIBRARY_
PATH, or if this is not convenient you can set the environment variable, ALLINEA_ QUEUE__
DLL, to the absolute pathname of the library itself (e.g. /usr/local/mpich-1.2.7/1ib/
libtvmpich.so).

e The MPI is built to a different bit-size to the debugger.

In the unlikely case that the MPI is not built to the bit-size of the operating system, then the debugger
may not be able to find a support library that is the correct size. This is unsupported.

(© 2017 Allinea Software Ltd. 96

11.2

Allinea Forge 7.0

Interpreting the Message Queues

0

384

256

Text Communicator

Receive: 0x8... MPI COMMUN... Recel

Receive: 0x8... MPI COMMUM...
Receive: 0x8... MPI COMMUM...
Receive: 0x8... MPI COMMUM...

Bor oo Mv@ BAPL COMARAL IR

Receive
Receive

Receive

Doroiuas

Display mode

[Process Groups

Select queues to show
+ Send
«| Receive

«| Unexpected

127 Show local ranks
® Show global ranks

Only ranks with messages

Select communicator

MPI_COMM_WORLD
MPI_COMM_SELF
MPI_COMM_NULL

l
l

To (global)

Show Diagram Key

Update

Queue Pointer From (local) ~ From (global) To (local)

ive 0x0 149 405 113 369

0x0 16 272 193 449

0x0 111 111 44

174 430 252

130 151

Figure 77: Message Queue Window

To see the messages, you must se

selections.

There are three different types of message queues about which there is information. Different colours are

lect a communicator to see the messages in that group. The ranks
displayed in the diagram are the ranks within the communicator (not MPI_COMM_WORLD), if the Show
Local Ranks option is selected. To see the ‘usual’ ranks, select Show Global Ranks. The messages
displayed can be restricted to particular processes or groups of processes. To restrict the display in the
grid to a single process, select Individual Processes in the Display mode selector, and select the rank
of the process. To select a group of processes, select Process Groups in the Display mode selector and
select the ring arc corresponding to the required group. Both of these display modes support multiple

used to display messages from each type of queue.

Label

Description

Send Queue

Calls to MPI send functions that have not yet completed.

Receive Queue

Calls to MPI receive functions that have not yet completed.

Unexpected Message Queue

Represents messages received by the system but the correspond-
ing receive function call has not yet been made.

(© 2017 Allinea Software Ltd.

Allinea Forge 7.0

Messages in the Send queue are represented by a red arrow, pointing from the sender to the recipient.
The line is solid on the sender side, but dashed on the received side (to represent a message that has been
Sent but not yet been Received).

Messages in the Receive queue are represented by a green arrow, pointing from the sender to the recipient.
The line is dashed on the sender side, but solid on the recipient side (to represent the recipient being ready
to receive a message that has not yet been sent).

Messages in the Unexpected queue are represented by a dashed blue arrow, pointing from sender of the
unexpected message to the recipient.

A message to self is indicated by a line with one end at the centre of the diagram.

Please note that the quality and availability of message queue data can vary considerably between MPI
implementations—some of the data can therefore be incomplete.

11.3 Deadlock

A loop in the graph can indicate deadlock—every process waiting to receive from the preceding process
in the loop.

For synchronous communications (e.g. MPI_Ssend) then this is invariably a problem.

For other types of communication it can be the case (e.g. with MPI_Send) that, for example, messages are
‘in the ether’ or in some O/S buffer and the send part of the communication is complete but the receive
hasn’t started. If the loop persists after playing the processes and interrupting them again, this indicates
a likely deadlock.

(© 2017 Allinea Software Ltd. 98

Allinea Forge 7.0

12 Memory Debugging

Allinea DDT has a powerful parallel memory debugging capability. This feature intercepts calls to the
system memory allocation library, recording memory usage and confirming correct usage of the library
by performing heap and bounds checking.

Typical problems which can be resolved by using Allinea DDT with memory debugging enabled in-
clude:

e Memory exhaustion due to memory leaks can be prevented by examining the Current Memory
Usage display, which groups and quantifies memory according to the location at which blocks
have been allocated.

e Persistent but random crashes caused by access of memory beyond the bounds of an allocation
block can be resolved by using the Guard Pages feature

e Crashing due to deallocation of the same memory block twice, deallocation via invalid pointers,
and other invalid deallocations—for example deallocating a pointer that is not at the start of an
allocation.

12.1 Enabling Memory Debugging

To enable memory debugging within Allinea DDT, from the Run window click on the Memory Debugging
checkbox.

The default options are usually sufficient, but you may need to configure extra options (see below) if you
have a multithreaded application or multithreaded MPI—such as that found on systems using Open MPI
with Infiniband, or a Cray XEG6 system.

With the Memory Debugging setting enabled, start your application as normal. Allinea DDT will take
care of ensuring that the settings are propagated through your MPI or batch system when your application
starts.

If it is not possible to load the memory debugging library, a message will be displayed, and you should
refer to the Configuration section in this chapter for possible solutions.

Note: Memory debugging is not supported for programs that use the Xeon Phi#pragma offload.

12.2 CUDA Memory Debugging

Allinea DDT provides two options for debugging memory errors in CUDA programs (found in the CUDA
section of the Run window).

When the Track GPU allocations option is enabled Allinea DDT tracks CUDA memory allocations made
by the host (i.e. allocations made using functions such as cudaMalloc). You can find out how much
memory is allocated and where it was allocated from in the Current Memory Usage window.

Allocations are tracked separately for each GPU and the host (enabling Track GPU allocations will auto-
matically track host-only memory allocations made using malloc, etc. as well). You can select between
GPUs using the drop-down list in the top-right corner of the Memory Usage and Memory Statistics win-
dows.

The Detect invalid accesses (memcheck) option turns on the CUDA-MEMCHECK error detection tool,
which can detect problems such as out-of-bounds and misaligned global memory accesses, and syscall
errors (such as calling free() in a kernel on an already free’d pointer). The other CUDA hardware

(© 2017 Allinea Software Ltd. 99

Allinea Forge 7.0

exceptions (such as a stack overflow) are detected regardless of whether this option is checked or not. For
further details about CUDA hardware exceptions, you should refer to NVIDIA’s documentation.

See section 15.2 Preparing to Debug GPU Code before starting DDT.

Known issue: It is not possible to track GPU allocations created by the Cray OpenACC compiler as it
does not directly call cudaMalloc.

12.3 Configuration

Whilst manual configuration is often unnecessary, it can be used to adjust the memory checks and pro-
tection, or to alter the information which is gathered. A summary of the settings is displayed on the Run
dialog in the Memory Debugging section.

To examine or change the options, select the Details button adjacent to the Memory Debugging checkbox
in the Run dialog, which then displays the Memory Debugging Options window.

8 Memory Debugging Options

+| Preload the memory debugging library Language: [CfFortran. no threads % l

Mote: Preloading only works for programs linked against shared libraries. If your
program is statically linked, you must relink it against the dmalloc library
manually.

Heap Debugging
Fast Balanced Thorough Custom

Enabled Checks: | basic More Information

Heap Overflow/Underflow Detection

Add guard pages to detect out of bounds heap access

Guard pages: :E Add guard pages: =

Advanced

Check heap consistency every :@ heap operations
+| Store stack backtraces for memory allocations

Only enable for these processes:

[100% | SelectAll |[x2 |[x0.5 |[1%

-

Figure 78: Memory Debugging Options

| cancel |

The two most significant options are:

1. Preload the memory debugging library—when this is checked, DDT will automatically load the
memory debugging library. DDT can only preload the memory debugging library when you start
a program in DDT and it uses shared libraries.

Preloading is not possible with statically-linked programs or when attaching to a running process.
See section 12.3.1 Static Linking for more information on static linking.

(© 2017 Allinea Software Ltd. 100

http://docs.nvidia.com/cuda/cuda-gdb/#gpu-error-reporting

Allinea Forge 7.0

When attaching, you can set the DMALLOC_OPTIONS environment variable before running your
program, or see section 12.3.3 Changing Settings at Run Time below.

2. The box showing C/Fortran, No Threads in the screen shot. You should choose the option that
best matches your program—it is often sufficient to leave this set to C++/Threaded rather than
continually changing this setting.

The Heap Debugging section allows you to trade speed for thoroughness. The two most important things
to remember are:

1. Even the fastest (leftmost) setting will catch trivial memory errors such as deallocating memory
twice.

2. The further right you go, the more slowly your program will execute. In practice, the Balanced
setting is still fast enough to use and will catch almost all errors. If you come across a memory
error that is difficult to pin down, choosing Thorough might expose the problem earlier, but you
will need to be very patient for large, memory intensive programs. (Also see 12.3.3 Changing
Settings at Run Time).

You can see exactly which checks are enabled for each setting in the Enabled Checks box. See section
12.3.2 Available Checks for a complete list of available checks.

You can turn on Heap Overflow/Underflow Detection to detect out-of-bounds heap access. See section
12.4.4 Writing Beyond An Allocated Area for more details.

Almost all users can leave the heap check interval at its default setting. It determines how often the mem-
ory debugging library will check the entire heap for consistency. This is a slow operation, so it is normally
performed every 100 memory allocations. This figure can be changed manually—a higher setting (1000
or above) is recommended if your program allocates and deallocates memory very frequently (e.g. inside
a computation loop).

If your program runs particularly slowly with Memory Debugging enabled you may be able to get a
modest speed increase by disabling the Store backtraces for memory allocations option. This disables
stack backtraces in the View Pointer Details and Current Memory Usage windows, support for custom
allocators and cumulative allocation totals.

It is possible to enable Memory Debugging for only selected MPI ranks by checking the Only enable for
these processes option and entering the ranks which you want to it for.

Note: The Memory Debugging library will still be loaded into the other processes, but no errors will be
reported.

Click on OK to save these settings, or Cancel to undo your changes.

Note: Choosing the wrong library to preload or the wrong number of bits may prevent DDT from starting
your job, or may make memory debugging unreliable. You should check these settings if you experience
problems when memory debugging is enabled.

12.3.1 Static Linking
If your program is statically linked then you must explicitly link the memory debugging library with your
program in order to use the Memory Debugging feature in DDT.

To link with the memory debugging library you must add the appropriate flags from one of the tables
below at the end of the link command, but before every occurrence of - 1c (if present).

Note: if in doubt use the -1dmallocthcxx library.

(© 2017 Allinea Software Ltd. 101

Allinea Forge 7.0

12.3.1.1 Static linking on most systems

Multi-thread | C++ | Bits | Library

no no 64 | -L/path/to/ddt/1ib/64 -ldmalloc -wl, --
allow-multiple-definition

yes no 64 | -L/path/to/ddt/1ib/64 -ldmallocth -W1l, --
allow-multiple-definition

no yes | 64 | -L/path/to/ddt/1ib/64 -ldmallocxx -W1,--
allow-multiple-definition

yes yes | 64 | -L/path/to/ddt/1ib/64 -ldmallocthcxx -W1, --
allow-multiple-definition

no no 32 | -L/path/to/ddt/1ib/32 -ldmalloc -wl, --
allow-multiple-definition

yes no 32 | -L/path/to/ddt/1ib/32 -ldmallocth -WI1, --
allow-multiple-definition

no yes | 32 | -L/path/to/ddt/1ib/32 -ldmallocxx -Wl, --
allow-multiple-definition

yes yes | 32 | -L/path/to/ddt/1ib/32 -ldmallocthcxx -W1, --
allow-multiple-definition

Note that -z muldefs isequivalentto -Wl,--allow-multiple-definition inthe above. See
section E.6 Intel Compilers and section E.8 Portland Group Compilers for compiler-specific informa-
tion.

12.3.1.2 Static linking on Cray

Multi-thread | C++ | Bits | Library

no no 64 | -L/path/to/ddt/1ib/64 -wl, --
undefined=malloc -ldmalloc

yes no 64 | -L/path/to/ddt/1ib/64 -wWl, --
undefined=malloc -ldmallocth

no yes | 64 | -L/path/to/ddt/1ib/64 -wl, --
undefined=malloc -ldmallocxx

yes yes | 64 | -L/path/to/ddt/1ib/64 -wl, --
undefined=malloc -ldmallocthcxx

no no 32 | -L/path/to/ddt/1ib/32 -wl, --
undefined=malloc -ldmalloc

yes no 32 | -L/path/to/ddt/1ib/32 -wl, --
undefined=malloc -ldmallocth

no yes | 32 | -L/path/to/ddt/1ib/32 -wl, --
undefined=malloc -ldmallocxx

yes yes | 32 | -L/path/to/ddt/1ib/32 -wl, --
undefined=malloc -ldmallocthcxx

(© 2017 Allinea Software Ltd. 102

Allinea Forge 7.0

12.3.2 Available Checks

The following heap checks are available and may be enabled in the Enable Checks box:

Name Description

basic Detect invalid pointers passed to memory functions (malloc, free, ALLOCATE,
DEALLOCATE, etc.)

ers.

check-funcs | Check the arguments of addition functions (mostly string operations) for invalid point-

check-heap | Check for heap corruption (e.g. due to writes to invalid memory addresses).

check-fence | Check the end of an allocation has not been overwritten when it is freed.

alloc-blank | Initialise the bytes of new allocations with a known value.

free-blank | Overwrite the bytes of freed memory with a known value.

freed has been overwritten. Enables alloc-blank and free-blank.

check-blank | Check to see if space that was blanked when a pointer was allocated or when it was

realloc-copy | Always copy data to a new pointer when re-allocating a memory allocation (e.g. due
to realloc)

quent read/writes cause a fatal error.

free-protect | Protect freed memory where possible (using hardware memory protection) so subse-

12.3.3 Changing Settings at Run Time

You can change most Memory Debugging settings while your program is running by selecting the Control
— Memory Debugging Options menu item. In this way you can enable Memory Debugging with a
minimal set of options when your program starts, set a breakpoint at a place you want to investigate for
memory errors, then turn on more options when the breakpoint is hit.

12.4 Pointer Error Detection and Validity Checking

Once you have enabled memory debugging and started debugging, all calls to the allocation and deal-
location routines of heap memory will be intercepted and monitored. This allows both for automatic
monitoring for errors, and for user driven inspection of pointers.

12.4.1 Library Usage Errors

If the memory debugging library reports an error, DDT will display a window similar to the one shown
below. This briefly reports the type of error detected and gives the option of continuing to play the
program, or pausing execution.

e Program Stopped x|
@ Process 1:

Memory error detected in func3 (hello.c:51):

cannot locate pointer in heap

- Continue H Pause l

Figure 79: Memory Error Message

(© 2017 Allinea Software Ltd. 103

Allinea Forge 7.0

If you choose to pause the program then DDT will highlight the line of your code which was being
executed when the error was reported.

Often this is enough to debug simple memory errors, such as freeing or dereferencing an unallocated
variable, iterating past the end of an array and so on—as the local variables and variables on the current
line will provide insight into what is happening.

If the cause of the issue is still not clear, then it is possible to examine some of the pointers referenced to
see whether they are valid and which line they were allocated on, as we now explain.

12.4.2 View Pointer Details

Any of the variables or expressions in the Evaluate window can be right-clicked on to bring up a menu.
If memory debugging is enabled, View Pointer Details will be available. This will display the amount
of memory allocated to the pointer and which part of your code originally allocated and deallocated that
memory:

Pointer Details x

Variable: global string (0x0)

Type: The expression points to a valid heap allocation.

Size: 10 bytes

Allocated at: Deallocated at:

#0 func2 (main.c:59) { | #0 func3 (main.c:29)
#1 funcl (main.c:70) #1 funcl (main.c:86)
#2 main (main.c:152) #2 main (main.c:152)

Clicking on one of the above lines will jump to that location in your code.

Figure 80: Pointer details

Clicking on any of the stack frames will display the relevant section of your code, so that you can see
where the variable was allocated or deallocated.

Note: Only a single stack frame will be displayed if the Store stack backtraces for memory allocations
option is disabled.

This feature can also be used to check the validity of heap-allocated memory.

Note: Memory allocated on the heap refers to memory allocated by malloc, ALLOCATE, new and so
on. A pointer may also point to a local variable, in which case DDT will tell you it does not point to data
on the heap. This can be useful, since a common error is taking a pointer to a local variable that later
goes out of scope.

(© 2017 Allinea Software Ltd. 104

Allinea Forge 7.0

Pointer Details x

Pointer: ptrioLocal
Type: The expression points to invalid memory or memory that was not allocated on the heap.

Figure 81: Invalid memory message

This is particularly useful for checking function arguments, and key variables when things seem to be
going awry. Of course, just because memory is valid does not mean it is the same type as you were
expecting, or of the same size and dimensions, and so on.

Memory Type/Location

As well as invalid addresses, DDT can often tell you the type and location of the memory being pointed
to. The different types are listed below.

Note: DDT may only be able to identify certain memory types with higher levels of memory debugging
enabled (see 12.3 Configuration for more information).

e Null pointer.

e Valid heap allocation.

e Fence-post area before the beginning of an allocation.

e Fence-post area beyond the end of an allocation.

e Freed heap allocation.

e Fence-post area before the beginning of a freed allocation.
e Fence-post area beyond the end a freed allocation.

e A valid GPU heap allocation.

e An address on the stack.

e The program’s code section (or a shared library).

e The program’s data section (or a shared library).

e The program’s bss section or Fortran COMMON block (or a shared library).
e The program’s executable (or a shared library).

e A memory mapped file.

e High bandwidth memory.

For more information on fence post checking, see 12.4.5 Fencepost Checking

12.4.3 Cross-Process Comparison of Pointers

Enabling memory debugging has an impact on the Cross-Process Comparison and Cross-Thread Com-
parison windows (see 8.16 Cross-Process and Cross-Thread Comparison). If you are evaluating a pointer
variable then the Cross-Process Comparison window shows a column with the location of the pointer.
Pointers to locations in heap memory are highlighted in green and dangling pointers (pointers to locations
in heap memory that have been deallocated) in red.

(© 2017 Allinea Software Ltd. 105

Allinea Forge 7.0

The Cross-Process Comparison of pointers helps us to identify:
e Processes with different addresses for the same pointer.
e The location of a pointer (heap, stack, .bss, .data, .text or other locations).
e Processes that have freed a pointer while other processes have not, null pointers, etc.

If the Cross-Process Comparison shows the value of what is being pointed at when value of the pointer
itself is wanted (e.g. you see the string a char* pointer is pointing at when you want information
concerning the pointer itself), then add (void *) to the beginning of the pointer expression.

12.4.4 Writing Beyond An Allocated Area

Use the Heap Overflow / Underflow Detection option to detect reads and writes beyond or before an
allocated block. Any attempts to read or write to the specified number of pages before or after the block
will cause a segmentation violation which stops your program. Add the guard pages after the block to
detect heap overflows, or before to detect heap underflows. The default value of 1 page will catch most
heap overflow errors, but if this does not work a good rule of thumb is to set the number of guard pages
according to the size of a row in your largest array. The exact size of a memory page depends on your
operating system, but a typical size is 4 kilobytes. In this case, if a row of your largest array is 64 KiB,
then set the number of pages to 64/4 = 16. Note that small overflows/underflows (e.g. of less than 16
bytes) may not be detected; this is a result of maintaining correct memory alignment and without this
vectorised code may crash or generate false positives.

12.4.5 Fencepost Checking

DDT will also perform ‘Fence Post’ checking whenever the Heap Debugging setting is not set to Fast.

In this mode, an extra portion of memory is allocated at the start and/or end of your allocated block,
and a pattern is written into this area. If your program attempts to write beyond your data, say by a few
elements, then this will be noticed by DDT. However, your program will not be stopped at the exact
location at which your program wrote beyond the allocated data—it will only be stopped at the next heap
consistency check.

12.4.6 Suppressing an Error

If DDT stops at an error but you wish to ignore it (for example, it may be in a third party library which
you cannot fix) then you may check Suppress memory errors from this line in future. This will open
the Suppress Memory Errors window. Here you may select which function you want to suppress errors
from.

12.5 Current Memory Usage

Memory leaks can be a significant problem for software developers. If your application’s memory usage
grows faster than expected, or continues to grow through its execution, then it is possible that memory is
being allocated which is not being freed when it is no longer required.

This type of problem is typically difficult to diagnose, and particularly so in a parallel environment, but
Allinea DDT is able to make this task simple.

(© 2017 Allinea Software Ltd. 106

Allinea Forge 7.0

At any point in your program you can go to View — Current Memory Usage and DDT will then display the
currently allocated memory in your program for the currently selected group. For larger process groups,
the processes displayed will be the ones that are using the most memory across that process group.

Memory Usage for "All" group (12:34:51)

-

Restrict to the top |8 || processes

Graphical View | Table View|
Total Across Processes (in Bytes) Current Usage Across Processes (in Bytes)
550,000 —
Legend =
. Process 0 500,000 —
. Process 11 E
Process 3 450,000
Process 19 =
Process 7 400,000 _:
Process 15]
. Process 23 50,000]
= Legend
Process 31 —
300,000 _: compute (leaks.c:18)
" . - setup (leaks.c:11)
AI.Iocatlon Details 250,000 compule (leaks.c:20)
-1 ptr from setup (leaks.c:11) 200,000] sefup (leaks.c:13)
- Ptr: 0x2aaaaca21800, size: 10240 E sefup (leaks.c:12)
150,000 E Other allocations (bytes)
100,000
50,000
0 T T T T T T T T
PO P11 P3 P19 P7 P13 P.23 P31

Figure 82: Memory Usage Graphs

The pie chart gives an at-a-glance comparison of the total memory allocated to each process. This gives
an indication of the balance of memory allocations; any one process taking an unusually large amount of
memory should be easily identifiable here.

The stacked bar chart on the right is where the most interesting information starts. Each process is rep-
resented by a bar, and each bar broken down into blocks of colour that represent the total amount of
memory allocated by a particular function in your code. Say your program contains a loop that allocates
a hundred bytes that is never freed. That is not a lot of memory. But if that loop is executed ten million
times, you are looking at a gigabyte of memory being leaked! There are 6 blocks in total. The first 5
represent the 5 functions that allocated the most memory allocated, and the 6th (at the top) represents the
rest of the allocated memory, wherever it is from.

As you can see, large allocations (if your program is close to the end, or these grow, then they are severe
memory leaks) show up as large blocks of colour. Typically, if the memory leak does not make it into the
top 5 allocations under any circumstances then it is not that big a deal—although if you are still concerned
you can view the data in the Table View yourself.

If any block of colour interests you, click on it. This will display detailed information about the memory
allocations that make it up in the bottom-left pane. Scanning down this list gives you a good idea of
what size allocations were made, how many, where from and if the allocation resides in high bandwidth
memory. Double-clicking on any one of these will display the Pointer Details view described above,
showing you exactly where that pointer was allocated in your code.

Note: Only a single stack frame will be displayed if the Store stack backtraces for memory allocations

(© 2017 Allinea Software Ltd. 107

Allinea Forge 7.0

option is disabled.

The Table View shows all the functions that allocated memory in your program alongside the number
of allocations (Count) and the total number of bytes allocated (Size). It also shows the total memory
allocated by each function’s callees in the Cumulative Count and Cumulative Size columns.

For example: funcl calls func2 which calls malloc to allocate 50 bytes. DDT will report an alloca-
tion of 50 bytes against funcz2 in the Size column of the Current Memory Usage table. DDT will also
record a cumulative allocation of 50 bytes against both functions funcl and func2 in the Cumulative
Size column of the table.

Another valuable use of this feature is to play the program for a while, refresh the window, play it for a
bit longer, refresh the window and so on—if you pick the points at which to refresh (e.g. after units of
work are complete) you can watch as the memory load of the different processes in your job fluctuates
and will easily spot any areas which continue to grow—these are problematic leaks.

12.5.1 Detecting Leaks when using Custom Allocators/Memory Wrappers

Some compilers wrap memory allocations inside many other functions. In this case Allinea DDT may
find, for example, that all Fortran 90 allocations are inside the same routine. This can also happen if you
have written your own wrapper for memory allocation functions.

In these circumstances you will see one large block in the Current Memory Usage view. You can mark
such functions as Custom Allocators to exclude them from the bar chart and table by right-clicking on the
function and selecting the Add Custom Allocator menu item. Memory allocated by a custom allocator is
recorded against its caller instead.

For example, if myfunc calls mymalloc and mymalloc is marked as a custom allocator, then the
allocation will be recorded against my func instead. You can edit the list of custom allocators by clicking
the “Edit Custom Allocators...” button at the bottom of the window.

12.6 Memory Statistics

The Memory Statistics view (View — Memory Statistics) shows a total of memory usage across the pro-
cesses in an application. The processes using the most memory are displayed, along with the mean across
all processes in the current group, which is useful for larger process counts.

(© 2017 Allinea Software Ltd. 108

Allinea Forge 7.0

Memory Statistics for "All" group (12:39:02)

Graph View| Table View|

Restrict to the top processes
Total Bytes| Total Calls| Current|

Total bytes allocated/freed

650,000

Legend

250,000 . total allocated bytes

Process 0 Process 11 Process 3 Process 19 Process 7 Process 15 Process 23 Process 31

Figure 83: Memory Statistics

The contents and location of the memory allocations themselves are not repeated here; instead this win-
dow displays the total amount of memory allocated/freed since the program began, the current number of
allocated bytes and the number of calls to allocation and free routines. These can help show if your appli-
cation is unbalanced, if particular processes are allocating or failing to free memory and so on. At the end
of program execution you can usually expect the total number of calls per process to be similar (depend-
ing on how your program divides up work), and memory allocation calls should always be greater than
deallocation calls—anything else indicates serious problems. If your application is using high bandwidth
memory, the charts and tables in this dialog will be broken down into each type of memory in use.

(© 2017 Allinea Software Ltd. 109

Allinea Forge 7.0

13 Checkpointing

13.1 What Is Checkpointing?

A program’s entire state (or a practical subset thereof) may be recorded to memory as a checkpoint.
The program may later be restored from the checkpoint and will resume execution from the recorded
state.

Sometimes you are not sure what information you need to diagnose a bug until it is too late to get it.
For example, a program may crash because a variable has a particular unexpected value. You want to
know where the variable was set to that value but it is too late to set a watch on it. However if you have
an earlier checkpoint of the program you can restore the checkpoint, set the watch, and then let it fail
again.

Checkpoints in DDT are stored in memory. They are valid for the life time of a session but are lost when
the session is ended.

13.2 How To Checkpoint

To checkpoint your program, click the Checkpoint button on the tool bar K1 . The first time you click the
button you will be asked to select a checkpoint provider. If no checkpoint providers support the current
MPI and debugger an error message will be displayed instead.

When the checkpoint has completed a new window will open displaying the name of the new check-
point.

13.3 Restoring A Checkpoint

To restore a checkpoint, click the Restore Checkpoint button on the tool bar 7). A new window will
open with a list of available checkpoints. Select a checkpoint then click the Ok button.

The program state will be restored to the checkpoint. The Parallel Stack View, Locals View, etc. will all
be updated with the new program state.

(© 2017 Allinea Software Ltd. 110

Allinea Forge 7.0

14 Using and Writing Plugins

Plugins are a quick and easy way to preload a library into your application and define some breakpoints
and tracepoints during its use. They consist of an XML file which instructs DDT what to do and where
to set breakpoints or tracepoints.

Examples are MPI correctness checking libraries, or you could also define a library that is preloaded with
your application that could perform your own monitoring of the application. It also enables a message to
be displayed to the user when breakpoints are hit, displaying, for example, an error message where the
message is provided by the library in a variable.

14.1 Supported Plugins

DDT supports plugins for two MPI correctness-checking libraries:

o Intel Message Checker, part of the Intel Trace Analyser and Collector (Commercial with free eval-
uation: http://software.intel.com/en-us/intel-trace-analyzer/) version 7.1

e Marmot (Open source: http://www.hlrs.de/organization/amt/projects/marmot), support expected
in version 2.2 and above.

14.2 Installing a Plugin
To install a plugin, locate the XML DDT plugin file provided by your application vendor and copy it
to:

{allinea-forge installation directory}/plugins/

It will then appear in DDT’s list of available plugins on the DDT—Run dialog.

Each plugin takes the form of an XML file in this directory. These files are usually provided by third-
party vendors to enable their application to integrate with DDT. A plugin for the Intel Message Checker
(part of the Intel Trace Analyser and Collector) is included with the DDT distribution.

14.3 Using a Plugin
To activate a plugin in DDT, simply click on the checkbox next to it in the window, then run your appli-
cation. Plugins may automatically perform one or more of the following actions:

e Load a particular dynamic library into your program

e Pause your program and show a message when a certain event such as a warning or error occurs

e Start extra, optionally hidden MPI processes (see the Writing Plugins section for more details on
this).

e Set tracepoints—which log the variables during an execution.

If DDT says it cannot load one of the plugins you have selected, check that the application is correctly
installed, and that the paths inside the XML plugin file match the installation path of the application.
Example Plugin: MPI History Library

DDT’s plugin directory contains a small set of files that make a plugin to log MPI communication.

e Makefile — Builds the library and the configuration file for the plugin.

(© 2017 Allinea Software Ltd. 111

http://software.intel.com/en-us/intel-trace-analyzer/
http://www.hlrs.de/organization/amt/projects/marmot

Allinea Forge 7.0

e README .wrapper — Details the installation, usage and limitations

e wrapper-config - Used to create the plugin XML config file—used by DDT to preload the
library and set tracepoints which will log the correct variables.

e wrapper-source — Used to automatically generate the source code for the library which will
wrap the original MPI calls.

The plugin is designed to wrap around many of the core MPI functions and seamlessly intercept calls
to log information which is then displayed in DDT. It is targeted at MPI implementations which use
dynamic linking, as this can be supported without relinking the debugged application.

Static MPI implementations can be made to work also, but this is outside the scope of this version.

This package must be compiled before first use—in order to be compatible with your MPI version. It
will not appear in DDT’s GUI until this is done.

To install—as a non-root user—in your local ~/.allinea/plugins directory.

make local

To install—as root in the DDT plugins directory

make

Once you have run the above, start DDT and to enable the plugin, click the Details... button to expand
the Plugins section of the Run window. Select History v1.0, and start your job as normal. DDT will
take care of preloading the library and setting default tracepoints.

This plugin records call counts, total sent byte counts, and the arguments used in MPI function calls.
Function calls and arguments are displayed (in blue) in the Input/Output panel.

The function counts are available—in the form of a variable
_MPIHistoryCount _{function}

The sent bytes counters are accumulated for most functions—but specifically they are not added for
the vector operations such as MPI_Gatherv. These count variables within the processes are available
for use within DDT—in components such as the cross-process comparison window, enabling a check
that—say—the count of MPI_Barriers is consistent, or primitive MPI bytes sent profiling information to
be discovered.

The library does not record the received bytes—as most MPI receive calls in isolation only contain a
maximum number of bytes allowed, rather than bytes received. The MPI status is logged, the SOURCE
tag therein enables the sending process to be identified.

There is no per-communicator logging in this version.

This version is for demonstration purposes for the tracepoints and plugin features. It could generate ex-
cessive logged information, or cause your application to run slowly if it is a heavy communicator. This
library can be easily extended—or its logging can be reduced by removing the tracepoints from the gen-
erated history.xml file (stored in ALLINEA_FORGE_PATHor~/.allinea/plugins)—which
would make execution considerably faster, but still retain the byte and function counts for the MPI func-
tions.

14.4 Writing a Plugin

Writing a plugin for DDT is easy. All that is needed is an XML plugin file that looks something like
this:

(© 2017 Allinea Software Ltd. 112

Allinea Forge 7.0

<plugin name="Sample v1.0" description="A sample plugin that
demonstrates DDT's plugin interface.">

<preload name="samplelib1i" />
<preload name="samplelib2" />

<environment name="SUPPRESS_LOG" value="1" />
<environment name="ANOTHER_VAR" value="some value" />
<breakpoint location="sample_log" action="log" message_variable

="message" />

<breakpoint location="sample_err" action="message_box"

message_variable="message" />

<extra_control_process hide="last" />

</plugin>

Only the surrounding plugin tag is required—all the other tags are entirely optional. A complete de-
scription of each appears in the table below. If you are interested in providing a plugin for DDT as part
of your application bundle, we will be happy to provide you with any assistance you need getting up and
running. Contact support@allinea.com for more information.

14.5 Plugin Reference

Tag

Attribute

Description

plugin

name

The plugin’s unique name. This should in-
clude the application/library the plugin is
for, and its version. This is shown in the
DDT—Run dialog.

plugin

description

A short snippet of text to describe the purpose
of the plugin/application to the user. This is
also shown in the DDT—Run dialog.

preload

name

Instructs DDT to preload a shared library of
this name into the user’s application. The
shared library must be locatable using LD_
LIBRARY_PATH, or the OS will not be able
to load it.

environment

name

Instructs DDT to set a particular environment
variable before running the user’s application.

environment

value

The wvalue that this environment variable
should be set to.

breakpoint

location

Instructs DDT to add a breakpoint at this
location in the code. The location may be
in a preloaded shared library (see above).
Typically this will be a function name, or
a fully-qualified C++ namespace and class
name. C++ class members must include their
signature and be enclosed in single quotes,
e.g. ‘MyNamespace: :DebugServer::
breakpointOnError(char*)’

breakpoint

action

Only message_box is supported in this re-
lease. Other settings will cause DDT to stop
at the breakpoint but take no action.

(© 2017 Allinea Software Ltd.

113

mailto:support@allinea.com

Allinea Forge 7.0

breakpoint

message_variable

A char* or const char™* variable that
contains a message to be shown to the user.
DDT will group identical messages from dif-
ferent processes together before displaying
them to the user in a message box.

extra_control_process

hide

Instructs DDT to start one more MPI process
than the user requested. The optional hide
attribute can be first or last, and will cause
DDT to hide the first or last process in
MPI_COMM_WORLD from the user. This pro-
cess will be allowed to execute whenever at
least one other MPI process is executing, and
messages or breakpoints (see above) occur-
ring in this process will appear to come from
all processes at once. This is only necessary
for tools such as Marmot that use an extra MPI
process to perform various runtime checks on
the rest of the MPI program.

tracepoint

location

See breakpoint location.

tracepoint

variables

A comma-separated list of variables to log on
every passing of the tracepoint location.

(© 2017 Allinea Software Ltd.

114

Allinea Forge 7.0

15 CUDA GPU Debugging

Allinea DDT is able to debug applications that use NVIDIA CUDA devices, with actual debugging of
the code running on the GPU, simultaneously whilst debugging the host CPU code.

Allinea supports a number of GPU compilers that target CUDA devices.
e NVCC—the NVIDIA CUDA compilers
e Cray OpenACC
e PGI CUDA Fortran and the PGI Accelerator Model
The CUDA toolkits and their drivers for toolkits version 6.0 and above are supported by Allinea DDT.

15.1 Licensing

In order to debug CUDA programs with Allinea DDT, a CUDA-enabled licence key is required, which
is an additional option to default licences. If CUDA is not included with a licence, the CUDA options
will be greyed-out on the run dialog of DDT.

Whilst debugging a CUDA program, an additional process from your licence is used for each GPU. An
exception to this is that single process licences will still allow the debugging of a single GPU.

Please note that in order to serve a floating CUDA licence, you will need to use the licence server shipped
with DDT 2.6 or later.

15.2 Preparing to Debug GPU Code

In order to debug your GPU program, you may need to add additional compiler command line options to
enable GPU debugging.

For NVIDIA’s nvcc compiler, kernels must be compiled with the “-g - G” flags. This enables generation
of information for debuggers in the kernels, and will also disable some optimisations that would hinder
debugging. To use memory debugging in DDT with CUDA “- -cudart shared” must also be passed
to nvcCc.

For other compilers, please refer to 15.10 GPU Language Support of this guide and E Compiler Notes
and Known Issues and your vendor’s own documentation.

Note: At this point OpenCL debugging of GPUs is not supported.

15.3 Launching the Application

To launch a CUDA job, tick the CUDA box on the run dialog before clicking run/submit. You may
also enable memory debugging for CUDA programs from the CUDA section, see section 12.2 CUDA
Memory Debugging for details.

Attaching to running CUDA applications is not possible if the application has already initialized the
driver, for example having executed any kernel or called any functions from the CUDA library. For MPI
applications it is essential to place all CUDA initialization after the MPI_Init call.

(© 2017 Allinea Software Ltd. 115

Allinea Forge 7.0

15.4 Controlling GPU threads

Controlling GPU threads is integrated with the standard DDT controls—so that the usual play, pause, and
breakpoints are all applicable to GPU kernels, for example.

As GPUs have different execution models to CPUs, there are some behavioural differences that we now
detail.

15.4.1 Breakpoints

CUDA Breakpoints can be set in the same manner as other breakpoints in DDT (See section 7.7 Setting
Breakpoints).

Breakpoints affect all GPU threads, and cause the application to stop whenever a thread reaches the
breakpoint. Where kernels have similar workload across blocks and grids, then threads will tend to reach
the breakpoint together and the kernel will pause once per set of blocks that are scheduled (i.e. set of
threads that fit on the GPU at any one time). Where kernels have divergent distributions of work across
threads, then timing may be such that threads within a running kernel will hit a breakpoint and pause the
kernel—and after subsequently continuining, more threads within the currently scheduled set of blocks
will hit the breakpoint and pause the application again.

In order to apply breakpoints to individual blocks, warps or threads, conditional breakpoints can be
used—for example using the built-in variables threadIdx.x (and threadIdx.y or threadIdx.z as appropriate)
for thread indexes and setting the condition appropriately.

Where a kernel pauses at a breakpoint, the currently selected GPU thread will be changed if the previously
selected thread is no longer “alive”.

15.4.2 Stepping

The GPU execution model is noticeably different from that of the host CPU. In the context of stepping
operations—i.e. step in, step over or step out—there are critical differences to note.

The smallest execution unit on a GPU is a warp—which on current NVIDIA GPUs is 32 threads. Step
operations can operate on warps but nothing smaller.

Allinea DDT also makes it possible to step whole blocks, whole kernels or whole devices. The stepping
mode is selected using the drop down list in the CUDA Thread Selector.

Step CUDA threads by: m

Figure 84: Selection of GPU Stepping Mode

Note: GPU execution under the control of a debugger is not as fast as running without a debugger. When
stepping blocks and kernels these are sequentialized into warps and hence stepping of units larger than a
warp may be slow. It is not unusual for a step operation to take 60 seconds on a large kernel, particularly
on newer devices where a step could involve stepping over a function call.

It is not currently possible to “step over” or “step out” of inlined GPU functions.

Note: GPU functions are often inlined by the compiler. This can be avoided (dependent on hardware) by
specifying the _noinline__ keyword in your function declaration, and by compiling your code for a
later GPU profile. e.g. by adding -arch=sm_20 to your compile line.

(© 2017 Allinea Software Ltd. 116

Allinea Forge 7.0

15.4.3 Running and Pausing
Clicking the “Play/Continue” button in DDT will run all GPU threads. It is not possible to run individual
blocks, warps or threads.

The pause button will pause a running kernel, although it should be noted that the pause operation is not
as quick for GPUs as for regular CPUs.

15.5 Examining GPU Threads and Data

Much of the user interface when working with GPUs is unchanged from regular MPI or multithreaded
debugging. However, there are a number of enhancements and additional features that have been added
to help understand the state of GPU applications.

These changes are summarised in this section.

15.5.1 Selecting GPU Threads

CUDA Threads (Process 0) Block [14 '%l [0 '%l Thread [15 '%l [15 '%l [0 '%l [Go Grid size: 32x32 Block size: 16x16x1

Figure 85: GPU Thread Selector

The Thread Selector allows you to select your current GPU thread. The current thread is used for the
variable evaluation windows in DDT, along with the various GPU stepping operations.

The first entries represent the block index, and the subsequent entries represent the 3D thread index inside
that block.

Changing the current thread will update the local variables, the evaluations, and the current line displays
and source code displays to reflect the change.

The thread selector is also updated to display the current GPU thread if it changes as a result of any other
operation—for example if:

e The user changes threads by selecting an item in the Parallel Stack View

e A memory error is detected and is attributed to a particular thread

e The kernel has progressed, and the previously selected thread is no longer present in the device
The GPU Thread Selector also displays the dimensions of the grid and blocks in your program.

It is only possible to inspect/control threads in the set of blocks that are actually loaded in to the GPU. If
you try to select a thread that is not currently loaded, a message will be displayed.

Note: The thread selector is only displayed when there is a GPU kernel active.

15.5.2 Viewing GPU Thread Locations

The Parallel Stack View has been updated to display the location and number of GPU threads.

(© 2017 Allinea Software Ltd. 117

Allinea Forge 7.0

Breakpoints (Process 0)] Watches | Stacks |

Stacks =
Threads CUDA Threads Function

1 6144 —jconv2d_global (edge.cu:82)

1 6048 convZd_global (edge.cu:83)

1 32 conv2d_global (edge.cu:84)

1 | 64 |

: i conv2d_global (edge.cu:87)
1 0 ~mafl (edge.cu:155)

/home/nforrington/cudafedgefedge.cu:87
1 Thread: #2

64 GPU threads:
<<=<(0,0),(0,0,0)>>> . <=<(0,0),(15,1,0)>>> (32 threads)
==<(0,0),0,4,0)>>> . ===(0,0),(15,5,0)>>> (32 threads)

Figure 86: CUDA threads in the parallel stack view

Clicking an item in the Parallel Stack View will select the appropriate GPU thread—updating the variable
display components accordingly and moving the source code viewer to the appropriate location.

Hovering over an item in the Parallel Stack view will also allow you to see which individual GPU thread
ranges are at a location, as well as the size of each range.

15.5.3 Understanding Kernel Progress

Given a simple kernel that is to calculate an output value for each index in an array, it is not easy to check
whether the value at position x in an array has been calculated, or whether the calculating thread has yet
to be scheduled.

This contrasts sharply with scalar programming, where if the counter of a (up-)loop exceeds x then the
value of index x can be taken as being the final value. If it is difficult to decide whether array data is fresh
or stale, then clearly this will be a major issue during debugging.

Allinea DDT includes a component that makes this easy—the Kernel Progress display, which will appear

at the bottom of the user interface by default when a kernel is in progress.

Kernel Progress View ' 3]

Kernel Progress

Kernels: 7
CUDA thread: <<<(1080,0,0),(0,0,0)>>>
Dimensions: <<<(10000,1,1),(256,1,1)>>>

Figure 87: Kernel Progress Display

This view identifies the kernels that are in progress—with the number of kernels identified and grouped
by different kernel identifiers (i.e. kernel name) across processes—and using a coloured progress bar
to identify which GPU threads are in progress. The progress bar is a projection onto a straight line of
the (potentially) 6-dimensional GPU block and thread indexing system and is tailored to the sizes of the
kernels operating in the application.

By clicking within the colour highlighted sections of this progress bar, a GPU thread will be selected
that matches the click location as closely as possible. Selected GPU threads are coloured blue. For
deselected GPU threads, the ones that are scheduled are coloured green whereas the unscheduled ones
are white.

(© 2017 Allinea Software Ltd. 118

Allinea Forge 7.0

15.5.4 Source Code Viewer

The source code viewer allows you to visualise the program flow through your source code by highlight-
ing lines in the current stack trace. When debugging GPU kernels, it will colour highlight lines with
GPU threads present and display the GPU threads in a similar manner to that of regular CPU threads
and processes. Hovering over a highlighted line in the code viewer will display a summary of the GPU
threads on that line.

15.6 GPU Devices Information

One of the challenges of GPU programming is in discovering device parameters, such as the number of
registers or the device type, and whether a device is present.

In order to assist in this, Allinea DDT includes a GPU Devices display. This display examines the GPUs
that are present and in use across an application, and groups the information together scalably for multi-
process systems.

Locals Current Ling(s)] Current Stack GPU Devices |
o] GPU Devices 5]
Attribute Name Value
-I-Ranks 0,21,35,98
-l gflon 2 Devices
IDs 0-1
Compute Capability sm_20
1l Nurnber of 5Ms 14
Warps per SM 48
= Lanes per Warp 32
Registers per Lane 64
Ranks 1-20,22-34,36-55,57-97,99-119 Mo Device

Figure 88: GPU Devices

Note: GPU devices are only listed after initialization.

15.7 Attaching to running GPU applications

Attaching to a running GPU application and then debugging the GPU threads is only supported for Fermi
class cards and their successors. This includes Tesla C2050/2070, K10, and K20.

To attach to a running job, please see the Section 5.9 Attaching To Running Programs—and select the
Debug CUDA button on the attach window.

15.8 Opening GPU Core Files

In CUDA 7.0, NVIDIA introduced support for GPU code to generate core files. These can be opened
in DDT in exactly the same way as core files generated by CPU code. See 5.8 Opening Core Files for
details.

(© 2017 Allinea Software Ltd. 119

Allinea Forge 7.0

15.9 Known Issues |/ Limitations
15.9.1 Debugging Multiple GPU processes
CUDA allows debugging of multiple CUDA processes on the same node. However, each process will

still attempt to reserve all of the available GPUs for debugging.

This works for the case where a single process debugs all GPUs on a node, but not for multiple processes
debugging a single GPU.

A temporary workaround when using Open MPI is to export the following environment variable before
starting DDT:

ALLINEA_CUDA_DEVICE_VAR=OMPI_COMM_WORLD_LOCAL_RANK

This will assign a single device (based on local rank) to each process. In addition:

e You must have Open MPI (Compatibility) selected in the File — Options (Allinea Forge — Pref-
erences on Mac OS X) . (Not Open MPI).

e The device selected for each process will be the only device visible when enumerating GPUs. This
cause manual GPU selection code to stop working (due to changing device IDs, etc).

15.9.2 Thread control

The focus on thread feature in DDT isn’t supported, as it can lock up the GPU. This means that it is not
currently possible to control multiple GPUs in the same process individually.

15.9.3 General

e DDT supports versions 6.0 onwards of the NVIDIA CUDA toolkit. In all cases, the most recent
CUDA toolkit and driver versions is recommended.

e X11 cannot be running on any GPU used for debugging. (Any GPU running X11 will be excluded
from device enumeration.)

e You must compile with -g -G to enable GPU debugging—otherwise your program will run
through the contents of kernels without stopping.

e Debugging 32-bit CUDA code on a 64-bit host system is not supported.

e Tt is not yet possible to spot unsuccessful kernel launches or failures. An error code is provided by
getCudaLastError () in the SDK which you can call in your code to detect this. Currently
the debugger cannot check this without resetting it, which is not desirable behaviour.

e Device memory allocated via cudaMalloc () is not visible outside of the kernel function.
e Not all illegal program behaviour can be caught in the debugger—e.g. divide-by-zero.

e Device allocations larger than 100 MB on Tesla GPUs, and larger than 32 MB on Fermi GPUs,
may not be accessible.

e Breakpoints in divergent code may not behave as expected.

e Debugging applications with multiple CUDA contexts running on the same GPU is not supported.

(© 2017 Allinea Software Ltd. 120

Allinea Forge 7.0

e If CUDA environment variable CUDA_VISIBLE_DEVICES <index> is used to target a partic-
ular GPU, then make sure no X server is running on any of the GPUs. (Also note that any GPU
running X will be excluded from enumeration, with may affect the device Ids).

e CUDA drivers requires that applications be debugged in a mode matching their version. If your
system is running with a toolkit version lower than the CUDA driver version, you should force DDT
to use the correct CUDA version by setting the ALLINEA_FORCE_CUDA_VERSION enviroment
variable. For example, if you are using the CUDA 6.5 driver, set ALLINEA_FORCE_CUDA_
VERSION=65. Alternatively, you should consider upgrading your CUDA toolkit to match the
CUDA driver.

e If memory debugging and CUDA support are enabled in DDT then only threaded memory preloads
are available.

15.9.4 Pre sm_20 GPUs

For GPUs that have SM type less than sm_20 (or when code is compiled targeting SM type less than
sm_20), the following issues may apply.

e GPU code targeting less than SM type sm_20 will inline all function calls. This can lead to be-
haviour such as not being able to step over/out of subroutines.

e Debugging applications using textures is not supported on GPUs with SM type less than sm_20.

e If you are debugging code in device functions that get called by multiple kernels, then setting a
breakpoint in the device function will insert the breakpoint in only one of the kernels.

15.9.5 Debugging Multiple GPU processes on Cray limitations

It is not possible to debug multiple CUDA processes on a single node on a Cray machine, you must run
with 1 process per node.

15.10 GPU Language Support

In addition to the native nvcc compiler, a number of other compilers are supported.

At this point in time, debugging of OpenCL is not supported on the device.

15.10.1 Cray OpenACC

Cray OpenACC is fully supported by Allinea DDT. Code pragmas are highlighted, most variables are
visible within the device, and stepping and breakpoints in the GPU code is supported. The compiler flag
- g is required for enabling device (GPU-based) debugging; - 00 should not be used, as this disables use
of the GPU and runs the accelerated regions on the CPU.

Known issue: It is not possible to track GPU allocations created by the Cray OpenACC compiler as it
does not directly call cudaMalloc.

Known issue: Pointers in accelerator code cannot be dereferenced in CCE 8.0.

Known issue: Memory consumption in debugging mode can be considerably higher than regular mode,
if issues with memory exhaustion arise, consider using the environment variable CRAY_ACC_MALLOC_
HEAPSIZE to set total heap size (bytes) used on the device, which can make more memory available to
the application.

(© 2017 Allinea Software Ltd. 121

Allinea Forge 7.0

15.10.2 PGI Accelerators and CUDA Fortran
DDT supports debugging both the host and CUDA parts of PGI Accelerator and CUDA Fortran programs

compiled with version 14.4 or later of the PGI compiler. Older versions of the PGI compiler support
debugging only on the host.

(© 2017 Allinea Software Ltd. 122

Allinea Forge 7.0

16 Offline Debugging

Offline debugging is a mode of running Allinea DDT in which an application is run, under the control of
the debugger, but without user intervention and without a user interface.

There are many situations where running under this scenario will be useful, for example when access to a
machine is not immediately available and may not be available during the working day. The application
can run with features such as tracepoints and memory debugging enabled, and will produce a report at
the end of the execution.

16.1 Using Offline Debugging

To launch DDT in this mode, the - -0ffline argument is specified. Optionally, an output filename can
be supplied with the —output=<filename> argument. A filename with a . html or . htm extension will
cause a HTML version of the output to be produced, in other cases a plain text report is generated. If the
—output argument is not used, DDT will generate an HTML output file in the current working directory
and will report the name of that file upon completion.

ddt --offline mpiexec -n 4 myprog argl arg2

ddt --offline -o myjob.html mpiexec -n 4 myprog argl arg2
ddt --offline -o myjob.txt mpiexec -n 4 myprog argl arg2
ddt --offline -o myjob.html --np=4 myprog argl arg2

ddt --offline -o myjob.txt --np=4 myprog argl arg2

Additional arguments can be used to set breakpoints (at which the stack of the stopping processes will
be recorded before they are continued), or to set tracepoints at which variable values will be recorded.
Additionally, expressions can be set to be evaluated on every program pause.

Settings from your current DDT configuration file will be taken, unless over-ridden on the command
line.

Command line options that are of the most significance for this mode of running are:

e --5eSS10N=SESSIONFILE — run in offline mode using settings saved using the Save Session
option from DDT’s File menu.

e --processes=NUMPROCS or -n NUMPROCS — run with NUMPROCS processes

e --mem-debug[=(fast|balanced|thorough|off)] -enableand configure memory de-
bugging

e --snapshot-interval=MINUTES — write a snapshot of the program’s stack and variables to
the offline log file every MINUTES minutes. See section 16.4 below.

e --trace-at=LOCATION[,N:M:P],VAR1,VAR2,...] [if CONDITION] - set a tra-
cepoint at location, beginning recording after the N’th visit of each process to the location, and
recording every M’th subsequent pass until it has been triggered P times. Record the value of
variable VAR1, VAR2. The if clause allows you to specify a boolean CONDITION that must be
satisfied for the tracepoint to trigger.

Example:

main.c:22,-:2:-,X

will record x every 2nd passage of line 22.

(© 2017 Allinea Software Ltd. 123

Allinea Forge 7.0

e --break-at=LOCATION[,N:M:P][if CONDITION] - setabreakpointat LOCATION (ei-
ther file:1ine or function), optionally starting after the N’th pass, triggering every M passes
and stopping after it has been triggered P times. The if clause allows you to specify a boolean
CONDITION that must be satisfied for the breakpoint to trigger. When using the if clause the
value of this argument should be quoted.

The stack traces of paused processes will be recorded, before the processes are then made to con-
tinue, and will contain the variables of one of the processes in the set of processes that have paused.

Examples:

--break-at=main
--break-at=main.c:22
--break-at=main.c:22 --break-at=main.c:34

e --evaluate=EXPRESSION[;EXPRESSIONZ2][; ...] —setone or more expressions to be
evaluated on every program pause. Multiple expressions should be separated by a semicolon and
enclosed in quotes. If shell special characters are present the value of this argument should also be

quoted.
Examples:

--evaluate=1
--evaluate="1i; (*addr) / x"
--evaluate=1i --evaluate="i * x"

e --offline-frames=(all|none|n) — specify how many frames to collect variables for,

where n is a positive integer. The default value is all.
Examples:

--offline-frames=all
--offline-frames=none
--offline-frames=1337

The application will run to completion, or to the end of the job.

When errors occur, for example an application crash, the stack back trace of crashing processes will
be recorded to the offline output file. In offline mode, DDT will always act as if the user had clicked

Continue if the continue option was available in an equivalent “online” debugging session.

16.1.1 Reading a File for Standard Input

In offline mode, normal redirection syntax can be used to read data from a file as a source for the exe-

cutable’s standard input. Examples:

cat <input-file> | ddt --offline -o myjob.html ...
ddt --offline -o myjob.html ... < <input-file>

16.1.2 Writing a File from Standard Output

Normal redirection can also be used to write data to a file from the executable’s standard output:

ddt --offline -o myjob.html ... > <output-file>

(© 2017 Allinea Software Ltd.

124

Allinea Forge 7.0

16.2 Offline Report Output (HTML)

The output file is broken into four sections, Messages, Tracepoints, Memory Leak Report, and Output.
At the end of a job, DDT stitches together the four sections of the log output (tracepoint data, error
messages, memory leak data, and program output) into one file—if DDT’s process is terminated abruptly,
for example by the job scheduler, then these separate files will remain and the final single html report
may not be created. Note that a memory leak report section is only created when memory debugging is
enabled.

offline logbook
Debugging /hame/ddt/examples/helio_c

Messages. Tracepoints Output

Messages

[+]Expand Al [-] Collagse &l Time | Tracepoint |Processes Vatues
0:05 848 main (hello.c:97) [0-3 [—0

"
#[Type| Time [Processes Message 1
2 [0:06.081 Io.c.91)|0-3
3
4

1| i [e00000fra Launching mpirun -1 4 fexamplesmesa_c
at Th Mar 10 15:19:38 2016

2| b [omeon Startup complets:

S [omen|va |sescpecesgeman
O 00362203 . i helo.c.
s I 003 628(0.3

0:08.725,
0:07.320

0:07.527)

5
& [0:08.100
7 [o:0mse:
O
0
L

0:00.468

0.00.879| main (hello.c

o|o:20.078 main

Messages | Tacepoints MemoryLeaks Output

7| 5 [onsesefua Alinea DOT Memory Leak Report
ung - mpirun -n 4 fexamplesthelio_c
MP1 implementation : Auto-Detect [Open MPI)
- numbar of processes - 4
number of t

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
o 1 |
Memory debugging enabied - No | fenw seaa e]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1

Al & canks

5 | o [005.861[03 Play Rank 1: 588.88 k& N

0 | © [o07180[03 Process stopped ot breakpaint in moin (hello.c 168) Rank 2 56888 k&
Rank 3: 560,90 kB

10| Addtional Infermation
¥ Stacks

Processes Punction Source
83 in (hallo.c<368) » beingeatcie = 13; v Rank 6, thiaad |

| hiioc132_wloc_DRmap. alloc
__new_object (dhobject c)
I e

You can sl expart the raw data in CSY frmat

Mave the mau
Click & segment to

Messages | Tracepoints MemoryLesks Output

Output

b Current stack
1] > [Goaea[o3 Pay
12] 1) (000736 Every process i your program has term inated

Figure 89: Offline Mode HTML output

Timestamps are recorded with the contents in the offline log, and even though the file is neatly organized
into four sections, it remains possible to identify ordering of events from the time stamp.

The Messages section contains

e Error messages: for example if DDT’s Memory Debugging detects an error then the message and
the stack trace at the time of the error will be recorded from each offending processes.

e Breakpoints: a message with the stopped processes and another one with the Stacks, Current Stack
and Locals at this point.

e Addition Infomation: after an error or a breakpoint has stopped execution, then an additional in-
formation message is recorded. This message could contain the stacks, current stack and local
variables for the stopped processes at this point of the execution.

— The Stacks table displays the parallel stacks from all paused processes. Additionally, for every
top-most frame the variables (locals and arguments) will be displayed by default. You can
use the - -offline-frames command line option to display the variables for more frames
or none. If - -offline-frames=none is specified no variables at all will be displayed
(instead a Locals table will show the variables for the current process). Clicking on a function
will expand the code snippet and variables in one go. If the stop was caused by an error or
crash, the stack of the responsible thread or process will be listed first.

(© 2017 Allinea Software Ltd. 125

Allinea Forge 7.0

— The Current Stacks table shows the stack of the current process.

— The Locals table (if - -offline-frames=none) and the Variables column of the Stacks
table will show the variables across the paused processes. The text highlighting scheme is
the same as for the Local Variables in the GUI. The Locals table will show the local variables
of the current process, whereas the Variables column will show the locals for a representative
process that triggered the stop in that frame. In either case a sparkline for each variable will
show the distribution of values across the processes.

The Tracepoints section contains the output from tracepoints, similar to that shown in the tracepoints
window in an online debugging session—including sparklines displaying the variable distribution.

The Memory Leak Report section displays a graphical representation of the most significant sources of
memory leakage. Each row corresponds to the memory still allocated at the end of a job on a single rank.
The coloured segments correspond to locations in source that remaining allocations were allocated from.
Clicking on a segment reveals a table of call paths leading to that location for which allocations remain.
The raw data may also be exported by clicking the export link.

Output from the application will be written to the Output section. For most MPIs this will not be identi-
fiable to a particular process, but on those MPIs that do support it, DDT will report which processes have
generated the output.

Identical output from the Output and Tracepoints section will, if received in close proximity and order,
be merged in the output, where this is possible.

16.3 Offline Report Output (Plain Text)

Unlike the offline report in HTML mode, the plain text mode does not separate the tracepoint, breakpoint,
memory leak, and application output into separate sections.

Lines in the offline plain text report are identified as messages, standard output, error output, and trace-
points, as detailed in the Offline Report Output (HTML) section previously.

For example, a simple report could look like:

message (0-3): Process stopped at breakpoint in main (hello.c:97).

message (0-3): Stacks

message (0-3): Processes Function

message (0-3): 0-3 main (hello.c:97)

message (0-3): Stack for process 0

message (0-3): #0 main (argc=1, argv=0x7fffffffd378, \
environ=ex7fffffffd388) at /home/ddt/examples/hello.c:97

message (0-3): Local variables for process 0 \
(ranges shown for 0-3)

message (0-3): argc: 1 argv: Ox7fffffffd378 beingwWatched: 0 \
dest: 7 environ: Ox7fffffffd388 i: 0 message: ", I\312\t" \
my r ank: 0 (0-3) p: 4 source: 0 status: t2: Ox7ffff7ff7fco \
tables: tag: 50 test: x: 10000 y: 12

16.4 Run-Time Job Progress Reporting
In offline mode, DDT can be instructed to compile a snapshot of a job, including its stacks and vari-

ables, and update the session log with that information. This includes writing the HTML log file, which
otherwise is only written once the session has completed.

(© 2017 Allinea Software Ltd. 126

Allinea Forge 7.0

Snapshots can be triggered periodically via a command-line option, or at any point in the session by
sending a signal to the DDT front-end.

16.4.1 Periodic Snapshots

Snapshots can be triggered periodically throughout a debugging session with the command-line option
--snapshot-interval=MINUTES. For example, to log a snapshot every three minutes:

ddt --offline -o log.html --snapshot-interval=3 \
mpiexec -n 8 ./myprog

16.4.2 Signal-Triggered Snapshots

Snapshots can also be triggered by sending a SIGUSR1 signal to the DDT front-end process (called
ddt.bin in process lists), regardless of whether or not the - -snapshot-interval command-line
option was specified. For example, having run:

ddt --offline -o log.html mpiexec -n 8 ./myprog

A snapshot can be triggered by running (in another terminal):

Find PID of DDT front-end:
pgrep ddt.bin

> 18032

> 18039

Use pstree to identify the parent if there are multiple PIDs:
pstree -p

Trigger the snapshot:
kill -SIGUSR1 18032

(© 2017 Allinea Software Ltd. 127

Allinea Forge 7.0

17 Using DDT with the Vislt Visualization Tool

Vislt (http://wci.lInl.gov/codes/visit/) provides large-scale distributed visualization of complex data struc-
tures, but typically requires program instrumentation to achieve online visualization. DDT may function
as a VislIt data source, providing basic online visualization capabilities during a debugging session without
the need for program instrumentation or recompilation.

17.1 Support for Vislt

Please note: We can'’t provide support for building, setting up or general use of Vislt. Please ensure
that VisIt works with one of the example simulation clients before proceeding. VisIt support is available
from:

e The visit-users@ornl.gov mailing list (http://elist.ornl.gov/mailman/listinfo/visit-users)

e The Vislt user community web site (http://visitusers.org)

17.2 Patching and Building Vislt

Versions of Vislt prior to 2.6 must be patched to work with DDT, VisIt versions 2.6 onwards must be
built from source with the cmake VISIT_DDT option enabled. To use the Vislt Picks feature (see 17.8
Focusing on a Domain & Vislt Picks) you must be using Vislt >= 2.6, have applied the appropriate patch
and have compiled VisIt with VISIT_DDT enabled.

Vislt patch tarballs can be found in the visit-patches subdirectory of your DDT installation. Extract the
tarball into your Vislt source directory (e.g. visit2.6.2/src). If you have the program quilt in-
stalled then run quilt in that directory repeatedly until you get the message “File series fully
applied”. If quilt is not available you can apply the patches using patch with the following com-
mand:

1s patches/*.patch | xargs -n 1 cat | patch -p 0

17.3 Compatibility

Supported platforms: Linux only

Supported MPIs: Open MPI, MPICH 2 and Cray MPT.
Remote Launch is not supported.

Only dynamically linked executables are supported.

17.4 Enabling Vislt Support in DDT

Vislt support is configured on the File — Options — VisIt page of the DDT options window:

(© 2017 Allinea Software Ltd. 128

http://wci.llnl.gov/codes/visit/
mailto:visit-users@ornl.gov
http://elist.ornl.gov/mailman/listinfo/visit-users
http://visitusers.org

Allinea Forge 7.0

I System
l;L- v Vislt Visualization
N = b Submissi Visltis a free interactive parallel visualization and graphical analysis tool for viewing scientific
}\,ﬁﬂ Job Submission data. By setting 'vispoints' (visualization breakpoints) DDT can feed information to Vislt.
DDT can also work with programs you have already modified to display data in Vislt
Code Viewer (instrumented using Vislt's runtime library 1ibsim)
+ Allow the use of Vislt with DDT
A . - A
@ ppearance Vislt launch command: | jopt/software/visity2.6.1 /binjvisit

Custom arguments:

+| Launch Vislt with small viewer (-small argument)
+| Use Hardware Acceleration (-hw-accel argument)
Raise DDT window when a 'DDT pick' is made in Vislt

+| Close Vislt when the DDT session ends

+| Enable vispoints (preloads ddtsim if its not already statically linked)

+| Automatically create Pseudocolour plots for variable(s) at a vispoint (xterm required)
Vislt launch command on compute nodes | (if different to "vislt launch command”)

Library search path on compute nodes: Jopt/softwarefvisit/2.6.1/current/linux-x86_6...

o o |

Figure 90: VisIt Options Page

1. Tick the Allow the use of VisIt with DDT box.

2. Enter the path to the visit command in the VisIt Launch Commandbox, e.g. /opt/software/
visit/2.6.1/bin/visit.

3. Tick the Enable visualization breakpoints (preloads ddtsim. ..) option to enable DDT to work with
programs that haven’t been instrumented for use with Vislt.

4. Click Ok.

Hint: You can specify where the Vislt windows will be placed by adding geometry statements to the
custom arguments line. The Vislt GUI is placed with -geometry argument, the viewer where your
visualizations are drawn placed by -viewer_geometry. In both cases the geometry statements follow
the form [width]x[height]+[x-offset]+[y-offset]. For example, the following positions
the Vislt GUI and viewer to the right of the screen (depending on the size of your screen):

-geometry 150x800+1200+0 -viewer_geometry 500x500+700+250
Note: Vislt will apply the effects of the -small argument to after -viewer_geometry is applied,
resulting in a viewer smaller than what you requested. We recommend you do not use the -small

argument to VisIt if you are specifying window dimensions and locations manually with -viewer _-
geometry.

17.5 Setting Visualization Points (Vispoints)

A vispoint is a special breakpoint in DDT that, when hit, transfers control to Vislt to create a visual
representation of an a 1-, 2- or 3-dimensional array.

To create a vispoint:

(© 2017 Allinea Software Ltd. 129

Allinea Forge 7.0

Edit Vispoint X

Location | tableslSillsil | + |

Mesh type: Variable centering:
Array Expression: [ables[$il[$]] -
Distributed Array Dimensions: a How do | view distributed arrays?

Staggered Array: What does this do?

Range of $p (Distributed) Range of $i Range of §j
e [B ®m [B e (v B
Display: Display: > Display: 5

How data from multiple ranks is laid out in the visualization - each cell represents the rectangle of data from its

labelled rank.
i
—
3]s
Y| ana $p processes
0][s
—
X 4 1 process

Each process is a block of 15x18 values from tables[0] 4 processes arranged in a line.
[0] to tables[14][17].

o) e |

Figure 91: Add/edit vispoint window

1. Right-click on the line where you want to set it and select Add Vispoint from the menu.

2. If the mouse cursor is over an identifier representing an array, the vispoint may be pre-configured
with it. If not, you have to enter the array variable (e.g. tables) manually followed by either (for
C/C++) or ((for Fortran). DDT will try to auto-complete this expression (dimensions with bounds).
If this is not possible one has to manually add [$1][$]]... (C/C++) or ($1, $3,...) (Fortran) to
the expression and set the bounds. See section 8.15.1 Array Expression for more details.

3. Verify the arrays and processes will be arranged as you expect in VisIt by looking at the preview
diagrams beneath the array expression configuration controls.

4. You can visualize additional arrays at this vispoint by clicking the + tab and entering another array
expression.

5. Click Ok.

You can change the location and triggering conditions by switching to the Vispoint tab. Normal breakpoint
constraints, such as Trigger every n-th pass may also be used in conjunction with Vispoints.

Note: Every time a vispoint is hit, it must be hit by all processes before either VisIt or DDT can continue.
Position your vispoints carefully!

Note: DDT currently only supports one vispoint at a time. Changing a vispoint currently being displayed
in Vislt is not recommended.

(© 2017 Allinea Software Ltd. 130

Allinea Forge 7.0

A vispoint can only visualize an array that is a continuous block in memory. C/C++ multi-dimensional
arrays on the heap (created with malloc, calloc or new) are arrays of pointers to arrays and cannot be
visualized. If you have a one-dimensional C-style array (possibly allocated on the heap) you can visualise
it in multiple dimensions using an array expression of the form:

myarray[$k*WIDTH*HEIGHT+$j *WIDTH+$1i]

where WIDTH and HEIGHT are integers defining the dimensions of the 3D project to visualize (0 < $i
<=WIDTH and 0 < $j >= HEIGHT). Note that when using a rectilinear mesh the ordering of the $i,
$j, and $k terms in the array expression determines which dimension is mapped to the x, y and z axes in
Vislt. For rectilinear meshes the dimension where adjacent cells are in adjacent memory locations ($i in
the above array expression) must be mapped to the X-axis, and must therefore be the right-most term in
a C-style code array expression.

17.6 Using Vispoints in DDT

Once you have added one or more vispoints to your program you can play it and when your program
stops control will be transferred to Vislt.

1. Click Play to run your program as usual.

2. When a vispoint is hit the Vispoint window will appear:

Your program is currently at a vispoint. Vislt needs to
be launched to take control.

Use Vislt to examine the current variable(s) being visualized.
You can step to the next vispoint using Vislt's animation
controls.

To return control to DDT (and suspend Vislt) use the "Release
control to DDT" button on the Visit viewer window's toolbar.
DDT will also regain control if your program hits a breakpeint
whilst running to the next vispoint.

This dialog will close automatically when Visit returns control
to DOT

M Warning: You are using multiple vispoints.

Launch Vislt | | Request control from Vislt

Figure 92: Vispoint window

1. Click the Launch VisIt button to start VisIt.

2. Wait for VislIt to load and connect to the simulation. The Add button in the Plots section of the
VisIt GUI will light up when it’s ready.

3. If Automatically create Pseudocolour plots is enabled (see A.5.5) Vislt will automatically plot the
arrays that were specified for the vispoint that was hit, each array in a different viewer window
(whilst this is being done a VisIt CLI window will briefly appear).

You can also manually add your plots in VisIt as normal. A pseudocolor plot is recommended, there
will be a dataset with the same name as the array variable to be visualized. DDT makes available
a mesh called ddtmesh which contains the data from the array selected in DDT, you can see how
the data from each process is arranged on this mesh by using a Subset plot of Domains.

(© 2017 Allinea Software Ltd. 131

Allinea Forge 7.0

17.7 Returning to DDT

Either:
1. Click Request control from Vislt in the DDT Vispoint window; OR

2. Click the Release to DDT A icon in the Vislt viewer window; OR
3. Stop the simulation and exit VisIt—the simulation will automatically be released back to DDT.

Note: DDT cannot regain control of simulation without an instruction from VislIt.

17.8 Focusing on a Domain & Vislt Picks

You may change the currently selected process in DDT by picking a zone or node directly from a VisIt
plot.

Either:

1. Switch to the DDT Pick +D tool and click on a zone / node. The process that supplied the data
for the selected zone / node will be selected in DDT; OR

2. Use the Zone Pick or Node Pick tool. From the pick window click Focus In DDT. This will switch
to the process that supplied the data for the picked zone / node.

DDT will change its selected process and the status bar text will show which zone DDT was switched
to. See section 17.7 Returning to DDT for how to get back to DDT and actually do something on this
process.

Note: DDT will assume that the VisIt domain corresponds to the MPI rank of the process running that
domain.

In Vislt 2.4.2, 2.5.0 and unpatched-2.6.x DDT will change its selected process and the status bar text
will show which zone DDT was switched to; when using a patched version of VisIt 2.6.1 (see section
17.2 Patching and Building Vislt) data about the picked zone or node will be added to the Vislt Picks
table—wait for this data to appear before making another pick in VisIt. See section 17.7 Returning to
DDT for how to get back to DDT and actually do something on this process/data.

Vislt Picks X
Watch Process Address Expression Picked Value Note (4]
0 0x7fffifffcded tables[0][0] 1024
v 3 0xTfifffifce28 | tables[1][3] 204
2 0x7 fifffifcfe0 tables[&][6] [i] Personal note: investigate this!

(4]

[T D}

Figure 93: Vislt Pick Window

The Vislt Picks table displays information about the process and array index that supplied the data for the
picked zone/node. This includes the process, the expression used to access the particular array element,
the memory address of that array element and the value of that element as it was known to VisIt. You
can set a personal reminder to identify a pick by double-clicking in the Note column. Clicking on a line

(© 2017 Allinea Software Ltd. 132

Allinea Forge 7.0

in the table will focus DDT on the corresponding process, and you can create or remove a watchpoint on
the relevant memory address by toggling the checkbox.

Note: There is a limit to the number of watchpoints that can be enabled at the same time.

If you have enabled memory debugging (See section 12.1 Enabling Memory Debugging) you can get
information concerning about the memory allocation the picked cell was a part of by right-clicking on
an entry in the VisIt Picks table and selecting View pointer details (See section 12.4.2 View Pointer De-
tails).

You can drag-drop a row of the Vislt Picks table into the Evaluate Window to see the current value
for relevant array index (See section 8.4 Arbitrary Expressions And Global Variables). Remember the
Evaluate Window will show the value for the currently selected process—the display will change as you
switch focus to other processes.

17.9 Using DDT with a pre-instrumented program
Although DDT does not require your program to be instrumented for use with Vislt, DDT also supports
existing programs that are already instrumented.

1. Debug your program with DDT using whatever arguments are required for your program to stop
and connect to Vislt.

2. Launch Vislt, either as a separate instruction or with the Launch Vislt icon on the DDT toolbar.

3. Open your program’s . sim file in VisIt from the normal place
(by default ~/ .visit/simulations).

4. If launching VisIt from outside DDT, click File — Connect to DDT from within VisIt.

Note: This is only necessary when launching VisIt yourself, when DDT launches Vislt it automati-
cally connects.

5. Focus on a domain at any time (See section 17.8 Focusing on a Domain & Vislt Picks). Note
that VisIt will be frozen when your simulation is paused in DDT. There will be no Vispoint win-
dow—just use Vislt whilst your simulation is running.

Note: DDT will assume that the Vislt domain corresponds to the MPI rank of the process running that
domain.

(© 2017 Allinea Software Ltd. 133

Allinea Forge 7.0

Part Il

MAP

18 Getting Started

Allinea MAP is a source-level profiler and can show how much time was spent on each line of code. To
see the source code in MAP compile your program with the debug flag; for the most compilers this is - g.
Don’t just use a debug build; you should always keep optimization flags turned on when profiling!

You can also use MAP on programs without debug information; in this case inlined functions are not
shown and the source code cannot be shown but other features should work as expected.

To start MAP simply type one of the following into a shell window:

map
map program_name [arguments]
map <profile-file>

Where <profile-file> is a profile file generated by a MAP profiling run. It contains the program
name and has a *.map’ extension.
Note: When starting MAP for examining an existing profile file, a valid licence is not needed.

Note: Unless you are using Express Launch mode (see 18.1 Express Launch), you should not attempt
to pipe input directly to MAP. For information about how to achieve the effect of sending input to your
program, please read section 9 Program Input And Output.

It’s recommended to also add the - -profile argument to MAP. This runs without the interactive GUI
and saves a . map file to the current directory and is ideal for profiling jobs submitted to a queue.

Once started in interactive mode, MAP displays the Welcome Page:

(© 2017 Allinea Software Ltd. 134

Allinea Forge 7.0

- allinea
2~ FORGE

PROFILE
Profile a program

LOAD PROFILE DATA FILE
Load a profile data file from a previous run

OPTIONS

allinea
DDT

Remote Launch:
[orr

allinea
MAP qurr

Licence Serial: 2636 7

Figure 94: MAP Welcome Page

Note: In Express Launch mode (see 18.1 Express Launch) the Welcome Page is not shown and the user
is brought directly to the Run Dialog instead. If no valid licence is found, the program is exited and the
appropriate message is shown in the console output.

The Welcome Page allows you to choose what kind of profiling you want to do. You can:
e Profile a program
e Load a Profile from a previous run

e Connect to a remote system and accept a Reverse Connect request

18.1 Express Launch

Each of the Allinea Forge products can be launched by typing its name in front of an existing mpiexec
command:

$ map mpiexec -n 256 examples/wave_c 30

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see a error message like this:

$ 'MPICH 1 standard' programs cannot be started using Express
Launch syntax (launching with an mpirun command).

Try this instead:
map --np=256 ./wave_c 20

Type map --help for more information.

This is referred to as Compatibility Mode, in which the mpiexec command is not included and the
arguments to mpiexec are passed via a - -mpiargs="args here'" parameter.

(© 2017 Allinea Software Ltd. 135

Allinea Forge 7.0

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts
to run your program under one of the Allinea Forge products. This works best for MAP, which gathers
data without an interactive GUI (map --profile) or Reverse Connect (map --connect, see 3.3
Reverse Connect for more details) for interactive profiling.

If you can not use Reverse Connect and wish to use interactive profiling from a queue you may need to
configure MAP to generate job submission scripts for you. More details on this can be found in 18.7
Starting A Job In A Queue and A.2 Integration With Queuing Systems.

The following lists the MPI implementations supported by Express Launch:
e BlueGene/Q
e bullx MPI
e Cray X-Series (MPI/SHMEM/CAF)
e Intel MPI
e MPICH 2
e MPICH 3
e Open MPI (MPI/SHMEM)
e Oracle MPT
e Open MPI (Cray XT/XE/XK)
e Cray XT/XE/XK (UPC)

18.1.1 Run Dialog Box

In Express Launch mode, the Run dialog has a restricted number of options:

Run

Run: mpiexec -n 4 wave c Details

Command: | mpiexec -n 4 wave_c

Duration: Sampling entire program Details
OpenMP

Figure 95: Express Launch MAP Run dialog box

18.2 Preparing a Program for Profiling
In most cases, if your program is already compiled with debugging symbols then you do not need to

recompile your program to use it with MAP, although in some cases it may need to be re-linked—this is
explained in section 18.2.3 Linking below.

18.2.1 Debugging Symbols

Allinea MAP is a source-level profiler and can show how much time was spent on each line of code. To
see the source code in MAP compile your program with the debug flag, for example:

(© 2017 Allinea Software Ltd. 136

Allinea Forge 7.0

mpicc hello.c -o hello -g -03
Don’t just use a debug build; you should always keep optimization flags turned on when profiling!

You can also use MAP on programs without debug information; in this case inlined functions are not
shown and the source code cannot be shown but other features should work as expected.

Cray Compiler

For the Cray compiler we recommend using the - G2 option with MAP.

18.2.2 .eh-frame-hdr section

For statically-linked programs, you may need to compile with extra flags to ensure that the executable
still has all the information MAP needs to record the call path and gather the data needed for the Parallel
Stack View. For the GNU linker this means adding - -W1, - -eh-frame-hdr to the compile line, or
just - -eh-frame-hdr to the link line:

mpicc hello.c -o hello -g -Wl, --eh-frame-hdr

18.2.3 Linking

To collect data from your program, MAP uses two small profiler libraries—map - sampler and map-
sampler-pmpi. These must be linked with your program. On most systems MAP can do this auto-
matically without any action by you. This is done via the system’s LD_PRELOAD mechanism, which
allows us to place an extra library into your program when starting it.

Note: Although these libraries contain the word ‘map’ they are used for both Performance Reports and
MAP.

This automatic linking when starting your program only works if your program is dynamically-linked.
Programs may be dynamically-linked or statically-linked, and for MPI programs this is normally deter-
mined by your MPI library. Most MPI libraries are configured with - -enable-dynamic by default,
and mpicc/mpif90 produce dynamically-linked executables that MAP can automatically collect data
from.

The map-sampler -pmpi library is a temporary file that is precompiled and copied or compiled at
runtime in the directory ~/ .allinea/wrapper. If your home directory will not be accessible by all
nodes in your cluster you can change where the map - sampler - pmpi library will be created by altering
the shared directory asdescribed in G.2.3 No Shared Home Directory. The temporary library will
be created in the . allinea/wrapper subdirectory to this shared directory. For Cray X-Series
Systems the shared directory is not applicable, instead map-sampler -pmpi is copied into a
hidden .allinea sub-directory of the current working directory.

If MAP warns you that it could not pre-load the sampler libraries, this often means that your MPI library
was not configured with - -enable-dynamic, or that the LD_PRELOAD mechanism is not supported
on your platform. You now have three options:

1. Try compiling and linking your code dynamically. On most platforms this allows MAP to use the
LD_PRELOAD mechanism to automatically insert its libraries into your application at runtime.

2. Link MAP’s map-sampler and map-sampler - pmpi libraries with your program at link time
manually. See 18.2.4 Dynamic Linking on Cray X-Series Systems, or 18.2.5 Static Linking and
18.2.6 Static Linking on Cray X-Series Systems.

(© 2017 Allinea Software Ltd. 137

Allinea Forge 7.0

3. Finally, it may be that your system supports dynamic linking but you have a statically-linked
MPI. You can try to recompile the MPI implementation with - -enable-dynamic, or find a
dynamically-linked version on your system and recompile your program using that version. This
will produce a dynamically-linked program that MAP can automatically collect data from.

18.2.4 Dynamic Linking on Cray X-Series Systems

If the LD_PRELOAD mechanism is not supported on your Cray X-Series system, you can try to dynami-
cally link your program explicitly with the MAP sampling libraries.

Compiling the Allinea MPI Wrapper Library

First you must compile the Allinea MPI wrapper library for your system using the make-profiler -
libraries --platform=cray --lib-type=shared command. Note that Performance Re-
ports also uses this library.

user@login:~/myprogram$ make-profiler-libraries --platform=cray
--1lib-type=shared

Created the libraries in /home/user/myprogram:
libmap-sampler.so (and .so0.1, .s0.1.0, .s0.1.0.0)
libmap-sampler-pmpi.so (and .so.1, .s0.1.0, .s0.1.0.0)

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance
Reports:
-g (or '-62' for native Cray Fortran) (and -03 etc.)
linking (both MAP and Performance Reports):
-dynamic -L/home/user/myprogram -lmap-sampler-pmpi -lmap-
sampler -W1, --eh-frame-hdr

Note: These libraries must be on the same NFS/Lustre/GPFS
filesystem as your
program.

Before running your program (interactively or from a queue), set
LD_LIBRARY_PATH:

export LD_LIBRARY_PATH=/home/user/myprogram:3$LD_LIBRARY_PATH

map

or add -W1, -rpath=/home/user/myprogram when linking your program.

Linking with the Allinea MPI Wrapper Library
mpicc -G2 -0 hello hello.c -dynamic -L/home/user/myprogram \
-1lmap-sampler-pmpi -lmap-sampler -W1,--eh-frame-hdr
PGI Compiler

When linking OpenMP programs you must pass the - Bdynamic command line argument to the compiler
when linking dynamically.

When linking C++ programs you must pass the -pgc++1ibs command line argument to the compiler
when linking.

(© 2017 Allinea Software Ltd. 138

Allinea Forge 7.0

18.2.5 Static Linking

If you compile your program statically (i.e. your MPI uses a static library or you pass the -static
option to the compiler) then you must explicitly link your program with the Allinea sampler and MPI
wrapper libraries.

Compiling the Allinea MPI Wrapper Library

First you must compile the Allinea MPI wrapper library for your system using the make-profiler -
libraries --lib-type=static command. Note that Performance Reports also uses this li-
brary.

user@login:~/myprogram$ make-profiler-libraries --lib-type=static

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:

compilation for use with MAP - not required for Performance
Reports:
-g (and -03 etc.)

linking (both MAP and Performance Reports):
-W1l, @/home/user/myprogram/allinea-profiler.1ld

EXISTING_MPI_LIBRARIES

If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)
, then

these must appear *after* the Allinea sampler and MPI wrapper
libraries in

the 1link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in

/opt/allinea/forge/doc/.

Linking with the Allinea MPI Wrapper Library

The -W1, @/home/user/myprogram/allinea-profiler. 1d syntax tells the compiler to look
in /home/user/myprogram/allinea-profiler.1d for instructions on how to link with the
Allinea sampler. Usually this is sufficient, but not in all cases. The rest of this section explains how to
manually add the Allinea sampler to your link line.

PGI Compiler

When linking C++ programs you must pass the -pgc++11ibs command line argument to the compiler
when linking.

The PGI compiler must be 14.9 or later. Using an earlier versions of the PGI compiler will fail with an
error such as “Error: symbol 'MPI_F MPI_INPLACE' can not be both weak and
common” due to a bug in the PGI compiler’s weak object support. If you do not have access to PGI
compiler 14.9 or later try compiling and the linking Allinea MPI wrapper as a shared library as described
in 18.2.4 Dynamic Linking on Cray X-Series Systems (ommitting the - -platform=cray if you are
not on a Cray).

Cray

(© 2017 Allinea Software Ltd. 139

Allinea Forge 7.0

When linking C++ programs you may encounter a conflict between the Cray C++ runtime and the GNU
C++ runtime used by the MAP libraries with an error similar to the one below:

/opt/cray/cce/8.2.5/CC/x86-64/1ib/x86-64/1ibcray-c++-rts.a(rtti.o)
In function "__ cxa_bad_typeid':
/ptmp/ulib/buildslaves/cfe-82-edition-build/ths/cfe/lib_src/rtti.c
:1062: multiple definition of ~_ cxa_bad_typeid'
/opt/gcc/4.4.4/snos/1ib64/1ibstdc++.a(eh_aux_runtime.o):/tmp/peint
/gcc/repackage/4.4.4c/BUILD/snos_objdir/x86_64-suse-linux/
libstdc++-v3/1libsupc++/../../../../xt-gcc-4.4.4/1ibstdc++-v3/
libsupc++/eh_aux_runtime.cc:46: first defined here
You canresolve this conflict by removing - 1stdc++and -1gcc_ehfromallinea-profiler.1d.
-Ipthread

When linking -W1, @allinea-profiler.1ld must go before the - 1lpthread command line argu-
ment if present.

Manual Linking

When linking your program you must add the path to the profiler libraries (-L/path/to/profiler-
libraries), and the libraries themselves (- lmap - sampler-pmpi, - Imap-sampler).

The MPI wrapper library (- lmap-sampler -pmpi) must go:
1. After your program’s object (. 0) files.
2. After your program’s own static libraries (e.g. -1lmylibrary).
3. After the path to the profiler libraries (-L/path/to/profiler-1libraries).
4. Before the MPI’s Fortran wrapper library, if any (e.g. - lmpichf).
5. Before the MPI’s implementation library (usually - 1mpi).
6. Before the Allinea sampler library (- Lmap-sampler).
The sampler library (- 1lmap - sampler) must go:
1. After the Allinea MPI wrapper library.
2. After your program’s object (. 0) files.
3. After your program’s own static libraries (e.g. -1lmylibrary).
4. After -W1, - -undefined,allinea_init_sampler_now.
5. After the path to the profiler libraries (- L/path/to/profiler-1libraries).
6. Before -1stdc++, -1gcc_eh, -1rt, -1pthread, -1d1, -1mand - 1c.
For example:

mpicc hello.c -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-W1, - -undefined, allinea_init_sampler_now \
-lmap-sampler -1lstdc++ -1lgcc_eh -1rt \
-W1, --whole-archive -lpthread \
-W1, --no-whole-archive \
-W1, --eh-frame-hdr \
-1d1 \

(© 2017 Allinea Software Ltd. 140

Allinea Forge 7.0

-1m

mpif90 hello.f90 -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-W1, - -undefined, allinea_init_sampler_now \
-lmap-sampler -lstdc++ -1lgcc_eh -1rt \
-W1, --whole-archive -lpthread \
-W1, --no-whole-archive \
-W1, --eh-frame-hdr \
-1d1 \
-1m

MVAPICH 1

You must add -1fmpich after - lmap-sampler-pmpi (MVAPICH must be compiled with Fortran
support).

If you get a linker error about multiple definitions of mpi_init_, you need to specify additional linker
flags:

-Wl, --allow-multiple-definition

18.2.6 Static Linking on Cray X-Series Systems

Compiling the MPI Wrapper Library

On Cray X-Series systems use make-profiler-libraries --platform=cray --1lib-type=static
instead:

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:

compilation for use with MAP - not required for Performance
Reports:
-g (or -62 for native Cray Fortran) (and -03 etc.)

linking (both MAP and Performance Reports):
-W1l, @/home/user/myprogram/allinea-profiler.1d ...

EXISTING_MPI_LIBRARIES

If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)
, then

these must appear *after* the Allinea sampler and MPI wrapper
libraries in

the link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in

/opt/allinea/forge/doc/.

Linking with the MPI Wrapper Library

(© 2017 Allinea Software Ltd. 141

Allinea Forge 7.0

cc hello.c -o hello -g -Wl,@allinea-profiler.1ld

ftn hello.f90 -o hello -g -Wl,@allinea-profiler.1ld

18.2.7 Dynamic and Static Linking on Cray X-Series Systems using the
modules environment

If your system has the Allinea module files installed, you can load them and build your application as
usual. See section 18.2.8.

1. module load forge orensure that make-profiler-libraries isin your PATH

2. module load map-link-static ormodule load map-link-dynamic

3. Re-compile your program.

18.2.8 map-link modules Installation on Cray X-Series

To facilitate dynamic and static linking of user programs with the Allinea MPI Wrapper and Sampler
libraries Cray X-Series System Administrators can integrate the map-link-dynamic and map-link-static
modules into their module system. Templates for these modules are supplied as part of the Allinea Forge
package.

Copy files share/modules/cray/map-link-* into a dedicated directory on the system.
For each of the two module files copied:

1.- Find the line starting with conflict and correct the prefix to refer to the location the module files were
installed, e.g. allinea/map-link-static. The correct prefix depends on the subdirectory (if any) under the
module search path the map-link-* modules were installed.

2.- Find the line starting with set MAP_LIBRARIES DIRECTORY ”NONE” and replace "NONE”
with a user writable directory accessible from the login and compute nodes.

After installed you can verify whether or not the prefix has been set correctly with ‘module avail’, the
prefix shown by this command for the map-link-* modules should match the prefix set in the ‘conflict’
line of the module sources.

(© 2017 Allinea Software Ltd. 142

Allinea Forge 7.0

18.3 Profiling a Program

Run x
Application: /home/user/ddtjexamples/wave_c Details
Application: [fhomefuserfddt,.fexampIesjwave_c v]
Arguments: [v]
stdin file: - =

Working Directory: [v]
Duration: Sampling entire program Details

¥| MPI: 16 processes, Open MPI Details
Number of Processes: E

Processes per Node

Implementation: Open MPI

mpirun arguments [v

Q

OpenMP
Submit to Queue

Environment Variables: none Details

Help H Options] [Run H Cancel

Figure 96: Run window

If you click the Profile button on the MAP Welcome Page you will see the window above. The settings
are grouped into sections. Click the Details... button to expand a section. The settings in each section
are described below.

18.3.1 Application

Application: The full path name to your application. If you specified one on the command line, this will
already be filled in. You may browse for an application by clicking on the Browse & button.

Note: Many MPIs have problems working with directory and program names containing spaces. We
recommend avoiding the use of spaces in directory and file names.

Arguments: (optional) The arguments passed to your application. These will be automatically filled if
you entered some on the command line.

1

Note: Avoid using quote characters such as ' and ", as these may be interpreted differently by MAP
and your command shell. If you must use these and cannot get them to work as expected, please contact
support@allinea.com .

stdin file: (optional) This allows you to choose a file to be used as the standard input (stdin) for your
program. MAP will automatically add arguments to mpirun to ensure your input file is used.

Working Directory: (optional) The working (i.e. current directory) to use when running your application.
If this is blank then MAP’s working directory will be used instead.

(© 2017 Allinea Software Ltd. 143

mailto:support@allinea.com

Allinea Forge 7.0

18.3.2 Duration

Start profiling after: (optional) This allows you to delay profiling by a number of seconds into the run
of your program.

Stop profiling after: (optional) This allows you to specify a number of seconds after which the profiler
will terminate your program.

18.3.3 MPI

Note: If you only have a single process licence or have selected none as your MPI Implementation the
MPI options will be missing. The MPI options are not available when in single process mode. See section
18.5 Profiling a Single-Process Program for more details about using a single process.

Number of processes: The number of processes that you wish to profile. MAP supports hundreds of
thousands of processes but this is limited by your licence. This option may not be displayed if disabled
on the Job Submission options page.

Number of nodes: This is the number of compute nodes that you wish to use to run your program. This
option is only displayed for certain MPI implementations or if it is enabled on the Job Submission options

page.

Processes per node: This is the number of MPI processes to run on each compute node. This op-
tion is only displayed for certain MPI implementations or if it is enabled on the Job Submission options

page.
Implementation: The MPI implementation to use, e.g. Open MPI, MPICH 2 etc. Normally the Auto
setting will detect the currently loaded MPI module correctly. If you are submitting a job to a queue the

queue settings will also be summarised here. You may change the MPI implementation by clicking on
the Change. .. button.

Note: The choice of MPI implementation is critical to correctly starting MAP. Your system will normally
use one particular MPI implementation. If you are unsure as to which to pick, try generic, consult your
system administrator or Allinea. A list of settings for common implementations is provided in D MPI
Distribution Notes and Known Issues.

Note: If your desired MPI command is not in your PATH, or you wish to use an MPI run command that is
not your default one, you can configure this using the Options window (See section A.5.1 System).

mpirun arguments: (optional): The arguments that are passed to mpirun or your equivalent—usually
prior to your executable name in normal mpirun usage. You can place machine file arguments—if
necessary—here. For most users this box can be left empty.

Note: You should not enter the - np argument as MAP will do this for you.

18.3.4 OpenMP

Number of OpenMP threads: The number of OpenMP threads to run your program with. This ensures
the OMP_NUM_THREADS environment variable is set, but your program may override this by calling
OpenMP-specific functions.

(© 2017 Allinea Software Ltd. 144

Allinea Forge 7.0

18.3.5 Environment Variables

The optional Environment Variables section should contain additional environment variables that should
be passed to mpirun or its equivalent. These environment variables may also be passed to your pro-
gram, depending on which MPI implementation your system uses. Most users will not need to use this
box.

18.3.6 Profiling

Click Run to start your program—or Submit if working through a queue (See section A.2 Integration
With Queuing Systems). This will compile up a MPI wrapper library on the fly that can intercept the
MPI_INIT call and gather statistics about MPI use in your program. If this has problems see G.9.3
MPI Wrapper Libraries. Then MAP brings up the Running window and starts to connect to your pro-
Cessses.

The program runs inside MAP which starts collecting stats on your program through the MPI interface
you selected and will allow your MPI implementation to determine which nodes to start which processes
on.

MAP collects data for the entire program run by default—our sampling algorithms ensure only a few
tens of megabytes are collected even for very long-running jobs. If you wish, you can stop your program
at any time by using the Stop and Analyze button—MAP will then collect the data recorded so far, stop
your program and end the MPI session before showing you the results. If any processes remain you
may have to clean them up manually using the kil1l command (or a command provided with your MPI
implementation), but this should not be necessary.

File Edit View Metrics Window Help

/heme/user/allineatt P < [

Stop and Analyze]

414 processes running

@ Now
Started on Tue Jul 5 2016 15:01:17 (UTC+01)

wer (5 [zfunes 3]

Wave solution running with 4 processes

0: points = 1000000, running for 30 seconds
points / second: 810.4H (202.6H per process)
compute | commnicate efficiency: 98% | 98% | 99%

Points for validation:

0:0.00 200000:0.35 400000:0.59 600000:-0.59 £00000:-0.95 999993:0.00
wave finished

Note: Allinea MAP can only send input to the mpirun process with this MPI implementation

Type here (‘Enter’ to send):

Allinea Ultimate 7.0 727543901202 Jul 5 2016

Figure 97: Running window

(© 2017 Allinea Software Ltd. 145

Allinea Forge 7.0

18.3.7 Profiling Only Part of a Program

You may choose not to start the MAP sampler when the job starts, but instead start it programmatically at
a later point. To do this you must set the ALLINEA_SAMPLER_DELAY_START=1 environment variable
before starting your program. For MPI programs it is important that this variable is set in the environment
of all the MPI processes. It is not necessarily sufficient to simply set the variable in the environment of
the MPI command itself. You must arrange for the variable to be set or exported by your MPI command
for all the MPI processes.

You may call allinea_start_sampling and allinea_stop_sampling once each. That is to
say there must be one and only one contiguous sampling region. It is not possible to start, stop, start,
stop. You cannot pause / resume sampling using the allinea_suspend_traces and allinea_-
resume_traces functions. This will not have the desired effect. You may only delay the start of
sampling and stop sampling early.

18.3.71 C

To start sampling programmatically you should #include "mapsampler_api.h" and call the
allinea_start_sampling function. You will need to point your C compiler at the MAP include
directory, e.g. by passing the arguments -I <install root>/map/wrapper and also link with
the MAP sampler library, e.g. by passing the arguments -L <install root>/1ib/64 -1map-
sampler. To stop sampling progammatically call the allinea_stop_sampling function.

18.3.7.2 Fortran

To start sampling programmatically you should call the ALLINEA_START_SAMPLING subroutine. You
will also need to link with the MAP sampler library, e.g. by passing the arguments -L <install
root>/1ib/64 -1map-sampler. To stop sampling programmaticallty call the ALLINEA_STOP_-
SAMPLING subroutine.

18.4 remote-exec Required By Some MPIs

When using SGI MPT, MPICH 1 Standard or the MPMD variants of MPICH 2, MPICH 3 or Intel
MPI, MAP will allow mpirun to start all the processes, then attach to them while they’re inside MPI__
Init.

This method is often faster than the generic method, but requires the remote -exec facility in MAP to
be correctly configured if processes are being launched on a remote machine. For more information on
remote-exec, please see section A.4 Connecting to remote programs (remote-exec).

Important: If MAP is running in the background (e.g. map &) then this process may get stuck (some
SSH versions cause this behaviour when asking for a password). If this happens to you, go to the terminal
and use the fg or similar command to make MAP a foreground process, or run MAP again, without using
‘(&3’.

If MAP can’t find a password-free way to access the cluster nodes then you will not be able to use
the specialised startup options. Instead, You can use generic, although startup may be slower for large
numbers of processes.

(© 2017 Allinea Software Ltd. 146

Allinea Forge 7.0

18.5 Profiling a Single-Process Program

Run x

Application: /home/user/ddt/examples/simple busy Details

Application: [fhomefuserfddt,.fexamplesfsimple -]
v

Arguments: [busy

stdin file: - =
Working Directory: [v]
Duration: Sampling entire program Details
OpenMP

Submit to Queue

Environment Variables: none Details

Help H Options] [Run H Cancel

Figure 98: Single-Process Run Window

If you have a single-process licence you will immediately see the Run Window that is appropriate for
single-process applications. If your licence supports multiple processes you can simply clear the MPI
checkbox to run a single-process program.

Select the application—either by typing the file name in, or selecting using the browser by clicking the
browse & button. Arguments can be typed into the supplied box. If appropriate, tick the OpenMP box
and select the Number of OpenMP threads to start your program with.

Finally click Run to start your program.

18.6 Sending Standard Input

MAP provides a stdin file box in the Run window. This allows you to choose a file to be used as the
standard input (stdin) for your program. (MAP will automatically add arguments to mpirun to ensure
your input file is used.)

Alternatively, you may enter the arguments directly in the mpirun Arguments box. For example, if using
MPI directly from the command-line you would normally use an option to the mpirun such as -stdin
filename, then you may add the same options to the mpirun Arguments box when starting your MAP
session in the Run window.

It is also possible to enter input during a session. Start your program as normal, then switch to the
Input/Output panel. Here you can see the output from your program and type input you wish to send.
You may also use the More button to send input from a file, or send an EOF character.

(© 2017 Allinea Software Ltd. 147

Allinea Forge 7.0

Allinea MAP - Allinea Forge 5.1 x

File Edit VWiew Metrics Window Help

fhome/gjones/codefALL.. st/simple_inputfinput

Stop and Analyze]
1 /1 processes running

@ Now
Started on Wed Jun 24 16:52:29 2015 ——
Elapsed time: 48s After 5 H[Mmutes -]
Enter a value for a:
Enter a value for b:
10
Enter a value for c:
Type here (*Enter' to send): |15

1 process playing

Figure 99: MAP Sending Input

Note: If MAP is running on a fork-based system such as Scyld, or a - comm=shared compiled MPICH 1,
your program may not receive an EOF correctly from the input file. If your program seems to hang while
waiting for the last line or byte of input, this is likely to be the problem. See G General Troubleshooting
and Known Issues or contact Allinea for a list of possible fixes.

18.7 Starting A Job In A Queue

If MAP has been configured to be integrated with a queue/batch environment, as described in section
A.2 Integration With Queuing Systems then you may use MAP to launch your job. In this case, a Submit
button is presented on the Run Window, instead of the ordinary Run button. Clicking Submit from the
Run Window will display the queue status until your job starts. MAP will execute the display command
every second and show you the standard output. If your queue display is graphical or interactive then you
cannot use it here.

If your job does not start or you decide not to run it, click on Cancel Job . If the regular expression you
entered for getting the job id is invalid or if an error is reported then MAP will not be able to remove your
job from the queue—it is strongly recommend you check the job has been removed before submitting
another as it is possible for a forgotten job to execute on the cluster and either waste resources or interfere
with other profiling sessions.

After the sampling (program run) phase is complete, MAP will start the analysis phase, collecting and
processing the distinct samples. This could be a lengthy process depending on the size of the program.
For very large programs it could be as much as 10 or 20 minutes.

You should ensure that your job does not hit its queue limits during the analysis process, setting the job
time large enough to cover both the sampling and the analysis phases.

MAP will also require extra memory both in the sampling and in the analysis phases. If these fail and
your application alone approaches one of these limits then you may need to run with fewer processes per
node or a smaller data set to get a complete set of figures out.

Once your job is running, it will connect to MAP and you will be able to profile it.

(© 2017 Allinea Software Ltd. 148

Allinea Forge 7.0

18.8 Using Custom MPI Scripts

On some systems a custom mpirun replacement is used to start jobs, such as mpiexec. MAP will
normally use whatever the default for your MPI implementation is, so for MPICH 1 it would look for
mpirun and not mpiexec, for SLURM it would use srun etc. This section explains how to configure
MAP to use a custom mpirun command for job start up.

There are typically two ways you might want to start jobs using a custom script, and MAP supports them
both. Firstly, you might pass all the arguments on the command-line, like this:

mpiexec -n 4 /home/mark/program/chains.exe /tmp/mydata

There are several key variables in this line that MAP can fill in for you:
1. The number of processes (4 in the above example)
2. The name of your program (/home/mark/program/chains.exe)
3. One or more arguments passed to your program (/tmp/mydata)

Everything else, like the name of the command and the format of its arguments remains constant. To use
a command like this in MAP, we adapt the queue submission system described in the previous section.
For this mpiexec example, the settings would be as shown here:

Allinea Ultimate - Options e
Syst H
e | Job Submission }
MPI/UPC Implementation [OpenMP\ H]
D Code Viewer «| Override default mpirun path: [mpiexec]
Debugger: [VAutomatic (recommended) =]

@ Appearance

Use shared symbol cache

not supported with this debugger/platform) What is the shared symbol cache?

Heterogeneous system support

Enable CUDA software pre-emption (CUDA 5.5+)

o | e

Figure 100: MAP Using Custom MPI Scripts

As you can see, most of the settings are left blank. Let’s look at the differences between the Submit
Command in MAP and what you would type at the command-line:

(© 2017 Allinea Software Ltd. 149

Allinea Forge 7.0

1. The number of processes is replaced with NUM_PROCS_TAG

2. The name of the program is replaced by the full path to ddt -debugger (used by both DDT and
MAP)

3. The program arguments are replaced by PROGRAM_ARGUMENTS_TAG

Note, it is NOT necessary to specify the program name here. MAP takes care of that during its own
startup process. The important thing is to make sure your MPI implementation starts ddt -debugger
instead of your program, but with the same options.

The second way you might start a job using a custom mpirun replacement is with a settings file:

mpiexec -config /home/mark/myapp.nodespec

where myfile.nodespec might contains something like this:

comp00@ comp0l comp02 comp03 : /home/mark/program/chains.exe /tmp/
mydata

MAP can automatically generate simple configuration files like this every time you run your program—you
just need to specify a template file. For the above example, the template filemyfile.template would
contain the following:

comp00@ comp0l comp02 comp03 : DDTPATH_TAG/bin/ddt-debugger
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_ARGUMENTS_TAG

This follows the same replacement rules described above and in detail in section A.2 Integration With
Queuing Systems. The options settings for this example might be:

l;l! System Job Submission Settings

.;IT‘ Job Submission Submission template file: [,!home,fuser,.fallinea,.ftools,.ftemplates,.fload\eve\er.qtf]
”

Submit command: [Ilsubmit

Code Viewer

Regexp for job id: ["f[""]-l—)".*has been submitted

Nt

Appearance Cancel command: [IIcanceIJOB_ID_TAG

Display command: [Ilq

Edit Queue Parameters...

+| Quick Restart What is Quick Restart?

o

Figure 101: MAP Using Substitute MPI Commands

(© 2017 Allinea Software Ltd. 150

Allinea Forge 7.0

Note the Submit Command and the Submission Template File in particular. MAP will create a new file
and append it to the submit command before executing it. So, in this case what would actually be executed
might be mpiexec -config /tmp/allinea-temp-0112 or similar. Therefore, any argument
like -config must be last on the line, because MAP will add a file name to the end of the line. Other
arguments, if there are any, can come first.

We recommend reading the section on queue submission, as there are many features described there that
might be useful to you if your system uses a non-standard start up command. If you do use a non-standard
command, please email us at support@allinea.com and let us know about it—you might find the next
version supports it out-of-the-box!

18.9 Starting MAP From A Job Script

While its common when debugging to submit runs from inside a debugger, for profiling the usual approach
would be to run the program offline, producing a profile file that can be inspected later. To do this replace
your usual program invocation with a MAP command. So

mpirun -n 4 PROGRAM [ARGUMENTS]...

becomes either

map --profile mpirun -n 4 PROGRAM [ARGUMENTS]...

or

map --profile --np=4 PROGRAM [ARGUMENTS]...

MAP will run without a GUI, gathering data to a . map profile file. Its filename is based on a combination
of program name, process count and timestamp, like program_2p_2012-12-19.10-51.map. If
using OpenMP, the value of OMP_NUM_THREADS is also included in the name after the process count,
like program_2p 8t _2014-10-21_12-45.map. This default name may be changed with the - -
output argument. To examine this file, either run MAP and select the Load Profile Data File option,
or access it directly with command

map program_2p_2012-12-19_10-51.map

Note: When starting MAP for examining an existing profile file, a valid licence is not needed.

When running without a GUI, MAP prints a short header and footer to stderr with your program’s output
in between. The - -silent argument suppresses this additional output so that your program’s output is
intact.

As an alternative to - -profile you can use Reverse Connect (see 3.3 Reverse Connect) to connect
back to the GUI if you wish to use interactive profiling from inside the queue. So the above example
becomes either

map --connect mpirun -n 4 PROGRAM [ARGUMENTS]...

or

map --connect --np=4 PROGRAM [ARGUMENTS]...

(© 2017 Allinea Software Ltd. 151

mailto:support@allinea.com

Allinea Forge 7.0

18.10 MAP Environment Variables

ALLINEA SAMPLER INTERVAL

MAP takes a sample in each 20ms period, giving it a default sampling rate of 50Hz. This will be
automatically decreased as the run proceeds to ensure a constant number of samples are taken (see
ALLINEA_SAMPLER_NUM_SAMPLES). If your program runs for a very short period of time, you may
benefit by decreasing the initial sampling interval. For example, ALLINEA_SAMPLER_INTERVAL=1
sets an initial sampling rate of 1000Hz, or once per millisecond. Higher sampling rates are not supported.
Increasing the sampling frequency from the default is not recommended if there are lots of threads and/or
very deep stacks in the target program as this may not leave sufficient time to complete one sample before
the next sample is started.

ALLINEA _SAMPLER_INTERVAL_PER_THREAD

To keep overhead low, MAP imposes a minimum sampling interval based on the number of threads. By
default this is 2ms per thread, thus for 11 or more threads MAP will increase the initial sampling interval
to more than 20ms. You can adjust this behaviour by setting ALLINEA_SAMPLER_INTERVAL_PER_
THREAD to the minimum per-thread sample time in milliseconds. Lowering this value from the default is
not recommended if there are lots of threads as this may not leave sufficient time to complete one sample
before the next sample is started.

ALLINEA MPI_WRAPPER

To direct MAP to use a specific wrapper library set ALLINEA_MPI_WRAPPER=<pathofsharedobject>.
MAP ships with a number of precompiled wrappers, when your MPI is supported MAP will automati-

cally select and use the appropriate wrapper. To manually compile a wrapper specifically for your sys-

tem, set ALLINEA_WRAPPER_COMPILE=1 and MPICC and run <path to MAP installa-
tion>/map/wrapper/build_wrapper which will generate the wrapper library ~/.allinea/
wrapper/libmap-sampler-pmpi-<hostname>. so with symlinks to
~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so.1,
~/.allinea/wrapper/libmap-sampler-pmpi-<hostname>.so0.1.0,and~/.allinea/
wrapper/libmap-sampler-pmpi-<hostname>.s0.1.0.0.

ALLINEA WRAPPER COMPILE

To direct MAP to fall back to creating and compiling a just-in-time wrapper, set ALLINEA_WRAPPER_
COMPILE=1. In order to be able to generate a just-in-time wrapper an appropriate compiler must be
available on the machine where MAP is running, or on the remote host when using remote connect.
MAP will attempt to auto detect your MPI compiler, however, setting the MPICC environment variable
to the path to the correct compiler is recommended.

ALLINEA MPIRUN

The path of mpirun, mpiexec or equivalent. If this is set it has higher priority than that set in the GUI
and the mpirun found in PATH.

ALLINEA SAMPLER NUM_SAMPLES

MAP collects 1000 samples per process by default. To avoid generating too much data on long runs,

the sampling rate will be automatically decreased as the run progresses to ensure only 1000 evenly-
spaced samples are stored. You may adjust this by setting ALLINEA_SAMPLER_NUM_SAMPLES=
<positiveinteger>—however, we strongly recommend leaving this value at the default setting—higher
values are not generally beneficial and add extra memory overheads while running your code. Bear in
mind that with 512 processes, the default setting already collects half a million samples over the job—the
effective sampling rate can be very high indeed.

(© 2017 Allinea Software Ltd. 152

Allinea Forge 7.0

ALLINEA KEEP OUTPUT_LINES

Specifies the number of lines of program output to record in . map files. Setting to © will remove the line
limit restriction, although this is not recommended as it may result in very large . map files if the profiled
program produces lots of output. See 19.3 Restricting Output.

ALLINEA KEEP OUTPUT_LINE LENGTH

The maximum line length for program output that will be recorded in . map files - lines containing more
characters than this limit will be truncated. Setting to ® will remove the line length restriction, although
this is not recommended as it may result in very large . map files if the profiled program produces lots
of output per line. See 19.3 Restricting Output.

ALLINEA PRESERVE WRAPPER

To gather data from MPI calls MAP generates a wrapper to the chosen MPI implementation (see 18.2
Preparing a Program for Profiling). By default the generated code and shared objects are deleted when
MAP no longer needs them. To prevent MAP from deleting these files set ALLINEA_PRESERVE_
WRAPPER=1. Please note that if you are using remote launch then this variable must be exported in the
remote script (see 3.2.1 Remote Script).

ALLINEA SAMPLER NO_TIME_MPI CALLS
Set this to prevent MAP from timing the time spent in MPI calls.
ALLINEA _SAMPLER_TRY_USE_SMAPS

Set this to allow MAP to use /proc/[pid]/smaps to gather memory usage data. This is not recom-
mended since it slows down sampling significantly.

MPICC

To create the MPI wrapper MAP will try to use MPICC, then if that fails search for a suitable MPI compiler
command in PATH. If the MPI compiler used to compile the target binary is not in PATH (or if there are
multiple MPI compilers in PATH) then MPICC should be set.

(© 2017 Allinea Software Ltd. 153

Allinea Forge 7.0

19 Program Output

MAP collects and displays output from all processes under the Input/Output tab. Both standard output
and error are shown. As the output is shown after the program has completed, there are not the problems
with buffering that occur with DDT.

19.1 Viewing Standard Output And Error

Input/Qutput | Project Files | Main Thread Stacks | Functions |
Input/Output]

my rank is 1 =
I can write to stderr too
I can write to stderr too L
I can write to stderr too
I can write to stderr too
my rank is 2

sizeofiint) = 4
sizeofivoid*) = &

My pid is 9581, —

T hawe 1 arnouments
[0 | b

Figure 102: MAP Standard Output Window

The Input/Output tab is at the bottom of the screen (by default).

The output may be selected and copied to the X-clipboard.

19.2 Displaying Selected Processes

You can choose whether to view the output for all processes, or just a single process.

Note: Some MPI implementations pipe stdin, stdout and stderr from every process through mpirun or
rank 0.

19.3 Restricting Output

To keep file sizes within reasonable limits .map files will contain a summary of the program output
limited to the first and last 500 lines (by default). To change this number, profile with the environment
variable ALLINEA_KEEP_OUTPUT_LINES set to the prefered total line limit (ALLINEA_KEEP_OUT -
PUT_LINES=20 will restrict recorded output to the first 10 lines and last 10 lines). Setting this to © will
remove the line limit restriction, although this is not recommended as it may result in very large . map
files if the profiled program produces lots of output.

The length of each line is similarly restricted to 2048 characters. This can be changed with the envi-
ronment variable ALLINEA_KEEP_OUTPUT_LINE_LENGTH. As before setting this to a value of 0 will
remove the restriction, although this is not recommended as it risks a large .map file if the profiled
program emits binary data or very long lines.

(© 2017 Allinea Software Ltd. 154

Allinea Forge 7.0

19.4 Saving Output

By right-clicking on the text it is possible to save it to a file. You also have the option to copy a selection
to the clipboard.

(© 2017 Allinea Software Ltd. 155

Allinea Forge 7.0

20 Source Code

MAP provides code viewing, editing and rebuilding features. It also integrates with most major ver-
sion control systems and provides static analysis to automatically detect many classes of common er-
Tors.

The code editing and rebuilding capabilities are not designed for developing applications from scratch,
but they are designed to fit into existing profiling sessions that are running on a current executable.

The same capabilities are available for source code whether running remotely (using the remote client)
or whether connected directly to your system.

20.1 Viewing

Source and header files found in the executable are reconciled with the files present on the front-end
server, and displayed in a simple tree view within the Project Files tab of the Project Navigator window.
Source files can be loaded for viewing by clicking on the file name.

The source code viewer supports automatic colour syntax highlighting for C and Fortran.

You can hide functions or subroutines you are not interested in by clicking the ‘—’ glyph next to the first
line of the function. This will collapse the function. Simply click the ‘+’ glyph to expand the function
again.

-—_::|

Figure 103: Source Code View

The centre pane shows your source code, annotated with performance information. All the charts you
will see in Allinea MAP share a common horizontal time axis. The start of your job is at the left and the
end at the right. The sparkline charts next to each line of source code shows how the number of cores
executing that line of code varies over time.

What does it mean to say a core is executing a particular line of code? In the source code view, MAP
uses inclusive time, that is time spent on this line of code or inside functions called by this line. So the
main () function of a single-threaded C or MPI program is typically at 100% for the entire run.

Only ‘interesting’ lines get charts—lines in which at least 0.1% of the selected time range was spent. In
the figure above we can see three different lines meet this criteria. The other lines were executed as well,
but a negligible amount of time was spent on them.

The first line is a function call to imbalance, which was running for 18.1% of the wall-clock time. If
you look closely, you’ll see that as well as a large block of green there is a sawtooth pattern in blue. Colour
is used to identify different kinds of time. In this single-threaded MPI code we have three colours:

e Dark green Single-threaded computation time. For an MPI program, this is all computation time.
For an OpenMP or multi-threaded program, this is the time the main thread was active and no
worker threads were active.

e Blue MPI communication and waiting time. All time spent inside MPI calls is blue, regardless of
whether that is in MPI_Send or MPI_Barrier. Typically you want to minimize this, because
the purpose of most codes is parallel computation, not communication for its own sake.

(© 2017 Allinea Software Ltd. 156

Allinea Forge 7.0

Orange I/O time. All time spent inside known I/O functions such as reading and writing to the
local or networked filesystem is shown in orange. You definitely want to minimize time spent in
I/O and on many systems the complex data storage hierarchy can cause unexpected bottlenecks to
occur when scaling a code up. MAP always shows the time from the application’s point of view,
so all the underlying complexity is captured and represented as simply as possible.

Dark purple Accelerator. All the time the CPU is waiting the accelerator to return the control to the
CPU. Typically you want to minimize this, making the CPU work in parallel with the accelerator
using accelerator asynchronous calls.

In the above screenshot we can see the following:

First a function called imbalance is called. This function spends most of its time in computation
(dark green) and around 15-20% of it in MPI calls (blue). Hovering the mouse over any graph
shows an exact breakdown of the time spent in it. There is a sawtooth pattern to the time spent in
MPI calls that we will investigate a little further below.

Next the application moves on to a function called st ride, which spends all of its time computing.
Great! Later we will see how to tell whether this time is well spent or not. We can also see an MPI
synchronization at the end. The triangle shape is typical of ranks finishing their work at different
times and spending varying amounts of time waiting at a barrier. Wherever you see triangles in
these charts you see imbalance.

Finally, a function called overlap is called, which spends almost all of its time in MPI calls.

The other functions in this snippet of source code were active for <0.1% of the total runtime and
can be ignored from a profiling point of view.

As this was an MPI program, the height of each block of colour repesents the percentage of MPI processes
that were running each particular line at any moment in time. So the sawtooth pattern of MPI usage
actually tells us that:

The imbalance function goes through several iterations.
In each iteration all processes start out computing; there is more green than blue.

As execution continues more and more processes finish computing and transition to waiting in an
MPI call, causing the distinctive triangular pattern showing workload imbalance.

As each triangle ends all ranks finish communicating and the pattern begins again with the next
iteration.

This is a classic sign of MPI imbalance. In fact, any triangular patterns in MAP’s graphs show that
first a few processes are changing to a different state of execution, then more, then more until they all
synchronize and move on to another state together. These areas should be investigated!

You can explore this in more detail by opening the examples/slow.map file and looking at the im-
balance function yourself. Can you see why some processes take longer to finish computing than
others?

(© 2017 Allinea Software Ltd. 157

Allinea Forge 7.0

20.2 OpenMP programs

= integrate.cpp | o force_ljcpp ¥

0.6% 110 &= //these routines are not yet ported to OpenMP (...})]
171
172 #pragma omp barrier
173

11.1% 174 neighbor.build(atom);
175
178 // #pragma omp barriler
177
178 #pragma omp master
179 timer.stamp(TIME_NEIGH); —
180 1
181 -
182 force-=evflag = (n + 1) % thermo.nstat == 0;

78.4 183 force-=compute(atom, neighbor, comm, comm.me); ||
184 b

L4 | DN

Figure 104: OpenMP Source Code View

In an OpenMP or multi-threaded program (or a mixed-mode MPI+OpenMP program) you will also see
these colours used:

o Light green Multi-threaded computation time. For an OpenMP program this is time inside OpenMP
regions. When profiling an OpenMP program you want to see as much light green as possible, be-
cause that’s the only time you’re using all available cores. Time spent in dark green is a potential
bottleneck because it is serial code outside an OpenMP region.

e Light blue Multi-threaded MPI communication time. This is MPI time spent waiting for MPI
communication whilst inside an OpenMP region or on a pthread. As with the normal blue MPI
time you will want to minimize this, but also maximize the amount of multi-threaded computation
(light green) that is occuring on the other threads whilst this MPI communication is taking place.

e Dark Grey Time inside an OpenMP region in which a core is idle or waiting to synchronize with
the other OpenMP threads. In theory, during an OpenMP region all threads are active all of the time.
In practice there are significant synchronization overheads involved in setting up parallel regions
and synchronizing at barriers; these will be seen as dark grey holes in the otherwise happy light
green of optimal parallel computation! If you see these there may be an opportunity to improve
performance with better loop scheduling or division of labour.

e Pale blue Thread synchronization time. Time spent waiting for synchronization between non-
OpenMP threads (e.g. a pthread_join). Whether this time can be reduced depends on the
purpose of the threads in question.

In the screenshot above we can see that 11.1% of the time is spent calling neighbor.build(atom)
and 78.4% of the time is spent calling force->compute(atom, neighbor, comm, comm.me).
The graphs show a mixture of light green indicating an OpenMP region and dark grey indicating
OpenMP overhead. Hovering the mouse over a line will show the exact percentage of time spent in
overhead, but visually we can already see that it is significant but not dominant here.

Increasingly, programs use both MPI and OpenMP to parallelize their workloads efficiently. MAP fully
and transparently supports this model of working. It’s important to note that the graphs are a reflection
of the application activity over time:

e A large section of blue in a mixed-mode MPI code means that all the processes in the application
were inside MPI calls during this period. Try to reduce these, especially if they have a triangular
shape suggesting that some processes were waiting inside MPI while others were still computing.

(© 2017 Allinea Software Ltd. 158

Allinea Forge 7.0

e A large section of dark green means that all the processes were running single-threaded computa-
tions during that period. Avoid this in an MPI+OpenMP code, or you might as well leave out the
OpenMP sections altogether!

e Ideally you want to achieve large sections of light green, showing OpenMP regions being effec-
tively used across all processes simultaneously. Good luck!

e It is possible to call MPI functions from within an OpenMP region. MAP only supports this if the
main thread (the OpenMP master thread) is the one that makes the MPI calls. In this case, the blue
block of MPI time will be smaller, reflecting that one OpenMP thread is in an MPI function while
the rest are doing something else—hopefully useful computation!

20.3 Dealing with complexity: code folding

Real-world scientific codes do not look much like the examples above. They tend to look more like
this:

F hydrof00 32 " advec_mom_kemelf90 3¢ |
157 dif=upwind
ENDIF

[v]

sigma=ABS(node_flux(j, k))/(node_mass_pre(donor, k))
width=celldx(j)
vdiffuw=vell(donor, k)-vell(upwind, k)
vdiffdw=vell(downwind, k)-vell(donor, k)
limiter=0.0
IF(vdiffuw*vdiffdw.6T.0.0)THEN

auw=ABS (vdiffuw)

adw=ABS (vdiffdw)

wind=1.6_8

IF(vdiffdw.LE.8.0) wind=-1.8_8

0.1% limiter=wind*MIN{width* ((2.0_8-sigma) ‘adw/width+(1.0_8+sigma) auw/celldx(dif))/6.0_8, auw, a-|
ENDIF (=
0.2% advec_vel(],k)=vell(donor, k)+(1.0-sigma) limiter
0.2% mom_flux(j, k)=advec_vel(j, k) node_flux(j, k)
ENDDO
ENDDO
DO k=y_min,y_max+1
76 DO j=x_min, x_max+1l [+
Kl [[v]

Figure 105: Typical Fortran Code in MAP

Here, small amounts of processing are distributed over many lines, and it is difficult to see which parts
of the program are responsible for the majority of the resource usage.

To understand the performance of complex blocks of code like this, MAP allows supports code folding.
Each logical block of code such as an if-statement or a function call has a small [-] next to it. Clicking
this folds those lines of code into one and shows one single sparkline for the entire block:

F hydro.f90 F advec_mom_kemnelf90
78 REAL(KIND=8), POINTER, DIMENSION(:,:) :: wvell

[v]

=]¢] | Choose the correct welocity, ideally, remove this pointer
81 I 1f it affects performance.

! Leave this one in as a test of performance
IF(which_vel EQ.1)THEN [__...F)

mom_sweep=direction+2" (sweep_number-1)

91
4.8% e i Lu b 92 @ IF(mom_sweep.EQ.1)THEN ! x 1 [--F)
18.5% e |’y 122 5 IF(difection.EQ.IJTHEN [.. .F]

END SUBROUTINE advec_mom_kernel

END MODULE advec_mom_kernel_mod

£l (D

Figure 106: Folded Fortran Code in MAP

Now we can clearly see that most of the processing occurs within the conditional block starting on

(© 2017 Allinea Software Ltd. 159

Allinea Forge 7.0

line 122.

When exploring a new source file, a good way to understand its performance is to use the View->Fold
All menu item to collapse all the functions in the file to single lines, then scroll through it looking for
functions that take an unusual amount of time or show an unusual pattern of I/O or MPI overhead, perhaps.
These can then be expanded to show their most basic blocks, and the largest of these can be expanded
again and so on.

Try it out, it’s a surprisingly compelling and satisfying way to understand where an application spends
its time with very little effort!

20.4 Editing

Source code may be edited in the code viewer windows of MAP. The actions Undo, Redo, Cut, Copy,
Paste, Select all, Go to line, Find, Find next, Find previous, and Find in files are available from the Edit
menu. Files may be opened, saved, reverted and closed from the File menu. Note that information from
MAP will not match edited source files until the changes are saved, the binary is rebuilt, and a new profile
is recreated.

If the currently selected file has an associated header or source code file, it can be open by right-clicking
in the editor and choosing Open <filename>.<extension>. There is a global shortcut on function key F4,
available in the Edit menu as Switch Header/Source option.

To edit a source file in an external editor, right-click the editor for the file and choose Open in external
editor. To change the editor used, or if the file doesn’t open with the default settings, open the Options
window by selecting File — Options (Allinea Forge — Preferences on Mac OS X) and enter the path to
the preferred editor in the Editor box, e.g. /usr/bin/gedit.

If a file is edited the following warning will be displayed at the top of the editor.

M This file has been edited.

Figure 107: File Edited Warning

This is merely to warn that the source code shown is not the source that produced the profiled bi-
nary.

20.5 Rebuilding and Restarting
To configure the build command choose File — Configure Build..., enter a build command and a direc-

tory in which to run the command, and click Apply. To issue the build command choose File — Build,
or press Ctrl+B (Cmd+B on Mac OS X). When a build is issued the Build Output view is shown.

20.6 Committing changes

Changes to source files may be committed using one of Git, Mercurial, and Subversion. To commit
changes choose File — Commit.. ., enter a commit message to the resulting dialog and click the commit
button.

(© 2017 Allinea Software Ltd. 160

Allinea Forge 7.0

21 Selected Lines View

Time spent on line 84 (lEs)

Breakdown of the 17.6% time
spent on this line:

Executing instructions 100 0% B
Calling other functions
Time in instructions executed:

Scalar floating-point
Vector floating point
Scalar integer
Vector integer
Memory access*®
Branch

Other instructions

*15.2% memory access instructions,
43.5% implicit memory accesses in
other instructions, alse counted in
their categaries

Figure 108: Selected Lines View

Note: The selected lines view is currently only available for profiles generated on x86_64 systems.

The Selected Lines View view allows you to get detailed information on how one or more lines of code are
spending their time. To access this view, open one of your program’s source files in the code viewer and
highlight a line. The Selected Lines View (by default, shown on the right hand side of the source view)
will automatically update to show a detailed breakdown of how the selected lines are spending their time.
You can select multiple lines, and MAP will show information for all of the lines together. You can also
select the first line of a collapsed region (see section 20.1) to see information for the entire code block.
If you use the metrics view to select a region of time (see section 26), the selected lines view will only
show details for the highlighted region.

The panel is divided into two sections. The first section gives an overview of how much time was spent
executing instructions on this line, and how much time was spent in other functions. If the time spent
executing instructions is low, consider using the stacks view (see section 22) or functions view (see section
24) to locate functions that are using a lot of CPU time.

The second section details the CPU instruction metrics for the selected line. These largely show the same
information as the global program metrics, described in section 26.1, but for the selected lines of source
code.

Unlike the global program metrics, the line metrics are divided into separate entries for scalar and vector
operations, and report time spent in “implicit memory accesses”. On some architectures, computational
instructions (such as integer or vector operations) are allowed to access memory implicitly. When these
types of instruction are used, MAP cannot distinguish between time performing the operation and time
accessing memory, and therefore reports time for the instruction in both the computational category and
the memory category. The amount of time spent in “explicit” and “implicit” memory accesses is reported
as a footnote to the time spent executing instructions.

In general, aim for a large proportion of time in vector operations. If you see a high proportion of time
in scalar operations, try checking to see if your compiler is correctly optimising for your processor’s
SIMD instructions. If you see a large amount of time in memory operations then look for ways to more
efficiently access memory in order to improve cache performance. If you see a large amount of time
in branch operations then look for ways to avoid using conditional logic in your inner loops. Section
26.1 offers detailed advice on what to look for when optimising the types of instruction your program is
executing.

(© 2017 Allinea Software Ltd. 161

Allinea Forge 7.0

21.1 Limitations

Modern superscalar processors use instruction-level parallelism to decode and execute multiple opera-
tions in a single cycle if internal CPU resources are free and will retire multiple instructions at once,
making it appear as if the program counter ”jumps” several instructions per cycle. Current architectures
don’t allow profilers such as MAP (or Intel VTune, linux perftools and others) to efficiently measure
which instructions were “invisibly” executed by this instruction-level parallelism. This time is typically
allocated to the last instruction executed in the cycle.

Most MAP users will not be affected by this:

1. Hot lines in a HPC code typically contain rather more than a single instruction such as nop. This
makes it unlikely that an entire source line will be executed invisibly via the CPU’s instruction-level
parallelism.

2. Any such lines executed “for free” in parallel with another line by a CPU core will clearly show
up as a ”gap” in the source code view (but this is unusual).

3. Loops with stalls and mispredicted branches still show up highlighting the line containing the prob-
lem in all but the most extreme cases.

In short:

e Experts wanting to use MAP’s per-line instruction metrics to investigate detailed CPU performance
of a loop or kernel (even down to the assembly level) should be aware that instructions executed
in parallel by the CPU will show up with time only assigned to the last one in the batch executed.

e Everyone else: MAP’s statistical instruction-based metrics correlate well with where time is spent
in the application and help to find areas for optimization. Feel free to use them as such. If you
see lines with very few operations on them (such as a single add or multiply) and no time assigned
to them inside your hot loops then these are probably being executed ”for free” by the CPU using
instruction-level parallelism. The time for each batch of such is assigned to the last instruction
completed in the cycle instead.

(© 2017 Allinea Software Ltd. 162

Allinea Forge 7.0

22 Stacks View

Input/Output] Project Files | Main Thread Stacks | Functions I
Main Thread Stacks

Total core time A MPI Function(s} on line Source
slow
=l stride call stride
19.1% [y
7.9% -) + sgrt{arr_indi,j) + arr_in{i, i)}
5.8% P) + sgrtf{arr_in{i,j) + arr_in(i, i)
1.4% 4 1.4% mpi_barrier_
1.4% -
=12 others
0.2% arr_in = 4.2 ! dummy data
<0.1% de j=1,2000
= overlap call cverlap
Showing data from 8,000 samples taken over 8 processes (1000 per process) Allinea Ultimate 5.0-sadams-bugfix 6c60bcad200f+

Figure 109: MAP Stacks View

The Stacks view offers a good top-down view of your program; it’s easy to follow down from the main
function to see which code paths took the most time. Each line of the Stacks view shows the performance
of one line of your source code, including all the functions called by that line. The sparkline graphs are
described in detail in section 20.

We can read the above figure as follows:

1. The first line, program slow, represents the entire program run. Collapsing this node shows
the sparkline details for the entire run; for clarity these are hidden when the node is expanded.

2. Beneath it, we see that a call to the stride function took 57.1% of the entire time, almost all
of which was in single-threaded compute (dark green). 1% of the entire time was spent in MPI
functions called from stride.

3. The stride function itself spent most of that time on the line a (i, j)=x*j at slow.f90 line 107.
In fact, 43.2% of the entire run was spent executing this line of code.

4. The 1% MPI time inside stride comes from an MPI_Barrier on line 124.

5. The next major function called from program slow isthe overlap function, seen at the bottom
of this figure. This function ran for 24.8% of the total time, almost all of which was spent in MPI
functions (blue).

6. The largest single line inside the overlap function is a call to MPI_Send on line 35, which
accounted for 8.6% of the total runtime. This line of code was executed at the start of the overlap
function; other calls which are not visible in the figure accounted for the rest.

Clicking on any line of the Stacks view jumps the Source Code view to show that line of code. This
makes it a very easy way to navigate and understand the performance of even complex codes.

The percentage MPI time gives an idea as to how well your program is scaling and shows the location
of any communication bottlenecks. As we discussed in section 20, any sloping blue edges represent
imbalance between processes or cores. In the above example we can see that the MPI_Send call inside
the overlap function has a sloping trailing edge. This means that some processes took significantly
longer to finish the call than others, perhaps because they were waiting longer for their receiver to become
ready.

Stacks view will show which lines of code spend the most time running, computing or waiting - as with
most places in the GUI you can hover over a line or chart for a more detailed breakdown.

(© 2017 Allinea Software Ltd. 163

Allinea Forge 7.0

23 OpenMP Regions View

Input/Output] Project Files } OpenMP Stacks | OpenMP Regions | Functions 1
OpenMP Regions

Total core time # Overhead Function(s) on line Source
47.8% = & wave_openmp [program]
47.8% =% update [OpenMP region 11 #pragma omp parallel shared(newval, values)
41.8%, = do_math i)

13.7% {
10.5% sgtau = tau * tau;

7.3% newval[i] = {2.0 * walues[i]) - oldvall[i]
4.1% 1

1.7% tau = {c * dtime / dx);

1.5% const double c = 1.0;

1.5% }

5.4% if ({first + j - 1 == 1) || ({first + j - 1 == tpoints))

values[i-1] - (2.0 * values[i]} + values[i+1]));

Figure 110: OpenMP Regions View

The OpenMP Regions view gives insight into the performance of every significant OpenMP region in
your program. Each region can be expanded just as in the Stacks view to see the performance of every
line beneath it across every core in your job. The sparkline graphs are described in detail in section 20.
Note that if you are using MPI and OpenMP, this view summarizes all cores across all nodes and not just
one node.

We can read the above figure as follows:

1. The most time-consuming parallel region is in the update function at line 207. Clicking on this
will show the region in the Source Code view.

2. This region spends most of its time in the do_math function. Hovering on the line or clicking on
the [—] symbol will collapse the view down to show the figures for how much time.

3. Of the lines of code inside do_math, the (sqtau * (values[i-1] ...) one takes longest
with 13.7% of the total core hours across all cores used in the job.

4. Calculating sqtau = tau * tau is the next most expensive line, taking 10.5% of the total
core hours.

5. Only 0.6% of the time in this region is spent on OpenMP overhead (starting/synchronizing threads).

From this we can see that the region is well optimized for OpenMP usage (i.e. it has very low overhead).
If we wanted to further improve performance we would look at the calculations on the lines highlighted
in conjunction with the CPU instruction metrics (see section 26) to answer these questions:

e Is the current algorithm is bound by computation speed or memory accesses? If the latter, we may
be able to improve cache locality with a change to the data structure layout.

e Has the compiler generated optimal vectorized instructions for this routine? Small things can pre-
vent the compiler doing this; we can look at the vectorization report for the routine to understand
why.

o Is there another way to do this calculation more efficiently now that we know which parts of it are
the most expensive to run?

Clicking on any line of the OpenMP Regions view jumps the Source Code view to show that line of
code.

The percentage OpenMP synchronization time gives an idea as to how well your program is scaling to
multiple cores and highlights the OpenMP regions that are causing the greatest overhead. Examples of
things that cause OpenMP synchronization include:

(© 2017 Allinea Software Ltd. 164

Allinea Forge 7.0

e Poor load balancing, e.g. some threads have more work to do or take longer to do it than others.
The amount of synchronization time is the amount of time the fastest-finishing threads wait for the
slowest before leaving the region. Modifying the OpenMP chunk size can help with this.

e Too many barriers. All time at an OpenMP barrier is counted as synchronization time. However,
omp atomic does not appear as synchronization time. This is generally implemented as a locking
modifier to CPU instructions. Overuse of the atomic operator shows up as large amounts of time
spent in memory accesses and on lines immediately following an atomic pragma.

e Overly fine-grained parallelization. By default OpenMP synchronizes threads at the start and end
of each parallel region. There is also some overhead involved in setting up each region. In general,
the best performance is achieved when outer loops are parallelized rather than inner loops. This
can also be alleviated by using the no_barrier OpenMP keyword if appropriate.

When parallelizing with OpenMP it is extremely important to achieve good single-core performance
first. If a single CPU core is already bottlenecked on memory bandwidth, splitting the computations
across further cores rarely improves the problem!

(© 2017 Allinea Software Ltd. 165

Allinea Forge 7.0

24 Functions View

Input/Output] Project Files } OpenMP Stacks } OpenMP Regions | Functions ‘

Functions ®
Self A Total Child Overhead Function 2
40.3%
36.7 % hauidiat s Lo ol ikt it 36.8% 0.1% update
15.4% 1w i sl e e omp_get_num_procs (OpenMP Overhead)
6.9% 47.2% 40.4% update [OpenMP region 1]
0.6% - omp_get_num_procs
0.1% . clock_gettime@plt
<0.1% opal_memory_ptmalloc2_malloc
<0.1% <0.1% *_Gl_clock_gettime
=0.1% 84.7% 84.7% 06 main
<0.1% 47.9% 47.9% 0.6 update (OpenMP)
<0.1% 0.6% 0.6% 0.6 GOMP_parallel_end
<0.1% GOMP taskwait =

Figure 111: Functions View

The Functions view shows a flat profile of the functions in your program. The first three columns show
different measures of the time spent in a given function

1. Self shows the time spent in code in the given function itself, but not its callees (other functions
called by that function).

2. Total shows the time spent in code in the given function itself, and all its callees.
3. Child shows the time spent in the given functions’s callees only.

You can use the Functions view to find costly functions that are called from many different places.

(© 2017 Allinea Software Ltd. 166

Allinea Forge 7.0

25 Project Files View

Search (Ctrl+K)

= @& Application Code
ks !
=l 7 Sources

2l imbalance
= overlap
=i power
1 slow
1 stride

#- @ External Code

Figure 112: Project files view

The Project Files view offers a great way to browse around and navigate through a large, unfamiliar code
base.

The project files view distinguishes between Application Code and External Code. You can choose which
folders count as application code by right-clicking. External Code is typically system libraries that are
hidden away at startup.

(© 2017 Allinea Software Ltd. 167

Allinea Forge 7.0

26 Metrics View

Profiled: slow f on 16 processes, 2 nodes Sampled from: Tue Oct 20 2015 12:56:00 (UTC+01) for 57.0s Hide Metrics...

Main thread activity

CPU floating-point 100

28.6%

]
177

Memory usage
114 MB

[
12:56:00-12:56:56 (56.968s): Main thread compute 52.7 %, MPI 47.3 % Zoom & I 2

Figure 113: Metrics view

Now that you’re familiar with the source code, the stacks and the project files view, let’s see how the
metrics view works with all three of them to help you identify, focus on and understand performance
problems.

As with all graphs in MAP, the horizontal axis is wall clock time. By default three metric graphs are
shown. The top-most is the main thread activity chart, which uses the same colours and scales as the
per-line sparkline graphs described in section 20. To understand the main thread activity chart, read that
section first.

All of the other metric graphs show how single numerical measurements vary across processes and time.
Initially, two frequently used ones are shown: CPU floating-point and memory usage. However there are
many other metric graphs available, and they can all be read in the same way. Each vertical slice of a graph
shows the distribution of values across processes for that moment in time—the minimum and maximum
are clear, and shading is used to display the mean and standard deviation of the distribution.

A thin line means all processes had very similar values; a fat shaded region means there is significant
imbalance between the processes. Extra details about each moment in time appear below the metric
graphs as you move the mouse over them.

The metrics view is at the top of the GUI for a very good reason—it ties all the other views together.
Move your mouse across one of the graphs, and a black vertical line will appear on every other graph in
MAP, showing what was happening at that moment in time.

Even better, you can click and drag to select a region of time within it. All the other views and graphs now
redraw themselves to show just what happened during the selected period of time, ignoring everything
else. Try it and see! It’s a fascinating way to isolate interesting parts of your application’s execution. To
re-select the entire time range just double-click or use the Select All button.

(© 2017 Allinea Software Ltd. 168

Allinea Forge 7.0

File Edit Wiew Metrics Window Help
Profiled: slow f on 16 processes, 2 nodes Sampled from: Tue Oct 20 2015 12:56:00 (UTC+01) for 57.0s Hide Metrics...

et _

CPU floating-point
286 %

Memory usage
114 MB

12:56:39-12:56:51 (11.451s, 20.1% of total): Main thread compute 7.2 %, MPI 92.8 % Zoom #.] = o
F slow.foo X Time spent on line 39 5]
2 end if Breakdown of the 3.6% time
el spent on this line:
34 if (pe /= @) then . Executing instructions 100.0%
47 1% I 35 call MPI_SEnD(a, size(a), MPI_REAL, O, 1, MPI_COMM_WORLD, ier) .
36 alse Calling other functions b
37 = do from=1,nprocs-1 Time in instructions executed:
- == 11 " el <
(o] [+] Scalar floating-point 0.0%

INpUL/OUtput | Project Fles | Main Thread Stacks | Functions |
Main Thread Stacks 3]

Total core time A MPI Function(s) on line

100.0% NG - =% &/ slow

Showing data from 3,216 samples taken over 16 processes (201 per process) Allinea Ultimate 7.0 727543901a02 Jul 5 2016 @ Main Thread View

Figure 114: Map with a region of time selected

In the above screenshot a short region of time has been selected around an interesting sawtooth in time
in MPI_BARRIER because PE 1 holds things up. The first block accepts data in PE order, so is badly
delayed, the second block is more flexible, accepting data from any PE, so PE 1 can compute in paral-
lel. The Code View shows how compute and comms are serialized in the first block, but overlap in the
second.

There are many more metrics than those displayed by default. Click the Metrics button or right-click
on the metric graphs and you can choose one of the following presets or any combination of the metrics
beneath them. You can return to the default set of metrics at any time by choosing the Preset: Default
option.

26.1 CPU Instructions

Note: All of the metrics described in this section are only available on x86_64 systems.

All of these metrics show the percentage of time active cores spent executing different classes of instruc-
tion. They are most useful for optimizing single-core and OpenMP performance:

CPU floating-point: The percentage of time each rank spends in floating-point CPU instructions. This
includes vectorized / SIMD instructions and standard x87 floating-point. High values here suggest CPU-
bound areas of the code that are probably functioning as expected.

CPU integer: The percentage of time each rank spends in integer CPU instructions. This includes vec-
torized/SIMD instructions and standard integer operations. High values here suggest CPU-bound areas
of the code that are probably functioning as expected.

CPU memory access: The percentage of time each rank spends in memory access CPU instructions,
such as move, 1load and store. This also includes vectorized memory access functions. High values
here may indicate inefficiently-structured code. Extremely high values (98% and above) almost always

(© 2017 Allinea Software Ltd. 169

Allinea Forge 7.0

indicate cache problems. Typical cache problems include cache misses due to incorrect loop orderings
but may also include more subtle features such as false sharing or cache line collisions.

CPU floating-point vector: The percentage of time each rank spends in vectorized/SIMD floating-
point instructions. Well-optimized floating-point-based HPC code should spend most of its time running
these operations; this metric provides a good check to see whether your compiler is correctly vectorizing
hotspots. See section G.6 for a list of the instructions considered vectorized.

CPU integer vector: The percentage of time each rank spends in vectorized/SIMD integer instructions.
Well-optimized integer-based HPC code should spend most of its time running these operations; this
metric provides a good check to see whether your compiler is correctly vectorizing hotspots. See section
G.6 for a list of the instructions considered vectorized.

CPU branch: The percentage of time each rank spends in test and branch-related instructions such
as test, cmp and je. A well-optimized HPC code should not spend much time in branch-related
instructions. Typically the only branch hotspots are during MPI calls, in which the MPI layer is checking
whether a message has been fully-received or not.

26.1.1 Per-line CPU Instructions

When you select one or more lines of code in the code view, MAP will show a breakdown of the CPU
Instructions used on those lines. Section 21 describes this view in more detail.

26.2 CPU Time

These metrics are particularly useful for detecting and diagnosing the impact of other system daemons
on your program’s run.

CPU time This is the percentage of time that each thread of your program was able to spend on a core.
Together with Involuntary context switches, this is a key indicator of oversubscription or inteference from
system daemons. If this graph is consistently less than 100%, check your core count and CPU affinity
settings to make sure one or more cores are not being oversubscribed. If there are regular spikes in this
graph, show it to your system administrator and ask for their help in diagnosing the issue.

User-mode CPU time The percentage of time spent executing instructions in user-mode. This should be
close to 100%. Lower values or spikes indicate times in which the program was waiting for a system call
to return.

Kernel-mode CPU time Complements the above graph and shows the percentage of time spent inside
system calls to the kernel. This should be very low for most HPC runs. If it is high, show the graph to
your system administrator and ask for their help in diagnosing the issue.

Voluntary context switches The number of times per second that a thread voluntarily slept, for example
while waiting for an I/O call to complete. This is normally very low for a HPC code.

Involuntary context switches The number of times per second that a thread was interrupted while com-
puting and switched out for another one. This will happen if the the cores are oversubscribed, or if other
system processes and daemons start running and take CPU resources away from your program. If this
graph is consistently high, check your core count and CPU affinity settings to make sure one or more
cores are not being oversubscribed. If there are regular spikes in this graph, show it to your system
administrator and ask for their help in diagnosing the issue.

System load The number of active (running or runnable) threads as a percentage of the number of physical
CPU cores present in the compute node. This value may exceed 100% if you are using hyperthreading,
if the cores are oversubscribed, or if other system processes and daemons start running and take CPU

(© 2017 Allinea Software Ltd. 170

Allinea Forge 7.0

resources away from your program. A value consistently less than 100% may indicate your program is
not taking full advantage of the CPU resources available on a compute node.

26.3 1O

These metrics show the performance of the I/O subsystem from the application’s point of view. Corre-
lating these with the I/O time in the Application Activity chart helps to diagnose I/O bottlenecks.

Disk read transfer: The rate at which the application reads data from disk, in bytes per second. This
includes data read from network filesystems (such as NFS), but may not include all local I/O due to page
caching.

Disk write transfer: The rate at which the application writes data to disk, in bytes per second. This
includes data written to network filesystems.

Note: Disk transfer metrics are not available on Cray X-series systems as the necessary Linux kernel
support is not enabled.

26.4 Memory

Here the memory usage of your application is shown in both a per-process and per-node view. Perfor-
mance degrades severely once all the node memory has been allocated and swap is required. Some HPC
systems, notably Crays, will simply terminate a job that tries to use more than the total node memory
available.

Memory usage: The current RAM usage of each process. The interesting thing about this figure is that
memory that is allocated and never used is generally not shown—only pages actively swapped into RAM
by the OS count. This means that you’ll often see memory usage ramp up as arrays are initialized. The
slopes of these ramps can be interesting in themselves.

Note: this means if you malloc or ALLOCATE a large amount of memory but don’t actually use it the
Memory Usage metric will not increase.

Node memory usage: The percentage of each node’s memory that is in use at any one time. If this is far
below 100% then your code may run more efficiently using fewer processes or a larger problem size. If
it is close to or reaches 100% then the combinaton of your code and other system daemons are conspiring
to exhaust the physical memory of at least one node.

26.5 MPI

A detailed range of metrics offering insight into the performance of the MPI calls in your application.
These are all per-process metrics and any imbalance here, as shown by large blocks with sloped means,
has serious implications for scalability. Use these metrics to understand whether the blue areas of the
Application Activity chart are problematic or are transferring data in a well-behaved and optimal manner.
These are all seen from the application’s point of view. An asynchronous call that receives data in the
background and completes within a few milliseconds will have a much higher effective transfer rate than
the network bandwidth. Making good use of asynchronous calls is a key tool to improve communication
performance.

In multithreaded applications, MAP only reports MPI metrics for MPI calls from main threads. If an
application uses MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE, the Application Activity
chart will show MPI activity, but some regions of the MPI metrics may be empty if the MPI calls are
from non-main threads.

(© 2017 Allinea Software Ltd. 171

Allinea Forge 7.0

MPI call duration: This metric tracks the time spent in an MPI call so far. PEs waiting at a barrier (MPI
blocking sends, reductions, waits and barriers themselves) will ramp up time until finally they escape.
Large areas show lots of wasted time and are prime targets for investigation. The pe with no time spent
in calls is likely to be the last one to arrive, so should be the focus for any imbalance reduction.

MPI sent/received: This pair of metrics tracks the number of bytes passed to MPI send/receive functions
per second. This is not the same as the speed with which data is transmitted over the network—that
information isn’t available. This means that an MPI call that receives a large amount of data and completes
almost instantly will have an unnaturally high instantaneous rate.

MPI point-to-point/collective operations: This pair of metrics tracks the number of point-to-point/collective
calls per second. A long shallow period followed by a sudden spike is typical of a late sender—most
processes are spending a long time in one MPI call (very low #calls per second) while one computes.
When that one reaches the matching MPI call it completes much faster, causing a sudden spike in the
graph.

MPI point-to-point/collective bytes: This pair of metrics tracks the number of bytes passed to MPI
send/receive functions per second. This is not the same as the speed with which data is transmitted over
the network—that information isn’t available. This means that an MPI call that receives a large amount
of data and completes almost instantly will have an unnaturally high instantaneous rate.

Note for SHMEM users: MAP shows calls to shmem_barrier_all in MPI collectives, MPI calls and
MPI call duration. Metrics for other SHMEM functions are not collected.

26.6 Detecting MPI imbalance

The metrics view shows the distribution of their value across all processes against time, so any ‘fat’
regions are showing an area of imbalance in this metric. Analysing imbalance in MAP works like
this:

1. Look at the metrics view for any ‘fat’ regions—these represent imbalance in that metric during that
region of time. This tells us (A) that there is an imbalance, and (B) which metrics are affected.

2. Click and drag on the metrics view to select the ‘fat’ region, zooming the rest of the controls in to
just this period of imbalance.

3. Now the stacks view and the source code views show which functions and lines of code were
being executed during this imbalance. Are the processes executing different lines of code? Are
they executing the same one, but with differing efficiencies? This tells us (C) which lines of code
and execution paths are part of the imbalance.

4. Hover the mouse over the fattest areas on the metric graph and watch the minimum and maximum
process ranks. This tells us (D) which ranks are most affected by the imbalance.

Now we know (A) whether there is an imbalance and (B) which metrics (CPU, memory, FPU, I/O) it
affects. We also know (C) which lines of code and (D) which ranks to look at in more detail.

Often this is more than enough information to understand the immediate cause of the imbalance (e.g. late
sender, workload imbalance) but for a deeper view we can now switch to DDT and re-run the program
with a breakpoint in the affected region of code. Examining the two ranks highlighted as the minimum
and maximum by MAP with the full power of an interactive debugger helps get to the root cause of the
imbalance behaviour.

(© 2017 Allinea Software Ltd. 172

Allinea Forge 7.0

26.7 Accelerator

The NVIDIA CUDA accelerator metrics are enabled if you have the CUDA add-on for Allinea Forge or
the Advanced Metrics Pack add-on for Allinea MAP.

Note: accelerator metrics are not available when linking to the static MAP sampler library.

GPU temperature: The temperature of the GPU as measured by the on-board sensor.

GPU utilization: Percent of time that the GPU card was in use (i.e. one or more kernels are executing
on the GPU card). If multiple cards are present in a compute node this value is the mean across all the
cards in a compute node.

Time in global memory accesses: Percent of time that the global (device) memory was being read or
written. If multiple cards are present in a compute node this value is the mean across all the cards in a
compute node.

GPU memory usage: The memory allocated from the GPU frame buffer memory as a percentage of the
total available GPU frame buffer memory.

26.8 Energy

The energy metrics are enabled if you have the the Advanced Metrics Pack add-on for Allinea MAP. All
the metrics are measured per node. If we are running our job in more than one node, MAP shows the
minimum, mean and maximum power consumption of the nodes.

Note: energy metrics are not available when linking to the static MAP sampler library.

GPU power usage: The cumulative power consumption of all GPUs on the node, as measured by the
NVIDIA on-board sensor. This metric is available if the Accelerator metrics are present.

CPU power usage: The cumulative power consumption of all CPUs on the node, as measured by the
Intel on-board sensor (Intel RAPL).

System power usage: The power consumption of the node as measured by the Intel Energy Checker or
the Cray metrics.

26.8.1 Requirements

CPU power measurement requires an Intel CPU with RAPL support, e.g. Sandy Bridge or newer and the
intel_rapl powercap kernel module to be loaded.

Node power monitoring is implemented via one of two methods: the Allinea IPMI energy agent which
can read IPMI power sensors; or the Cray HSS energy counters. For more information on how to install
the Allinea IPMI energy agent please see H.7 Allinea IPMI Energy Agent. The Cray HSS energy counters
are known to be available on Cray XK6 and XC30 machines.

Accelerator power measurement requires a NVIDIA GPU that supports power monitoring. This can be
checked on the command-line with nvidia-smi -q -d power. If the reported power values are
reported as “N/A”, power monitoring is not supported.

26.9 Lustre

The Lustre metrics are enabled if your compute nodes have one or more Lustre filesystems mounted. All
the metrics are measured per node. The metadata metrics are only available if you have the Advanced

(© 2017 Allinea Software Ltd. 173

Allinea Forge 7.0

Metrics Pack add-on for Allinea MAP.

If you are running your job on more than one node the values are not summed across the nodes, rather
you will see the mean across the nodes. If you have more than one Lustre filesystem mounted on the
compute nodes the values are summed across all Luste filesystems.

Lustre read transfer: The number of bytes read per second from Lustre.
Lustre write transfer: The number of bytes written per second to Lustre.
Lustre file opens: The number of file open operations per second on a Lustre filesystem.

Lustre metadata operations: The number of metadata operations per second on a Lustre filesystem.
Metadata operations include file open, close and create as well as readdir, rename, unlink, etc. Note:
depending on the circumstances and implementation ‘file open’ may count as multiple operations e.g.
when it creates a new file or truncates an existing one.

26.10 Zooming

To examine a small time range in more detail you can horizontally zoom in the metric graphs by selecting
the time-range you wish to see then left-clicking inside that selected region. All the metric graphs will then
resize to display that selection in greater detail — this only effects the metric graphs as the the graphs
in all the other views (such as the code editor) will already have redrawn to display only the selected
region when that selection was made. A right-click on the metric graph will zoom the metric graphs out
again.

This horizontal zoom is limited by the number of samples that were taken and stored in the MAP file.
The more you zoom in the more ‘blocky’ the graph becomes. Whilst you can increase the resolution by
instructing MAP to store more samples (see ALLINEA_SAMPLER_NUM_SAMPLES and ALLINEA
SAMPLER_INTERVAL in 18.10 MAP Environment Variables) this is not recommended as it may signif-
icantly impact performance of both the program being profiled and of MAP when displaying the resulting
.map file.

You can also zoom in vertically to better see fine-grained variations in a specific metric’s values. The
auto-zoom button beneath the metric graphs will cause the graphs to automatically zoom in vertically to
fit the data shown in the currently selected time range. As you select new time ranges the graphs will
automatically re-zoom so that you see only the relevant data.

If the automatic zoom is insuffient you can take manual control of the vertical zoom applied to each
individual metric graph. Holding down the CTRL key (or the CMD key on a Mac) whilst either dragging
on a metric graph or using the mouse-wheel whilst mousing over one will zoom that graph vertically in
or out, centered on the current position of the mouse. A vertically-zoomed metric graph can be panned
up or down by either holding down the SHIFT key whilst dragging on a metric graph or just using the
mouse-wheel whilst mousing over it. Manually adjusting either the pan or zoom will disable auto-zoom
mode for that graph, click the auto-zoom button again to reapply it.

(© 2017 Allinea Software Ltd. 174

Allinea Forge 7.0

Action Usage Description
Select Drag a range in a metric | Selects a time range to examine. Many
graph. components (but not the metric graphs) will
rescale to display data for this time range only.
Reset Click the Reset icon (under | Selects the entire time range. All components
the metric graphs). (including the metric graphs) will rescale to
) display the entire set of data. All metric
graphs will be zoomed out.
Horizontal Left click aselectioninamet- | Zoom in (horizontally) on the selected time
zoom in ric graph. range.
Horizontal Right-click a metric graph. Undo the last horizontal zoom in action.
zoom out
Vertical Ctrl + mouse scroll wheel or | Zoom a single metric graph in or out.

zoom in/out

Ctrl + Drag on a metric graph.

Vertical pan | Mouse scroll wheel or | Pan a single metric graph up or down.
Shift+Drag on a metric
graph.
Automatic Toggle the Automatic Ver- | Automatically change the zoom of each met-
vertical tical Zoom icon (under the | ric graph to best fit the range of values each
zoom metric graphs). graph contains in the selected time range.
a1 Manually panning or zooming a graph will

disable auto vertical zoom for that graph only.

26.11 Viewing Totals Across Processes | Nodes

The metric graphs show the statistical distribution of the metric across ranks or compute nodes (depending
on the metric). So, for example, the Nodes power usage metric graph shows the statistical distribution of
power usage of the compute nodes.

If you hover the mouse over the name of a metric to the left hand side of the graph MAP will display a
tool tip with additional summary information. The tool tip will show you the Minimum, Maximum, and
Mean of the metric across time and ranks / nodes.

For metrics which are not percentages the tool tip will also show the peak sum across ranks / nodes. For
example, the Maximum (3 all nodes) line in the tool tip for Nodes power usage shows the peak power
usage summed across all compute nodes (note: this does not include power used by other components,
e.g. network switches).

For some metrics which are rates (e.g. Lustre read transfer) MAP will also show the cumulative total
acrosss all ranks / nodes in the tool tip, e.g. Lustre bytes read (>, all nodes).

(© 2017 Allinea Software Ltd. 175

Allinea Forge 7.0

27 PAPI Metrics

The PAPI metrics are additional metrics available for MAP which use the Performance Application Pro-
gramming Interface (PAPI). They can be used on any system supported by PAPI. Note that in this release
PAPI metrics will be collected from the main thread only.

To use these metrics, download and install PAPI from http://icl.cs.utk.edu/papi/index.html. Then run

the metrics installer papi-install.sh from the Allinea Forge directory. Before using MAP, set and ex-

port the ALLINEA_PAPI_CONFIG environment variable pointing to PAPI.config, e.g. export

ALLINEA _PAPI CONFIG=/opt/allinea/map/metrics/PAPI.config. ThePAPI.config
file should be inside your home directory in /home/your_user/.allinea or in your MAP instal-

lation directory, e.g. /allinea_installation._directory/map/metrics

In case of using a queuing system, be sure that the ALLINEA_PAPI_CONFIG variable is set and exported
to all the compute nodes, for example adding the ALLINEA_PAPI_CONFIG export line in the job script
before the MAP command line.

Due to the limitations of PAPI, some metrics may be unavailable on your system. MAP displays all
available metrics and error messages for those that are unavailable. There is also a limit to which and
how many events can be counted together. This means that these PAPI metrics have been split up into
small groups of compatible events, so that the user can choose which events to view. To change which
group of metrics MAP uses, navigate to the directory indicated at the end of the installation process and
modify the PAPI.config file.

27.1 PAPI Config file

The PAPI config file contains all the metrics sets that can be used and the location of it has been indicated
at the end of the installation process. The default metric set is Overview. If you want to use another
PAPI metrics set, modify the value of the variable called set to the desired PAPI metrics set of either
CacheMisses, BranchPrediction or FloatingPoint

27.2 PAPI Overview Metrics

This group of metrics gives a basic overview of the program which has been profiled.

DP FLOPS: The number of double precision floating-point operations performed per second. This
uses the PAPI_DP_OPS (double precision floating-point operations) event; what it actually counts differs
across architectures. Additionally, there are many caveats surrounding this PAPI preset on Intel architec-
tures, see http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops for more details.

Cycles per instruction: The number of CPU cycles per instruction executed. This uses the PAPI. TOT_CYC
(total cycles) and PAPI_TOT_INS (total instructions) events.

L2 data cache misses: The number of 1.2 data cache misses per second. This uses the PAPI_L.2_DCM (L2
data cache misses) event. This metric is only available in this preset if the system has enough hardware
counters (5 at least) to collect the required events.

27.3 PAPI Cache Misses

This group of metrics focuses on cache misses at various levels of cache.

(© 2017 Allinea Software Ltd. 176

http://icl.cs.utk.edu/papi/index.html
http://icl.cs.utk.edu/projects/papi/wiki/PAPITopics:SandyFlops

Allinea Forge 7.0

L1 cache misses: The number of L1 cache misses per second. This uses the PAPI L1 TCM (L1 total
cache misses) event, although if this event is unavailable the L1 data cache misses metric (using the
PAPI_L1_DCM event) will be displayed instead.

L2 cache misses: The number of L2 cache misses per second. This uses the PAPI_L.2_TCM (L2 total
cache misses) event, although if this event is unavailable the L2 data cache misses metric (using the
PAPI_L2_DCM event) will be displayed instead.

L3 cache misses: The number of L.3 cache misses per second. This uses the PAPI_L.3_TCM (L3 total
cache misses) event, although if this event is unavailable the 1.3 data cache misses metric (using the
PAPI_L.3_DCM event) will be displayed instead.

27.4 PAPI Branch Prediction

This group of metrics focuses on branch prediction instructions.

Branch instructions: The number of branch instructions per second. This uses the PAPI_BR_INS
(branch instructions) event.

Mispredicted branch instructions: The number of conditional branch instructions that are mispredicted
each second. This uses the PAPI_BR_MSP (mispredicted branch instructions) event.

Completed instructions: The number completed instructions per second. This uses the PAPI_TOT_INS
event, and is included to provide context for the above other metrics in this group.

27.5 PAPI Floating-Point

This group of metrics focuses on floating point instructions.

Floating-point scalar instructions: The number of scalar floating-point instructions per second. This
uses the PAPI_FP_INS event.

Floating-point vector instructions: The number of vector floating-point instructions per second. This
uses the PAPI_VEC_SP (single-precision vector/SIMD instructions) and PAPI_VEC_DP (double-precision
vector/SIMD instructions) events, although if those events are unavailable the Vector Instructions metric
will be displayed instead.

Vector instructions: The number of vector instructions (floating-point and integer) per second. This
uses the PAPI_VEC_INS event, but is only displayed if the events needed for the Floating-point vector
instructions metric are not available.

Completed instructions: The number completed instructions per second. This uses the PAPI_ TOT_INS
event, and is included to provide context for the above other metrics in this group.

(© 2017 Allinea Software Ltd. 177

Allinea Forge 7.0

28 Main-thread, OpenMP and Pthread view modes

The percentage values and activity graphs shown alongside the source code and in the Stacks, OpenMP
Regions and Functions views can present information for multithreaded programs in a variety of different
ways. MAP will initially choose the most appropriate view mode for your program but in some cases
(i.e. you have written a program to use raw pthreads rather than OpenMP) you may wish to change the
mode to get a different perspective on how your program is executing multiple threads and using multiple
cores. You can switch between view modes from the View menu.

28.1 Main thread only mode

In this view mode only the main thread from each process is displayed; the presence of any other thread
is ignored. A value of 100% for a function or line means that all the processes’ main threads are at that
location. This is the best mode to use when exploring single-threaded programs and programs that are
unintentionally/indirectly multithreaded (i.e. recent implementations of both Open MPI and CUDA will
start their own thread).

This is the default mode for all non-OpenMP programs. The OpenMP Regions tab is not displayed in
this mode.

Note that the CPU instruction metric graphs (showing the proportion of time in various classes of CPU
instructions: integer, floating-point, vector etc.) are not restricted to the main thread when in the Main
thread only view mode. These metric graphs always represent the data gathered from all the CPU
cores.

28.2 OpenMP mode

This view mode is optimised for interpreting programs where OpenMP is the primary source of mul-
tithreaded activity. Percentage values and activity graphs for a line or function indicate the proportion
of the available resources that are being used on that line. For serial code on a main thread this is the
proportion of processes at that location, for OpenMP code the contribution from each process is further
broken down by the proportion of CPU cores running threads that are at that location in the code. For
example a timeslice of an activity graph showing 50% dark green (serial, main-thread computation) and
50% light green (computation in an OpenMP region) means that half the processes were in serial code
and half the processes were in an OpenMP region; of the processes in an OpenMP region 100% of the
available cores (as determined by the cores per process value, see 29 Processes and Cores View) were
being used for OpenMP.

This is the default mode for OpenMP programs. It is only available for programs where MAP detected
an OpenMP region.

28.3 Pthread mode

This view mode is optimised for interpreting programs that make explicit use of pthreads. Percentage
values and activity graphs reflect the proportion of CPU cores that are being used out of the maximum
number of expected cores per process (see 29 Processes and Cores View). A value of 100% for a function
or line means that 100% of the expected number of CPU cores per process were working at that location.
The main thread’s contribution gets no special attention so activity on the main thread(s) will appear the
same height as activity from any other thread. The advantage of this is that it makes it very obvious
when the program is not making full use of all the CPU cores available to it with the downside of it being

(© 2017 Allinea Software Ltd. 178

Allinea Forge 7.0

harder to analyse the performance of the intentionally serial sections of code performed by each process
(as activity occuring only on one thread per process will be restricted to at most 1/n'" of a percentage
value or height on an activity graph, where n is the number of cores per process).

This mode is not used by default so must be explicitly selected. It is only available for multithreaded
programs. The OpenMP Regions tab is not displayed in this mode.

(© 2017 Allinea Software Ltd. 179

Allinea Forge 7.0

29 Processes and Cores View

™ Processes and Cores

Performance data for heightmap is being shown for:

1 node
3 processes

3 cores (showing data fu-r| 1 % COres per process)

Each node has at most 4 physical cores, increased to 8 logical
cores by hyperthreading.

Data was recorded for 1 core per process. You can show data
for more or fewer cores per process by changing the value
above.

Help OK | | Cancel

Figure 115: Process and Cores Window

Most modern CPUs support hyperthreading and report multiple logical cores for each physical core.
Some programs run faster when scheduling threads or processes to use these hyperthreaded cores, while
most HPC codes run more slowly. Rather than show all of the sparklines at half-height simply because
the hyperthreaded cores are (wisely) not being used, MAP tries to detect this situation and will rescale its
expectations to the number of physical cores used by your program.

If this heuristic goes wrong for any reason you will see large portions of unusual colours in your sparklines
and the application activity chart (e.g. bright red). When that happens, open this dialog and increase the
cores per process setting.

You can find this dialog via the Window->Processes and Cores menu or by clicking on the X
cores (Y per process) hyperlinked text in the application details section above the metric graphs.

(© 2017 Allinea Software Ltd. 180

Allinea Forge 7.0

30 Running MAP from the Command Line

MAP can be run from the command line with the following arguments:

--no-mpi

Run MAP with 1 process and without invoking mpirun, mpiexec, or equivalent.
- -gqueue

Force MAP to submit the job to the queueing system.

--No-queue

Run MAP without submitting the job to the queueing system.

--view=VIEW

Start MAP using VIEW as the default view. VIEW must be one of (main|pthread|openmp). If the
selected view is not available, the main view will be displayed.

- -export=0UTPUT.json PROFILEDATA.map

Export PROFILEDATA.map to OUTPUT . json in JSON format, without user interaction. For the format
specification see 31.1 JSON format.

--profile

Generate a MAP profile but without user interaction. This will not display the MAP GUI. Messages
are printed to the standard output and error. The job is not run using the queueing system unless used in
conjunction with - -queue. When the job finishes a map file is written and its name is printed.

--export-functions=FILE

Export all the profiled functions to FILE. Use this in conjunction with - -profile. The output should
be CSV file name. Examples:

map --profile --export-functions=foo.csv ...

--start-after=TIME

Start profiling TIME seconds after the start of your program. Use this in conjunction with - -stop-
after=TIME to focus MAP on a particular time interval of the run of your program.

--stop-after=TIME

Stop profiling TIME seconds after the start of your program. This will terminate your program and
proceed to gather the samples taken after the time given has elapsed.

When running without the GUI, normal redirection syntax can be used to read data from a file as a source
for the executable’s standard input. Examples:

cat <input-file> | map --profile
map --profile ... < <input-file>
Normal redirection can also be used to write data to a file from the executable’s standard output:
map --profile ... > <output-file>
For OpenMP jobs, simply use the OMP_NUM_THREADS environment variable (or leave it blank) exactly

as you usually would when running your application. There is no need to pass the number of threads to
MAP as an argument.

(© 2017 Allinea Software Ltd. 181

Allinea Forge 7.0

OMP_NUM_THREADS=8 map --profile ... > <output-file>

30.1 Profiling MPMD Programs

The easiest way to profile MPMD programs is by using Express Launch to start your application. To
use Express Launch, simply prefix your normal MPMD launch line with map, for example to profile an
MPMD application without user interaction you can use:

map --profile mpirun -n 1 ./master : -n 2 ./worker

For more information on Express Launch, and compatible MPI implementations, see section 18.1.

30.1.1 Profiling MPMD Programs without Express Launch

The command to create a profile from an MPMD program using MAP is:

map <map mode> --np=<#processes> --mpiargs=<MPMD command> <one
MPMD program>

This example shows how to run MAP without user interaction using the flag - -profile:

map --profile --np=16 --mpiargs="-n 8 ./exel : -n 8 ./exe2" ./exel

First we set the amount of processes used by the MPMD programs, in our case 8+8=16, then an MPMD
style command as an mpi argument and finally one of the MPMD programs.

(© 2017 Allinea Software Ltd. 182

Allinea Forge 7.0

31 Exporting profiler data in JSON format

MAP provides an option to export the profiler data in machine readable JSON format.

To export as JSON, first you need to open a . map file in MAP. Then the profile data can be exported by
clicking File and selecting the Export Profile Data as JSON option.

For a command line option, see 30 Running MAP from the Command Line.

31.1 JSON format

The JSON document contains a single JSON object containing two object members, info containing
general information about the profiled program, and samples with the sampled information. An exam-
ple of profile data exported to a JSON file is given in Section 31.4.

e info (Object): If some information is not available, the value is null instead.

command_line (String): Command line call used to run the profiled application (i.e. aprun
-N 24 -n 256 -d 1 ./my_exe)

machine (String): Hostname of the node on which the executable was launched
number_of_nodes (Number): Number of nodes run on
number_of_processes (Number): Number of processes run on

runtime (Number): Runtime in milliseconds

start_time (String): Date and time of run in ISO 8601 format
create_version (String): Version of MAP used to create the map file

metrics (Object): Attributes about the overall run, reported once per process, each repre-
sented by an object with max, min, mean, var and sums fields, or null, when the metric
is not available. The sums series contains the sum of the metric across all processes / nodes
for each sample. In many cases the values over all nodes will be the same, i.e. the max, min
and mean values are the same, with variance zero. For example, in homogeneous systems
num_cores_per_node is the same over all nodes.

x wchar_total (Object): The number of bytes written in total by I/O operation system
calls (see wchar in the Linux Programmer’s Manual page ‘proc’: man 5 proc)

x rchar_total (Object): The number of bytes read in total by I/O operation system
calls (see rchar in the Linux Programmer’s Manual page ‘proc’: man 5 proc)

x num_cores_per_node (Object): Number of cores available per node
x memory_per_node (Object): RAM installed per node

* nvidia_gpus_count (Object): Number of GPUs per node

x nvidia_total_memory (Object): GPU frame buffer size per node

x num_omp_threads_per_process (Object): Number of OpenMP worker threads
used per process

e samples (Object)

count (Number): Number of samples recorded

(© 2017 Allinea Software Ltd. 183

Allinea Forge 7.0

— window_start_offset (Array of Numbers): Offset of the beginning of each sampling
window, starting from zero. The actual sample might have been taken anywhere in between
this offset and the start of the next window, i.e. the window offsets w; and w; define a
semi-open set (wj, w;+1] in which the sample was taken.

— activity (Object): Contains information about the proportion of different types of activity
performed during execution, according to different view modes. The types of view modes
possibly shown are OpenMP, PThreads and Main Thread, described in Section 28. Only
available view modes are exported, for example, a program without OpenMP sections will
not have an OpenMP activity entry.

(NB: The sum of the proportions in an activity might not add up to 1, this can happen when
there are fewer threads running than MAP has expected. Occasionally the sum of the propor-
tions shown for a sample in PThreads or OpenMP threads mode might exceed 1. When this
happens, the profiled application uses more cores than MAP assumes the maximum number
of cores per process can be. This can be due to middleware services launching helper threads
which, unexpectedly to MAP, contribute to the activity of the profiled program. In this case,
the proportions for that sample should not be compared with the rest of proportions for that
activity in the sample set.)

— metrics (Object): Contains an object for each metric that was recorded. These objects
contain four lists each, with the minimum, maximum, average and variance of that metric in
each sample. The format of ametrics entry is given in Section 31.3. All metrics recorded
in a run are present in the JSON, including custom metrics. The names and descriptions of
all core MAP metrics are given in Section 31.3. It is assumed that a user including a custom
metrics library is aware of what the custom metric is reporting. (See the Allinea Metric Plugin
Interface documentation.)

31.2 Activities

Each exported object in an activity is presented as a list of fractional percentages (0.0 — 1.0) of sample
time recorded for a particular activity during each sample window. Therefore, there are as many entries
in these list as there are samples.

31.2.1 Description of categories

The following is the list of all of the categories. Only available categories are exported, see sections
31.2.2 and 31.2.3.

normal_compute: Proportion of time spent on the CPU which is not categorised as any of the
following activities. The computation can be e.g. floating point scalar (vector) addition, multipli-
cation or division.

point_to_point_mpi: Proportion of time spent in point-to-point MPI calls on the main thread
and not inside an OpenMP region.

collective_mpi: Proportion of time spent in collective MPI calls on the main thread and not
inside an OpenMP region.

point_to_point_mpi_openmp: Proportion of time spent in point-to-point MPI calls made
from any thread within an OpenMP region.

collective_mpi_openmp: Proportion of time spent in collective MPI calls made from any
thread within an OpenMP region.

(© 2017 Allinea Software Ltd. 184

Allinea Forge 7.0

point_to_point_mpi_non_main_thread: Proportion of time spentin point-to-point MPI
calls on a pthread (not on the main thread nor within an OpenMP region).

collective_mpi_non_main_thread: Proportion of time spent in collective MPI calls on
a pthread (not on the main thread nor within an OpenMP region).

openmp: Proportion of time spent in an OpenMP region (i.e. compiler-inserted calls used to im-
plement the contents of a OpenMP loop).

accelerator: Proportion of time spent in calls to accelerators (i.e. blocking calls waiting for a
CUDA kernel to return).

pthreads: Proportion of compute time on a non-main (worker) pthread.

openmp_overhead_in_region: Proportion of time spent setting up OpenMP structures,
waiting for threads to finish etc.

openmp_overhead_no_region: Proportion of time spent in calls to the OpenMP runtime
from an OpenMP region.

synchronisation: Proportion of time spent in thread synchronisation calls i.e. pthread_mu-
tex_lock.

i0_reads: Proportion of time spent in I/O read operations, e.g. ‘read’.

io_writes: Proportion of time spent in I/O write operations; also includes file open and close
time as these are typically only significant when writing.

io_reads_openmp: Proportion of time spent in I/O read operations from within an OpenMP
region.

io_writes_openmp: Proportion of time spent in I/O write operations from within an OpenMP
region.

mpi_worker: Proportion of time spent in the MPI implementation on a worker thread.
mpi_monitor: Proportion of time spent in the MPI monitor thread.
openmp_monitor: Proportion of time spent in the OpenMP monitor thread.

sleep: Proportion of time spent in sleeping threads and processes.

31.2.2 Categories available in main_thread activity

normal_compute
point_to_point_mpi
collective_mpi
point_to_point_mpi_openmp
collective_mpi_openmp
openmp

accelerator
openmp_overhead_in_region
openmp_overhead_no_region

synchronisation

(© 2017 Allinea Software Ltd. 185

Allinea Forge 7.0

e i0_reads

e jo_writes

e 10_reads_openmp
e io_writes_openmp

e sleep

31.2.3 Categories available in openmp and pthreads activities

e normal_compute

e point_to_point_mpi

e collective_mpi

e point_to_point_mpi_openmp

e collective_mpi_openmp

e point_to_point_mpi_non_main_thread
e collective_mpi_non_main_thread
e openmp

e accelerator

e pthreads

e openmp_overhead_in_region

e openmp_overhead_no_region

e synchronisation

e io_reads

e i0_writes

e i0_reads_openmp

e i0_writes_openmp

e mpi_worker

e mpi_monitor

e openmp_monitor

e sleep

31.3 Metrics

The following list contains the core metrics reported by MAP.

Only available metrics are exported to JSON, so e.g. if there is no Lustre filesystem then the Lustre
metrics will not be included. If any custom metrics are loaded, they will be included in the JSON, but are
not documented here.

For more information on the metrics see 26 Metrics View.

(© 2017 Allinea Software Ltd. 186

Allinea Forge 7.0

e CPU Instructions: see 26.1 CPU Instructions
— instr_fp: See CPU floating-point (percentage)
— instr_int: See CPU integer (percentage)
— instr_mem: See CPU memory access (percentage)
— instr_vector_fp: See CPU floating-point vector (percentage)
— instr_vector_int: See CPU floating-point vector (percentage)
— instr_branch: See CPU branch (percentage)

— instr_scalar_fp: The percentage of time each rank spends in standard x87 floating-
point operations.

— instr_scalar_int: The percentage of time each rank spends in standard integer opera-
tions.

— instr_implicit_mem: Implicit memory accesses. The percentage of time spent execut-
ing instructions with implicit memory accesses.

— instr_other: The percentage of time each rank spends in instructions which cannot be
categorised as any of the ones given above.

e CPU Time: see 26.2 CPU Time
— cpu_time_percentage: See CPU time
— user_time_percentage: See User-mode CPU time
— system_time_percentage: See Kernel-mode CPU time
— voluntary_context_switches: See Voluntary context switches (1/s)
— involuntary_context_switches: See Involuntary context switches (1/s)
— loadavg: See System load (percentage)

1/0: see 26.3 1/0

— bytes_read: See Disk read transfer (B/s)
— bytes_written: See Disk write transfer (B/s)
e Lustre
— lustre_bytes_read: Lustre read transfer (B/s)
— lustre_bytes_written: Lustre write transfer (B/s)
— lustre_rchar_total: Lustre bytes read

— lustre_wchar_total: Lustre bytes written

Memory: see 26.4 Memory
— rss: See Memory usage in bytes (Resident Set Size)
— node_mem_percent: See Node memory usage (percentage)

MPI: see 26.5 MPI

— mpi_call_time: See MPI call duration (ns)

— mpi_sent: See MPI sent (B/s)

(© 2017 Allinea Software Ltd. 187

Allinea Forge 7.0

— mpi_recv: See MPI received (B/s)
— mpi_calls: Number of MPI calls per second per process
— mpi_p2p: See MPI P2P (calls/s).
— mpi_collect: See MPI collectives (calls/s)
— mpi_p2p_bytes: See MPI point-to-point bytes
— mpi_collect_bytes: See MPI collect bytes
e Accelerator: see 26.7 Accelerator
— nvidia_temp: See GPU temperature (Celsius)

— nvidia_gpu_usage: See GPU utilization (percentage)

nvidia_memory_sys_usage: See Time in global memory accesses (percentage)

nvidia_memory_used_percent: See GPU memory usage (percentage)
— nvidia_memory_used: GPU memory usage in bytes
e Energy: see 26.8 Energy

— nvidia_power: See GPU power usage (mW/node)

rapl_power: See CPU power usage (W/node)
— system_power: See System power usage (W/node)
— rapl_energy: CPU energy, integral of rapl_power (J)

— system_energy: CPU energy, integral of system_power (J)

31.4 Example JSON output

In this section we give an example of the format of the JSON that is generated from a MAP file, in order
for users to understand the description that has been given in the previous sections. This is not a full file,
but should be used as an indication of how the information will look after export.

{
"info" : {
"command_line" : "mpirun -np 4 ./exec",
"machine" : "hal9000",
"number_of_nodes" : 30,
"number_of_processes" : 240,
"runtime" : 8300,
"start_time" : "2016-05-13T11:36:31",
"create_version" : "6.0.4"
"metrics": {
wchar_total: {max: 384605588, min: 132, mean: 24075798, var: 546823},
rchar_total: {max: 6123987, min: 63, mean: 9873, var: 19287},
num_cores_per_node: {max: 4, min: 4, mean: 4, var: 0},
memory_per_node: {max: 4096, min: 4096, mean: 4096, var: 0},
nvidia_gpus_count: {max: @, min: @, mean: 0, var: 0},
nvidia_total memory: {max: O, min: O, mean: 0, var: 0},
num_omp_threads_per_process: {max: 6, min: 6, mean: 6, var: 0},
}
+
"samples" : {
"count" : 4,

"window_start_offsets" : [0, 0.2, 0.4, 0.6],

(© 2017 Allinea Software Ltd. 188

} 3

"activity" : {
"main_thread"

"normal_compute"

"io_reads"
"io_writes
"openmp"

"openmp_overhead_in_region"
"openmp_overhead_no_region"

"sleep" [0, 0, 0, 0]
3
"openmp" : {
"normal_compute" [©.762, 0.996, 1, 0.971],
"io_reads" : [0.00416, 0.00416, 0, 0.00416],
"io_writes" : [0.233, 0, 0, 0],
"openmp" [6, 0, 0, 0.01319],
"openmp_overhead_in_region" [6, 6, 06, 0 1],
"openmp_overhead_no_region" [6, 6, 0, 0 1],
"sleep" [6, 6, 0, 0]
3
"pthreads" : {
"io_reads" [0.00069, 0.00069, 0, 0.00069],
"io_writes" [©.0389, 0, 0, 0],
"normal_compute" [©.1270, 0.1659, 0.1666, 0.1652],
"openmp" [6, 6, 0, 0.01319],
"openmp_overhead_in_region" : [0, 0, 0, 0.02153],
"openmp_overhead_no_region" [6, 6, 0, 0.00069],
"sleep" [6, 6, 0, 0]
}
}
"metrics" : {
"wchar_total" {
"mins" [3957, 3957, 3958, 4959],
"maxs" [4504, 4959, 5788, 10059],
"means" [3965.375, 4112.112, 4579.149, 6503.496],
"vars" [2159.809, 49522.783, 169602.769, 2314522.699],
"sums" [15860, 16448, 18316, 26012]
+
"bytes_read" {
"mins" [6, 6, 0, 0 1],
"maxs" [34647.255020415301, 0, 0, 0],
"means" [645.12988722358205, 0, 0, 0],
"vars" [9014087.0327749606, 0, 0, 0],
"sums" [2580, 0, 0, 0]
3
"bytes_written" : {
"mins" [6, 6, 0, 0 1],
"maxs" [123, 0, 0, 0],
"means" [32, 0, 0, 0],
"vars" [12, 0, 0, 0],
"sums" [128, 0, 0, 0]
}
}

Allinea Forge 7.0

{
[0.762, 0.996, 1, 0.971],

[0.00416, 0.00416, 0, 0.00416],

" [0.233, 0, 0, 0],

[0, 0, O, 0.01667],
[0, 0,0 0.1]1,
[0, 0, 0, 0.00417],

14

(© 2017 Allinea Software Ltd.

189

Allinea Forge 7.0

Part IV

Appendix

A Configuration

Allinea Forge shares a common configuration file between Allinea DDT and Allinea MAP. This makes
it easy for users to switch between tools without reconfiguring their environment each time.

A.1 Configuration files

Allinea Forge uses two configuration files: the system wide system.config and the user specific
user.config. The system wide configuration file specifies properties such as MPI implementation.
The user specific configuration file describes user’s preferences such as font size. The files are controlled
by environment variables:

Environment Variable Default

ALLINEA_USER_CONFIG ${ALLINEA_CONFIG_DIR}/user.config
ALLINEA_SYSTEM_CONFIG | ${ALLINEA_CONFIG_DIR}/system.config
ALLINEA _CONFIG_DIR ${HOME}/.allinea

A.1.1 Site Wide Configuration

If you are the system administrator, or have write-access to the installation directory, you can provide a
configuration file which other users will be given a copy of—automatically—the first time that they start
Allinea Forge.

This can save other users from the configuration process—which can be quite involved if site-specific
configuration such as queue templates and job submission have to be crafted for your location.

First configure Allinea Forge normally and run a test program to make sure all the settings are correct.
When you are happy with your configuration execute one of the following commands:

forge --clean-config

This will remove any user-specific settings from your system configuration file and will create a sys -
tem.config file that can provide the default settings for all users on your system. Instructions on how
to do this are printed when - -clean-config completes. Note that only the system.config file
is generated. Allinea Forge also uses a user-specific user . config; this is not affected.

If you want to use DDT to attach to running jobs you will also need to create a file called nodes in the
installation directory with a list of compute nodes you want to attach to. See section 5.9 Attaching To
Running Programs for details.

(© 2017 Allinea Software Ltd. 190

Allinea Forge 7.0

A.1.2 Startup Scripts

When Allinea Forge is started it will look for a site wide startup script called allinearc in the root
of the installation directory. If this file exists it will be sourced before starting the tool. When using the
remote client this startup script will be sourced before any site-wide remote-init remote daemon
startup script.

Similarly you can also provide a user-specific startup script in */.allinea/allinearc. Note: if
the ALLINEA_CONFIG_DIR environment variable is set then the software will look in $ALLINEA_
CONFIG_DIR/allinearc instead. When using the remote client the user-specific startup script will
be sourced before the user-specific °/.allinea/remote-init remote daemon startup script.

A.1.3 Importing Legacy Configuration

If you have used a version of Allinea DDT prior to 4.0 your existing configuration will be imported
automatically. If the DDTCONFIG environment variable is set or the - - config command-line argument
used the existing configuration will be imported but legacy configuration file will not be modified, and
subsequent configuration changes will be saved as described in the sections above.

A.1.4 Converting Legacy Site-Wide Configuration Files

If you have existing site-wide configuration files from a version of Allinea DDT prior to 4.0 you will need
to convert them to the new 4.0 format. This can easily be done using the following command line:

forge --config=oldconfig.ddt --system-config=newconfig.ddt --clean
-config

Note: newconfig.ddt must not exist beforehand.

A.1.5 Using Shared Home Directories on Multiple Systems

If your site uses the same home directory for multiple systems you may want to use a different configu-
ration directory for each system.

You can do this by specifying the ALLINEA_CONFIG_DIR environment variable before starting Allinea
Forge. For example if you use the module system you may choose to set ALLINEA_CONFIG_DIR
according to which system the module was loaded on.

For example, say you have two systems: harvester with login nodes harvester-loginland harvester -
login2 and sandworm with login nodes sandworm-1ogin1 and sandworm-10gin2. You may
add something like the snippet below to your module file:

case $(hostname) in
harvester-login*)
ALLINEA CONFIG_DIR=$HOME/.allinea/harvester
H
sandworm-login*)
ALLINEA CONFIG_DIR=$HOME/.allinea/sandworm

rrs

esac

(© 2017 Allinea Software Ltd. 191

Allinea Forge 7.0

A.1.6 Using a Shared Installation on Multiple Systems

If you have multiple systems sharing a common Allinea Forge installation you may wish to have a differ-
ent default configuration for each system. You can use the ALLINEA_DEFAULT_SYSTEM_CONFIG
environment variable to specify a different file for each system. For example, you may add something
like the snippet below to your module file:

case $(hostname) in
harvester-login*)
ALLINEA DEFAULT_SYSTEM_CONFIG=/sw/allinea/forge/harvester.
config
e
sandworm-login*)
ALLINEA DEFAULT_SYSTEM_CONFIG=/sw/allinea/forge/sandworm.
config

esac

A.2 Integration With Queuing Systems

- _options X
System Job Submission Settings

.,'T| Job Submission Submission template file: [,!home,fuser,.fddt,."templates,.fmytemplate.ddt]
"\

Submit command: [Ilsubmit]
D Code Viewer L -

Regexp for job id: ["![’“']Jr)" *has been submitted]
@ Appearance Cancel command: [Ilcancel JOB_ID_TAG]

Display command: [Ilq]
-@ Visit Edit Queue Parameters...

+| Quick Restart What is Quick Restart?

o) o

Figure 116: Queuing Systems

Allinea Forge can be configured to interact with most job submission systems. This is useful if you wish
to debug interactively but need to submit a job to the queue in order to do so.

(© 2017 Allinea Software Ltd. 192

Allinea Forge 7.0

MAP is usually run as a wrapper around mpirun or mpiexec, via the map --profile argument.
We recommend using this to generate . map files instead of configuring MAP to submit jobs to the queue,
but both usages are fully-supported.

In the Options window (Preferences on Mac OS X), you should choose Submit job through queue. This
displays extra options and switches the GUI into queue submission mode.

The basic stages in configuring to work with a queue are:
1. Making a template script, and
2. Setting the commands used to submit, cancel, and list queue jobs.

Your system administrator may wish to provide a configuration file containing the correct settings, thereby
removing the need for individual users to configure their own settings and scripts.

In this mode Allinea Forge can use a template script to interact with your queuing system. The tem-
plates subdirectory contains some example scripts that can be modified to meet your needs. {installation-
directory}/templates/sample.qtf, demonstrates the process of creating a template file in

some detail.

A.3 Template Tutorial

Ordinarily, your queue script will probably end in a line that starts mpirun with your target executable.
In most cases you can simply replace that line with AUTO_LAUNCH_TAG. For example, if your script
currently has the line:

mpirun -np 16 program_name myargl myarg2

then create a copy of it and replace that line with:
AUTO_LAUNCH_TAG
Select this file as the Submission template file on the Job Submission Settings page of the Options. Notice

that you are no longer explicitly specifying the number of processes, etc. You instead specify the number
of processes, program name and arguments in the Run window.

Fill in Submit command with the command you usually use to submit your job, e.g. qsub or sbatch,
Cancel command with the command you usually use to cancel a job, e.g. qdel or scancel and Dis-
play command with the command you usually use to display the current queue status, e.g. qstat or
squeue.

You can usually use (
d+) as the Regexp for job id (this just looks for a number in the output from your Submit command).

Once you have a simple template working you can go on to make more things configurable from the
GUI. For example, to be able to specify the number of nodes from the GUI you would replace an explicit
number of nodes with the NUM_NODES_TAG, e.g. replace:

#SBATCH --nodes=100

with:

#SBATCH --nodes=NUM_NODE_TAG

See appendix H.1 Queue Template Tags for a full list of tags.

(© 2017 Allinea Software Ltd. 193

Allinea Forge 7.0

A.3.1 The Template Script

The template script is based on the file you would normally use to submit your job—typically a shell script
that specifies the resources needed such as number of processes, output files, and executes mpirun,
vmirun, poe or similar with your application.

The most important difference is that job-specific variables, such as number of processes, number of nodes
and program arguments, are replaced by capitalized keyword tags, such as NUM_PROCS_TAG.

When Allinea Forge prepares your job, it replaces each of these keywords with its value and then submits
the new file to your queue.

To refer to tags in comments without Allinea Forge detecting them as a required field the comment line
must begin with ##.

A.3.2 Configuring Queue Commands

Once you have selected a queue template file, enter submit, display and cancel commands.

When you start a session Allinea Forge will generate a submission file and append its file name to the
submit command you give.

For example, if you normally submit a job by typing job_submit -u myusername -f myfile
then you should enter job_submit -u myusername -f as the submit command.

To cancel a job, Allinea Forge will use a regular expression you provide to get a value for JOB_ID_TAG.
This tag is found by using regular expression matching on the output from your submit command. See
appendix H.6 Job ID Regular Expression for details.

A.3.3 Configuring How Job Size is Chosen

Allinea Forge offers a number of flexible ways to specify the size of a job. You may choose whether
Number of Processes and Number of Nodes options appear in the Run window or whether these should
be implicitly calculated. Similarly you may choose to display Processes per node in the Run window or
set it to a Fixed value.

Note: if you choose to display Processes per node in the Run window and PROCS_PER_NODE_TAG is
specified in the queue template file then the tag will always be replaced by the Processes per node value
from the Run dialog, even if the option is unchecked there.

A.3.4 Quick Restart

DDT allows you reuse an existing queued job to quickly restart a run without resubmitting it to the queue,
provided that your MPI implementation supports doing this. Simply check the Quick Restart check box
on the Job Submission Options page.

In order to use quick restart, your queue template file must use AUTO_LAUNCH_TAG to execute your
job.

For more information on AUTO_LAUNCH_TAG, see H.4.1 Using AUTO_LAUNCH_TAG.

(© 2017 Allinea Software Ltd. 194

Allinea Forge 7.0

A.4 Connecting to remote programs (remote-exec)
When Allinea Forge needs to access another machine for remote launch or as part of starting some MPIs,
it will attempt to use the secure shell, ssh, by default.

However, this may not always be appropriate, Ssh may be disabled or be running on a different port to
the normal port 22. In this case, you can create a file called remote-exec which is placed in your
~/ .allinea directory and DDT will use this instead.

Allinea Forge will use look for the script at ~/.allinea/remote-exec, and it will be executed as
follows:

remote-exec HOSTNAME APPNAME [ARG1l] [ARG2]

The script should start APPNAME on HOSTNAME with the arguments ARG1 ARG2 without further in-
put (no password prompts). Standard output from APPNAME should appear on the standard output of
remote-exec. An example is shown below:

SSH based remote-exec

A remote-exec script using Ssh running on a non-standard port could look as follows:

#1/bin/sh
ssh -P {port-number} $*

In order for this to work without prompting for a password, you should generate a public and private
SSH key, and ensure that the public key has been added to the ~/.ssh/authorized_keys file on
machines you wish to use. See the ssh-keygen manual page for more information.

Testing

Once you have set up your remote -exec script, it is recommended that you test it from the command
line. For example:

~/ .allinea/remote-exec TESTHOST uname -n

Should return the output of uname -n on TESTHOST, without prompting for a password.

If you are having trouble setting up remote-exec, please contact support@allinea.com for assis-
tance.

Windows The functionality described above is also provided by the Windows remote client. There are
however two differences:

e The script is named remote-exec.cmd rather than remote-exec
e The default implementation uses the plink.exe executable supplied with Allinea Forge.

A.5 Optional Configuration

Allinea Forge providess an Options window (Preferences on Mac OS X), which allows you to quickly
edit the settings outlined below.

A.5.1 System

MPI Implementation: Allows you to tell Allinea Forge which MPI implementation you are using.

Note: If you are not using Allinea Forge to work with MPI programs select none.

(© 2017 Allinea Software Ltd. 195

mailto:support@allinea.com

Allinea Forge 7.0

Override default mpirun path: Allows you to override the path to the mpirun (or equivalent) com-
mand.

Select Debugger: Tells Allinea Forge which underlying debugger it should use. This should almost
always be left as Automatic.

On Linux systems Allinea Forge ships with two versions of the GNU GDB debugger: GDB 7.2 and GDB
7.6.2. GDB 7.2 is the same version as shipped with DDT 4.2 and is provided for backwards compatibility.
GDB 7.6.2 (the default) provides, amongst other things, improved DWARF 4 and C++ support and is
recommended if you are using a recent compiler such as GCC 4.8.

Create Root and Workers groups automatically: If this option is checked DDT will automatically
create a Root group for rank 0 and a Workers group for ranks 1-n when you start a new MPI session.

Use Shared Symbol Cache: The shared symbol cache is a file that contains all the symbols in your pro-
gram in a format that can be used directly by the debugger. Rather than loading and converting the sym-
bols itself, every debugger shares the same cache file. This significantly reduces the amount of memory
used on each node by the debuggers. For large programs there may be a delay starting a job while the cache
file is created as it may be quite large. The cache files are stored in SHOME/ .allinea/symbols. We
recommend only turning this option on if you are running out of memory on compute nodes when de-
bugging programs with DDT.

Heterogeneous system support: DDT has support for running heterogeneous MPMD MPI applications
where some nodes use one architecture and other nodes use another architecture. This requires a little
preparation of your Allinea Forge installation. You must have a separate installation of DDT for each
architecture. The architecture of the machine running the Allinea Forge GUI is called the host architec-
ture. You must create symbolic links from the host architecture installation of Allinea Forge to the other
installations for the other architectures. For example with a 64-bit x86_64 host architecture (running the
GUI) and some compute nodes running the 32-bit i686 architecture:

In -s /path/to/allinea-forge-i686/bin/ddt-debugger \
/path/to/allinea-forge-x86_64/bin/ddt-debugger.1686

Enable CUDA software pre-emption: Allows debugging of CUDA kernels on a workstation with a
single GPU.

Copy files to compute nodes

Xeon Phi: Copy the Allinea Forge daemon files to the Xeon Phi cards when attaching to an offload pro-
cess. With this option enabled the DDT installation does not need to be visible on the Phi card—i.e. no
shared filesystem is required.

Bluegene: Copy the Allinea Forge daemon files to the Bluegene I/O nodes. This may offer better de-
bugging performance, but comes at the expense of consuming more RAM on the I/0 nodes. To use this
option approximately 50% of the I/O node RAM should be free during normal operation, otherwise you
risk exhausting the RAM on the I/O nodes.

Default groups file: Entering a file here allows you to customise the groups displayed by DDT when
starting an MPT job. If you do not specify a file DDT will create the default Root and Workers groups if
the previous option is checked.

Note: A groups file can be created by right clicking the process groups panel and selecting Save groups. ..
while running your program.

Attach heosts file: When attaching, DDT will fetch a list of processes for each of the hosts listed in this
file. See section 5.9 Attaching To Running Programs for more details.

(© 2017 Allinea Software Ltd. 196

Allinea Forge 7.0

A.5.2 Job Submission

This section allows you to configure Allinea Forge to use a custom mpirun command, or submit your
jobs to a queuing system. For more information on this, see section A.2 Integration With Queuing Sys-
tems.

A.5.3 Code Viewer Settings

This allows you to configure the appearance of the Allinea Forge code viewer (used to display your source
code while debugging)

Tab size : Sets the width of a tab character in the source code display. (A width of 8 means that a tab
character will have the same width as 8 space characters.)

Font name: The name of the font used to display your source code. It is recommended that you use a
fixed width font.

Font size: The size of the font used to display your source code.

External Editor: This is the program Allinea Forge will execute if you right click in the code viewer
and choose Open file in external editor. This command should launch a graphical editor. If no edi-
tor is specified, Allinea Forge will attempt to launch the default editor (as configured in your desktop
environment).

Colour Scheme: Colour palette to use for the code viewer’s background, text and syntax highlighting.
Defined in Kate syntax definition format in the resource/styles directory of the Allinea Forge
install.

Visualize Whitespace: Enables or disables this display of symbols to represent whitespace. Useful for
distinguishing between space and tab characters.

Warn about potential programming errors: This setting enables or disables the use of static analysis
tools that are included with the Allinea Forge installation. These tools support F77, C and C++, and
analyse the source code of viewed source files to discover common errors, but can cause heavy CPU
usage on the system running the Allinea Forge user interface. You can disable this by unchecking this
option.

A.5.4 Appearance
This section allows you to configure the graphical style of Allinea Forge, as well fonts and tab settings
for the code viewer.

Look and Feel: This determines the general graphical style of Allinea Forge. This includes the appear-
ance of buttons, context menus.

Override System Font Settings: This setting can be used to change the font and size of all components
in Allinea Forge (except the code viewer).

A.5.5 Vislt

Allow the use of VisIt with DDT: When ticked DDT will launch VisIt whenever a Vispoint is hit, or on
demand.

VisIt launch command: The full path to the VisIt binary (visit).

(© 2017 Allinea Software Ltd. 197

Allinea Forge 7.0

Custom Arguments: Any extra arguments to pass to Vislt.
Launch VisIt with small viewer: Launches Vislt with a smaller viewer window.
Use Hardware Acceleration: Enable hardware acceleration (uses GPU for rendering).

Raise DDT window when a ‘DDT pick’ is made in VisIt: When enabled, selecting an cell/zone with the
DDT pick tool within VisIt will cause DDT to attempt to raise its window to the top of your desktop. Note
that this may not be successful as many window managers prevent applications from raising themselves
in this way.

Close VisIt when the DDT session ends: It is not possible to interact with a VislIt visualization once DDT
has ended the session (the program containing the arrays to visualize no longer exists). To avoid confusion
and prevent problems when next viewing a Vislt visualization it is recommended Vislt be closed when
the DDT session ends, and a fresh VislIt instance launched as needed for the next visualization.

Enable vispoints: When a visualization breakpoint is hit DDT transfers control to VisIt where you can
visualise a given array from your program. Vispoints do not work with programs that are already instru-
mented for use with Vislt (See section 17.9 Using DDT with a pre-instrumented program).

Automatically create Pseudocolour plots for variables: When a new vispoint is hit the vispoint’s array
variables will automatically be plotted (using pseudocolour plots) within Vislt. When there are multiple
array variables to visualize each will be plotted in a viewer window. Note that this feature uses the VisIt
CLI and that whilst the viewer windows are being created and configured a CLI terminal window will be
briefly visible.

If you see a dialog “Vislt is waiting for a CLI to launch” for more than 10 seconds it is likely Vislt is
unable to provide a CLI on your system. On Linux systems the program X term is required to use VisIt’s
CLL

VisIt launch command on compute nodes: The full path to the VisIt binary on the compute nodes (if
different from the frontend).

(© 2017 Allinea Software Ltd. 198

Allinea Forge 7.0

B Getting Support

Whilst this document attempts to cover as many parts of the installation, features and uses of our tool as
possible, there will be scenarios or configurations that are not covered, or are only briefly mentioned, or
you may on occasion experience a problem using the product. In any event, the support team at Allinea
will be able to help and will look forward to assist in ensuring that you can get the most out of Allinea
Forge.

You can contact the team by sending an email directly to support@allinea.com .
Please provide as much detail as you can about the scenario in hand, such as:

e Version number of Allinea Forge (e.g. forge --version)and your operating system and the
distribution (example: Red Hat Enterprise Linux 6.4). This information is all available by using
the - -version option on the command line of any Allinea tool:

bash$ forge --version

Allinea DDT
Part of Allinea Forge.
(c) Allinea Software 2002-2015

Version: 5.0
Build: Ubuntu 12.04 x86 64
Build Date: Jan 5 2015

Licence Serial Number: see About window
Frontend 0S: Ubuntu 14.04 x86_64

Nodes' 0S: unknown
Last connected ddt-debugger: unknown

The compiler used and its version number

The MPI library and CUDA toolkit version if appropriate

A description of the issue : what you expected to happen and what actually happened

An exact copy of any warning or error messages that you may have encountered

(© 2017 Allinea Software Ltd. 199

mailto:support@allinea.com

Allinea Forge 7.0

C Supported Platforms

A full list of supported platforms and configurations is maintained on the Allinea website.

C.1 DDT

See http://www.allinea.com/products/ddt/platforms.

Platform

Operating Systems

MPI1

Compilers

x86 and x86_64

Red Hat Enterprise
Linux and derivatives
5, 6 and 7, SUSE Linux
Enterprise 11 and 12,

Blue Gene/Q, Bullx
MPI 1.2.7 and 1.2.8,
Cray MPT (MPI/SH-
MEM), IBM PE, Intel

Cray, GNU 4.3.2+, In-
tel 13+, PGI 14+

cessor (Knight’s Cor-
ner)

2.1.6720-19, 3.1, 3.2

mode

Ubuntu 12.04 and | MPI 4.1.x and 5.0.x,
14.04 MPICH 2x.x and
3.x.x, MVAPICH 2.0
and 2.1, Open MPI
1.6.x, 1.8.x (MPI/SH-
MEM) and 1.10.x,
Platform MPI 9.x, SGI
MPT 2.08, 2.10 and
2.11
Intel Xeon Phi | Red Hat Enterprise | x86_64 platform MPI | Intel, GNU
(Knight’s Landing) Linux 7.2 and SUSE | support
Linux Enterprise 12
Intel Xeon Phi copro- | MPSS 2.1.4982-15, | Intel MPI and native | Intel, GNU

IBM Power (PPC64 | Red Hat Enterprise | IBM PE, MPICH 2.x.x | IBM XLC, IBM XLF,
big-endian) Linux 6 and 3.x.x, Open MPI | GNU
1.6.x, 1.8.x and 1.10.x
IBM Power (PPC64le | Red Hat Enterprise | IBM PE, MPICH 3.x.x, | GNU
little-endian, Linux 7.2 Open MPI 1.8.x and
POWERS) 1.10.x, and Spectrum
MPI 10.1.0
Blue Gene/Q Red Hat Enterprise | Native GNU and IBM
Linux 6
ARMVS8 (AArch64) Ubuntu 14.04 Open MPI 1.8x and | GNU
1.10.x
NVIDIA Linux - Cray OpenACC,
CUDA Toolkit NVCC, PGI OpenACC
6.0/6.5/7.0/7.5/8.0 (14.4 and above), PGI

CUDA Fortran (14.1
and above)

Pretty printing of C++ types is supported for GNU and Intel compilers.
Message queue debugging is supported for Bullx MPI, IBM PE, Intel MPI 4.1.x, MPICH, MVAPICH,

(© 2017 Allinea Software Ltd.

200

http://www.allinea.com/products/ddt/platforms

and Open MPI.

Allinea Forge 7.0

Version control integration is supported for Git 1.7+, Mercurial 2.1+ and Subversion 1.6+.

Batch schedulers: SLURM 2.6.3+ and 14.03+, PBS, TORQUE, Moab, Oracle Grid Engine, Loadleveler
and Cobalt. Batch scheduling systems are supported through Queue Templates - see section A.2 Inte-
gration With Queuing Systems for more information. See section D.17 SLURM for more details about

SLURM support.

Visualization tools: Vislt 2.4.2, 2.5.0, 2.5.2, 2.6.1, 2.6.2 and 2.7.0. See section 17 Using DDT with the
Vislt Visualization Tool for more details about VisIt support.

C.2 MAP

See http://www.allinea.com/products/map/platforms.

Platform Operating Systems MPI Compilers
x86_64 Red Hat Enterprise | Bullx MPI 1.2.7 and | Cray, GNU 4.3.2+, In-
Linux and derivatives | 1.2.8, Cray MPT, Intel | tel 13+, PGI 14+
5,6and 7, SUSE Linux | MPI 4.1.x and 5.0.x,
Enterprise 11 and 12, | MPICH 2.x.x and
Ubuntu 12.04 and | 3.x.x, MVAPICH 2.0
14.04 and 2.1, Open MPI
1.6.x, 1.8.x and 1.10.x,
Platform MPI 9.x, SGI
MPT 2.10 and 2.11
Intel Xeon Phi | Red Hat Enterprise | x86_.64 MPI platform | Intel, GNU
(Knight’s Landing) Linux 7.2 and SUSE | support
Linux Enterprise 12
Intel Xeon Phi copro- | MPSS 2.1.4982-15, | Intel MPI and native | Intel, GNU
cessor (Knight’s Cor- | 2.1.6720-19, 3.1, 3.2 mode
ner)
IBM Power (PPC64le | Red Hat Enterprise | IBM PE, MPICH 3.x.x, | GNU
little-endian, Linux 7.2 Open MPI 1.8.x and
POWERS) 1.10.x, and Spectrum
MPI 10.1.0
ARMVS8 (AArch64) Ubuntu 14.04 Open MPI 1.8x and | GNU
1.10.x
NVIDIA Linux - Cray OpenACC,
CUDA Toolkit NVCC, PGI OpenACC
6.0/6.5/7.0/7.5/8.0 (14.4 and above), PGI

CUDA Fortran (14.1
and above)

The following MPIs are also covered by our precompiled wrappers: Open MPI 1.6.x-1.10.x, MPICH
2.x.x and 3.x.x, Intel MPI 4.x.x and 5.x.x, Cray MPT, Bullx MPI 1.2.7 and 1.2.8, MVAPICH 2.x.x

Version control integration is supported for Git 1.7+, Mercurial 2.1+ and Subversion 1.6+.

The Allinea profiling libraries must be explicitly linked with statically linked programs which mostly
applies to the Cray X-Series.

(© 2017 Allinea Software Ltd.

201

http://www.allinea.com/products/map/platforms

Allinea Forge 7.0

Batch schedulers: SLURM 2.6.3+ and 14.03+, PBS, TORQUE, Moab, Oracle Grid Engine, Loadleveler
and Cobalt. Batch scheduling systems are supported through Queue Templates - see section A.2 Inte-
gration With Queuing Systems for more information. See section D.17 SLURM for more details about
SLURM support.

(© 2017 Allinea Software Ltd. 202

Allinea Forge 7.0

D MPI Distribution Notes and Known Issues

This appendix has brief notes on many of the MPI distributions supported by Allinea DDT and Allinea
MAP. Advice on settings and problems particular to a distribution are given here. Note that MAP supports
fewer MPI distributions than DDT (see C Supported Platforms for more details).

D.1 Berkeley UPC

Only the MPI transport is supported. Programs must be compiled with the - tv flag, for example:

upcc hello.c -o hello -g -tv

D.2 Bull MPI

Bull MPI 1, MPI 2 and Bull X-MPI are supported. For Bull X-MPI select the Open MPI or Open MPI
(Compatibility) MPIs, depending on whether ssh is allowed (in which case choose Open MPI) or not
(choose Open MPI Compatibility mode).

Select Bull MPI or Bull MPI 1 for Bull MPI1 1, or Bull MPI 2 for Bull MPI 2 from the MPI implementations
list. In the mpirun arguments box of the Run window you may also wish to specify the partition that you
wish to use—by adding

-p partition_name

You should ensure that prun, the command used to launch jobs, is in your PATH before starting DDT.

D.3 Cray MPT

This section only applies when using aprun. For srun (‘Native’ SLURM mode) see section D.17
SLURM.

DDT and MAP have been tested with Cray XT 5/6, XE6, XK6/7, and XC30 systems. DDT is able to
launch and support debugging jobs in excess of 700,000 cores.

A number of template files for launching applications from within the queue (using Allinea’s job submis-
sion interface) are included in the distribution—these may require some minor editing to cope with local
differences on your batch system.

To attach to a running job on a Cray system the MOM nodes (those nodes where aprun is launched) must
be reachable via ssh from the node where DDT is running (e.g. a login node). DDT must connect to
these nodes in order to launch debugging daemons on the compute nodes. Users can either specify the
aprun-host manually in the attach dialog when scanning for jobs, or configure a hosts list containing all
MOM nodes.

If the program is dynamically linked, DDT supports preloading of C/Fortran (no threads / threads) on
XK6/7 (requires aprun/ALPS 4.1 or later). Preloading of C++ (no threads / threads) is not supported at
this time.

If the program is dynamically linked, MAP supports preloading of the sampling libraries (requires aprun/ALPS
4.1 or later), else MAP requires Allinea’s sampling libraries to be linked with the application before run-
ning on this platform. See 18.2.3 Linking for a set-by-step guide.

(© 2017 Allinea Software Ltd. 203

Allinea Forge 7.0

D.4 HP MPI

Select HP MPI as the MPI implementation.

A number of HP MPI users have reported a preference to using mpirun -f jobconfigfile instead
of mpirun -np 10 a.out for their particular system. It is possible to configure DDT to support this
configuration—using the support for batch (queuing) systems.

The role of the queue template file is analogous to the -f jobconfigfile.
If your job config file normally contains:
-h node®1 -np 2 a.out
-h noded62 -np 2 a.out
Then your template file should contain:
-h node01 -np PROCS_PER_NODE_TAG /usr/local/ddt/bin/ddt-debugger
-h node®2 -np PROCS_PER_NODE_TAG /usr/local/ddt/bin/ddt-debugger
and the Submit Command box should be filled with
mpirun -f
Select the Template uses NUM_NODES__TAG and PROCS_PER_NODE_ TAG radio button. After this has

been configured by clicking OK, you will be able to start jobs. Note that the Run button is replaced with
Submit, and that the number of processes box is replaced by Number of Nodes.

D.5 IBMPE

Ensure that poe is in your path, and select IBM PE as the MPI implementation.

A sample Loadleveler script, which starts debugging jobs on POE systems, is included inthe {installation-
directory}/templates directory.

To attach to already running POE jobs, SSH access to the compute nodes is required. Without SSH, DDT
has no way to connect to the ranks running on the nodes.

Known issue: IBM PE 2.1 and newer currently do not provide the debugging interface required for MPI
message queue debugging.

D.6 Intel MPI

Select Intel MPI from the MPI implementation list. DDT and MAP have been tested with Intel MPI
4.1.x, 5.0.x and onwards. onwards.

Make sure to pay attention to the changes in the mpivars. sh script with Intel MPI 5.0. You can pass
it an argument to say whether you want to use the debug or release version of the MPI libraries. The
default, if you omit the argument, is the release version, but message queue debugging will not work if
you use this version. The debug version must be explicitly used.

DDT also supports the Intel Message Checker tool that is included in the Intel Trace Analyser and Col-
lector software. A plugin for the Intel Trace Analyser and Collector version 7.1 is provided in DDT’s
plugins directory. Once you have installed the Intel Trace Analyser and Collector, you should make sure
that the following directories are in your LD_LIBRARY_PATH:

(© 2017 Allinea Software Ltd. 204

Allinea Forge 7.0

{path to intel install directory}/itac/7.1/1ib
{path to intel install directory}/itac/7.1/slib

The Intel Message Checker only works if you are using the Intel MPI. Make sure Intel’s mpiexec is in
your path, and that your application was compiled against Intel’s MPI, then launch DDT, check the plugin
checkbox and debug your application as usual. If one of the above steps has been missed out, DDT may
report an error and say that the plugin could not be loaded.

Once you are debugging with the plugin loaded, DDT will automatically pause the application whenever
Intel Message Checker detects an error. The Intel Message Checker log can be seen in the standard error
(stderr) window.

Note that the Intel Message Checker will abort the job after 1 error by default. You can modify this
by adding -genv VT_CHECK_MAX_ERRORSO to the mpiun arguments box in the Run window—see
Intel’s documentation for more details on this and other environment variable modifiers.

Attach dialog: DDT cannot automatically discover existing running MPI jobs that use Intel MPI if the
processes are started using the mpiexec command (which uses the MPD process starting daemon). To
attach to an existing job you will need to list all potential compute nodes individually in the dialog. Please
note the mpiexec method of starting MPI processes is deprecated by Intel and you are encouraged to
use mpirun or mpiexec.hydra (which use the newer scalable Hydra process starting daemon). All
processes that are started by either mpirun and mpiexec.hydra are discovered automatically by
Allinea DDT.

D.7 MPC

DDT supports MPC version 2.5.0 and upwards. MPC is not supported by MAP.

In order to debug an MPC program, a script needs adding to the MPC installation. This script is obtained
from http://content.allinea.com/hidden/mpcrun_mpiexec_allinea and should be saved into the bin/mpcrun_
opt subdirectory of your MPC framework installation.

D.7.1 MPC in the Run Window

When the MPC framework is selected as the MPI implementation, there is an additional field in the MPI
configuration within the Run window:

Number of MPC Tasks: The number of tasks that you wish to debug. MPC uses threads to split these
tasks over the number of processes specified.

Also, the mpirun arguments field is replaced with the field:

mpcrun arguments: (optional): The arguments that are passed to mpcrun. This should be used
for arguments to mpcrun not covered by the number of MPC tasks and number of processes fields.
An example usage is to override default threading model specified in the MPC configuration by en-
tering - -multithreading=pthreads for POSIX threads or - -multithreading=ethreads
for user-level threads. The documentation for these arguments can be found at http://mpc.paratools.com/
UsersGuide/Running. This field is only displayed if the selected MPI implementation is the MPC frame-
work.

Note: The OpenMP options are not available in the Run window, as MPC uses the number of tasks to
determine the number of OpenMP threads rather than OMP_NUM_THREADS.

(© 2017 Allinea Software Ltd. 205

http://content.allinea.com/hidden/mpcrun_mpiexec_allinea
http://mpc.paratools.com/UsersGuide/Running
http://mpc.paratools.com/UsersGuide/Running

Allinea Forge 7.0

D.7.2 MPC on the Command Line

There are two additional command-line arguments to DDT when using MPC that can be used as an
alternative to configuration in the GUIL.

- -mpc - task-nb The total number of MPC tasks to be created.

--mpc-process-nb The total number of processes to be started by mpcrun.

D.8 MPICH 1 p4

Choose MPICH 1 Standard as the MPI implementation.

D.9 MPICH 1 p4 mpd

This daemon based distribution passes a limited set of arguments and environments to the job programs.
If the daemons do not start with the correct environment for DDT to start, then the environment passed
to the ddt -debugger backend daemons will be insufficient to start.

It should be possible to avoid these problems if .bashrc or .tcshrc/.cshrc are correct. How-
ever, if unable to resolve these problems, you can pass HOME and LD_LIBRARY_PATH, plus any other
environment variables that you need. This is achieved by adding -MPDENV -HOME={homedir} LD_-
LIBRARY_PATH= {1ld-library-path} to the Arguments area of the Run window. Alternatively
from the command-line you may simply write:

ddt {program-name} -MPDENV- HOME=$HOME LD_LIBRARY_PATH=
$LD_LIBRARY_PATH
and your shell will fill in these values for you.

Choose MPICH 1 Standard as the MPI implementation.

D.10 MPICH 2

If you see the error undefined reference to MPI_Status_c2f while building the MAP li-
braries (18.2.3 Linking) then you need to rebuild MPICH 2 with Fortran support.

D.11 MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with Allinea Forge due to an MPICH. MPICH 3.1 addresses this
and is supported.

There are two MPICH 3 modes—standard and Compatibility. If the standard mode does not work on
your system select MPICH 3 (Compatibility) as the MPI Implementation on the System Settings page of
the Options window.

D.12 MVAPICH1

You will need to specify the hosts on which to launch your job to mvapich’s mpirun by using the -
hostfile filename or individually as per the MVAPICH documentation in the mpirun Arguments
box.

(© 2017 Allinea Software Ltd. 206

Allinea Forge 7.0

See section 18.2.5 Static Linking for additional notes on linking the Allinea MPI wrapper with MVAPICH
1.

D.13 MVAPICH 2

Known issue: If memory debugging is enabled in DDT, this will interfere with the on-demand con-
nection system used by MVAPICH?2 above a threshold process count and applications will fail to start.
This threshold default value is 64. To work around this issue, set the environment variable MV2_ON_
DEMAND_THRESHOLD to the maximum job size you expect on your system and then DDT will work
with memory debugging enabled for all jobs. This setting should not be a system wide default as it may
increase startup times for jobs and memory consumption.

MVAPICH 2 now offers mpirun_rsh instead of mpirun asascalable launcher binary—to use this with
DDT, from File — Options (Allinea Forge — Preferences on Mac OS X) go to the System page, check
Override default mpirun path and enter mpirun_rsh. You should also add -hostfile <hosts>
(where <hosts> is the name of your hosts file) within the mpirun_rsh arguments field in the Run win-
dow.

To enable message Queue Support MVAPICH 2 must be compiled with the flags - -enable-debug
--enable-sharedlib. These are not set by default.

D.14 Open MPI

DDT has been tested with Open MPI 1.6.x, 1.8.x and 1.10.x. Select Open MPI from the list of MPI
implementations.

There are three different Open MPI choices in the list of MPI implementations to choose from in DDT
when debugging for Open MPI.

e Open MPI — the job is launched with a custom ‘launch agent’ that, in turn, launches the Allinea
daemons.

e Open MPI (Compatibility) — mpirun launches the Allinea daemons directly. This startup method
does not take advantage of Allinea’s scalable tree.

e Open MPI for Cray XT/XE/XK/XC — for Open MPI running on Cray XT/XE/XK/XC systems. This
method is fully able to use DDT’s scalable tree infrastructure for large scale debugging.

Known issue: Early versions of Open MPI 1.8 do not properly support message queue debugging. This
is fixed in Open MPI 1.8.6.

Known issue: If you are using the 1.6.x series of Open MPI configured with the - -enable-orterun-
prefix-by-default flag then DDT requires patch release 1.6.3 or later due to a defect in earlier
versions of the 1.6.x series.

Known issue: The version of Open MPI packaged with Ubuntu has the Open MPI debug libraries stripped.
This prevents the Message Queues feature of DDT from working.

Known issue: With Open MPI 1.3.4 and Intel Compiler v11—the default build will optimize away a vital
call during the startup protocol which means the default Open MPI start up will not work. If this is your
combination, either update your Open MPI, or select Open MPI (Compatibility) instead as the DDT MPI
Implementation.

Known Issue: On Infiniband systems, Open MPI and CUDA can conflict in a manner that results in
failure to start processes, or a failure for processes to be debuggable. To enable CUDA interoperability
with Infiniband, set the CUDA environment variable CUDA_NIC_INTEROP to 1.

(© 2017 Allinea Software Ltd. 207

Allinea Forge 7.0

D.15 Platform MPI

Platform MPI 9.x is supported, but only with the mpirun command. Currently mpiexec is not sup-
ported.

D.16 SGI MPT | SGI Altix

If using SGI MPT 2.10+, select SGI MPT (2.10+, batch) as the MPI implementation.
If using SGI MPT 2.08+, select SGI MPT (2.08+, batch) as the MPI implementation.
If using an older version of SGI MPT (2.07 or before) select SGI MPT as the MPI implementation.

If you are using SGI MPT with PBS or SLURM and would normally use mpiexec_mpt to launch
your program you will need to use the pbs-sgi-mpt.qtf queue template file and select SGI MPT
(Batch) as the MPI implementation.

If you are using SGI MPT with SLURM and would normally use mpiexec_mpt to launch your program
you will need to use Srun - -mpi=pmi2 directly.

mpiexec_mpt from versions of SGI MPT prior to 2.10 may prevent MAP from starting when preloading
the Allinea profiler and MPI wrapper libraries. We recommend you explicitly link your programs against
these libraries to work around this problem.

Preloading the Allinea profiler and MPI wrapper libraries is not supported in express launch mode. We
recommend you explicitly link your programs against these libraries to work around this problem.

Some SGI systems can not compile programs on the batch nodes (e.g. because the gcc package is not
installed). If this applies to your system you must explicitly compile the Allinea MPI wrapper library
using the make-profiler-libraries command and then explicitly link your programs against
the Allinea profiler and MPI wrapper libraries.

The mpio. h header file shipped with SGI MPT 2.09 and SGI MPT 2.10 contains a mismatch between
the declaration of MPI_File_set_view and some other similar functions and their PMPI equivalents,
e.g. PMPI_File set_view. This prevents MAP from generating the MPI wrapper library. Please
contact SGI for a fix.

SGI MPT 2.09 requires the MPI_SUPPORT_DDT environment variable to be set to 1 to avoid startup
issues when debugging with DDT, or profiling with MAP.

D.16.1 Using DDT with Cray ATP (the Abnormal Termination Process)

DDT is compatible with the Cray ATP system, which will be default on some XE systems. This runtime
addition to applications automatically gathers crashing process stacks, and can be used to let DDT attach
to a job before it is cleaned up during a crash.

To be able to debug after a crash when an application is run with ATP but without a debugger, the ATP_
HOLD_TIME environment variable should be initialized before launching the job—a value of 5 is (very)
ample, even on a large Petscale system, giving 5 minutes for the attach to complete.

The following example shows the typical output of an ATP session.

n10888@kaibab:~> aprun -n 1200 ./atploop

Application 1110443 is crashing. ATP analysis proceeding...
Stack walkback for Rank 23 starting:

_start@start.S:113

_ libc_start_main@libc-start.c:220

(© 2017 Allinea Software Ltd. 208

Allinea Forge 7.0

main@atploop.c:48

__kill@ex4b5be7

Stack walkback for Rank 23 done

Process died with signal 11: 'Segmentation fault'

View application merged backtrace tree file 'atpMergedBT.dot'
with 'statview'

You may need to 'module load stat'.

atpFrontend: Waiting 5 minutes for debugger to attach...

At this point, DDT can be launched to debug the application.

DDT can attach using the Attaching dialogs described in Section 5.9 Attaching To Running Programs, or
given the PID of the aprun process, the debugging set can be specified from the command line.

For example, to attach to the entire job:

ddt --attach-mpi=12772
If a particular subset of processes are required, then the subset notation could also be used to select
particular ranks.

ddt --attach-mpi=12772 --subset=23,100-112,782,1199

D.17 SLURM

To start MPI programs using the srun command instead of your MPI’s usual mpirun command (or
equivalent) select SLURM (MPMD) as the MPI Implementation on the System Settings page of the Op-
tions. Note: this option will work with most MPIs, but not all. See below for some common excep-
tions.

Exceptions:

e On the Cray, ‘Hybrid’ SLURM mode (i.e. sbatch + aprun) is not supported—you must start
your program with Cray’s aprun instead. See Section D.3 Cray MPT.

e Bluegene/Q users should select Bluegene/Q (SLURM) as the MPI Implementation instead.

SLURM may be used as a job scheduler with DDT and MAP through the use of a queue template file—see
templates/slurm.qtf inthe Allinea Forge installation for an example and section A.2 Integration
With Queuing Systems for more information on how to customize the template.

The use of the - -export argument to srun (SLURM 14.11 or newer) is not supported by MAP, or
by DDT when memory debugging or Vislt integration is enabled. In this case you can avoid using - -
export by exporting the necessary environment variables before running DDT or MAP.

The use of the - -task-prolog argument to Srun (SLURM 14.03 or older) is not supported by MAP,
or by DDT when memory debugging or Vislt integration is enabled, as the necessary libraries cannot be
preloaded. You will either need to avoid using this argument, or explicitly link to the libraries.

D.18 Spectrum MPI

Spectrum MPI 10.1.0 is supported for IBM Power (PPC64le little-endian, POWERS), but only with the
mpirun command. Currently mpiexec and jsrun (PMIx mode) are not supported.

Message queue information is currently not available with Spectrum MPI.

(© 2017 Allinea Software Ltd. 209

Allinea Forge 7.0

Additionally, Spectrum MPI does not support preloading, so the target application must be explicitly
linked with MAP’s sampler and wrapper libraries if it is to be profiled using MAP. See Section 18.2.3
Linking for more information. Similarly, memory debugging in DDT will require explicitly linking with
DDT’s dmalloc library.

(© 2017 Allinea Software Ltd. 210

Allinea Forge 7.0

E Compiler Notes and Known Issues

When compiling for a DDT debugging session always compile with a minimal amount of, or no, op-
timization—some compilers reorder instruction execution and omit debug information when compiled
with optimization turned on.

E.1 AMD OpenCL compiler

Not supported by MAP.

The AMD OpenCL compiler can produce debuggable OpenCL binaries—however, the target must be
the CPU rather than the GPU device. The build flags -g -00 must be used when building the OpenCL
kernel, typically by setting the environment variable:

AMD_OCL_BUILD_OPTIONS_APPEND="-g -00"

The example codes in the AMD OpenCL toolkit are able to run on the CPU by adding a parameter - -
device cpu—and will result, with the above environment variable set, in debuggable OpenCL.

E.2 Berkeley UPC Compiler

Not supported by MAP.

The Berkeley UPC compiler is fully supported by Allinea DDT, but only when using the MPI conduit
(other conduits are not supported).

Warning: If you don’t compile the program fixing the number of threads (using the - fupc-threads-
<numberOfThreads> flag), a known issue arises at the end of the program execution.

Note: Source files must end with the extension . upc in order for UPC support to be enabled.

E.3 Cray Compiler Environment

DDT supports Cray Fast Track Debugging. In DDT 5.0 it is only supported when using GDB 7.2 and not
when using GDB 7.6.2. You can select GDB 7.2 on the System Settings page of the Options window. To
enable Fast Track Debugging compile your program with -Gfast instead of -g. See the Using Cray
Fast-track Debugging section of the Cray Programming Environment User’s Guide for more informa-
tion.

Call-frame information can also be incorrectly recorded, which can sometimes lead to DDT stepping into
a function instead of stepping over it. This may also result in time being allocated to incorrect functions
in MAP.

C++ pretty printing of the STL is not supported by DDT for the Cray compiler.

Known Issue: If compiling static binaries then linking in the DDT memory debugging library is not
straightforward for F90 applications. You will need to do the following:

1. Manually re-run the compiler command with the - v (verbose) option to get the linker command
line. We assume that the object files are already created.

2. Run 1d manually to produce the final statically linked executable. For this, the following path
modifications will be needed in the previous 1d command: Add -L{ddt-path}/1ib/64 -
1ldmalloc immediately prior to where - 1c is located. For multi-threaded programs you have to
add -ldmallocth -l1pthread before the - 1c option.

(© 2017 Allinea Software Ltd. 211

Allinea Forge 7.0

See CUDA/GPU debugging notes for details of Cray OpenMP Accelerator support.
Allinea DDT fully supports the Cray UPC compiler. Not supported by MAP.

E.3.1 Compile Serial Programs on Cray

To debug serial (non-MPI) code with DDT on Cray, first we have to load the PMI module and then
compile our code using the Cray compiler adding the flags -W1, -u, PMI_Init to link against the Cray
PML.

When we launch DDT with our serial program, the run dialog will automatically detect the Cray MPI
even though it is a serial program and we just have to set 1 process and press run.

E.4 GNU

The compiler flag - fomit - frame-pointer should never be used in an application which you intend
to debug or profile. Doing so can means Allinea Forge cannot properly discover your stack frames and
you will be unable to see which lines of code your program has stopped at.

For GNU C++, large projects can often result in vast debug information size, which can lead to large mem-
ory usage by DDT’s back end debuggers—for example each instance of an STL class used in different
object files will result in the compiler generating the same information in each object file.

The -foptimize-sibling-calls optimization (used in -02, -03 and -0s) interfere with the
detection of some OpenMP regions. If your code is affected with this issue add - fno-optimize-
sibling-calls to disable it and allow MAP to detect all the OpenMP regions in your code.

Using the -dwar f -2 flag together with the -strict-dwarf flag may cause problems in stack un-
winding, resulting in a “cannot find the frame base” error. DWARF 2 does not provide all the information
neceesary for unwinding the call stack, so many compilers add DWARF 3 extensions with the missing
information. Using the - strict-dwarf flag prevents compilers from doing so, resulting in the afore-
mentioned message. Removing -strict-dwarf should fix this problem.

E.4.1 GNUUPC

DDT also supports the GCC-UPC compiler (upc_threads_model_process only; the pthread-
t1s threads model is not supported). MAP does not support this.

To compile and install GCC UPC 4.8 without TLS it is necessary to modify the configuration file path/
to/upc/source/code/directory/libgupc/configure, replacing all the entries upc_cv_-
gcc_tls_supported= “yes” to upc_cv_gcc_tls_supported=“no”.

To run a UPC program in DDT you have to select the MPI implementation “GCC libupc SMP (no
TLS)”

E.5 IBM XLCIXLF

It is advisable to use the -qfullpath option to the IBM compilers (XLC/XLF) in order for source files
to be found automatically when they are in directories other than that containing the executable. This
flag has been known to fail for mpxlf95, and so there may be circumstances when you must right click
in the project navigator and add additional paths to scan for source files.

(© 2017 Allinea Software Ltd. 212

Allinea Forge 7.0

Module data items behave differently between 32 and 64 bit mode, with 32-bit mode generally enabling
access to more module variables than 64-bit mode.

Missing debug information in the binaries produced by XLF can prevent DDT from showing the values in
Fortran pointers and allocatable arrays correctly, and assumed-size arrays cannot be shown at all. Please
update to the latest compiler version before reporting this to support@allinea.com .

Sometimes, when a process is paused inside a system or library call, DDT will be unable to display the
stack, or the position of the program in the Code view. To get around this, it is sometimes necessary
to select a known line of code and choose Run to here. If this bug affects you, please contact sup-
port@allinea.com .

OpenMP loop variables are often optimized away and not present when debugging.

DDT has been tested against the C compiler xlc version 10.0 and Fortran/Fortran 90 version 12.1 on
Linux.

To view Fortran assumed size arrays in DDT you must first right click on the variable, select Edit Type..,
and enter the type of the variable with its bounds (e.g. integer arr(5)).

MAP only supports xlc and xIf on Linux.

E.6 Intel Compilers

DDT and MAP have been tested with versions 13 and 14.

If you experience problems with missing or incomplete stack traces (i.e. [partial trace] entriesin
MAP or no stack traces for allocations in DDT’s View Pointer Details window) try re-compiling your pro-
gram with the - fno-omit-frame-pointer argument. The Intel compiler may omit frame pointers
by default which can mean Allinea Forge cannot properly discover your stack frames and you will be
unable to see which lines of code your program has stopped at.

Some optimizations performed when - ax options are specified to IFC/ICC can result in programs which
cannot be debugged. This is due to the reuse by the compiler of the frame-pointer, which makes DDT
unable to obtain a stack trace.

Some optimizations performed using Interprocedural Optimization (IPO), e.g. - 1p0 can result in unusual
debug information making it hard to see what is going on in the source code. For DDT and MAP it is
best to compile without -ipo.

The Intel compiler doesn’t always provide enough information to correctly determine the bounds of some
Fortran arrays when they are passed as parameters, in particular the lower-bound of assumed-shape ar-
rays.

The Intel OpenMP compiler will always optimise parallel regions, regardless of any - 00 settings. This
means that your code may jump around unexpectedly while stepping inside such regions, and that any
variables which may have been optimised out by the compiler may be shown with nonsense values. There
have also been problems reported in viewing thread-private data structures and arrays. If these affect you,
please contact support@allinea.com .

Files with a . F or . F90 extension are automatically preprocessed by the Intel compiler. This can also
be turned on with the - fpp command-line option. Unfortunately, the Intel compiler does not include the
correct location of the source file in the executable produced when preprocessing is used. If your Fortran
file does not make use of macros and doesn’t need preprocessing, you can simply rename its extension
to . T or . T90 and/or remove the - fpp flag from the compile line instead. Alternatively, you can help
DDT discover the source file by right clicking in the Project Files window and then selecting Add/view
source directory and adding the correct directory.

(© 2017 Allinea Software Ltd. 213

mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com
mailto:support@allinea.com

Allinea Forge 7.0

Some versions of the compiler emit incorrect debug information for OpenMP programs which may cause
some OpenMP variables to show as <not allocated>.

By default Fortran PARAMETERS are not included in the debug information output by the Intel com-
piler. You can force them to be included by passing the -debug-parameters all option to the
compiler.

Known Issue: If compiling static binaries (for example on a Cray XT/XE machine) then linking in the
DDT memory debugging library is not straightforward for F90 applications. You will need to manually re-
run the last 1d command (as seen with ifort -v)toinclude -L{ddt-path}/1ib/64-1dmalloc
in two locations—both immediately prior to where - 1c is located, and also include the -zmuldefs
option at the start of the 1d line.

Pretty printing of STL types is not supported for the Intel 10 compiler.

Pretty printing of STL types for the Intel 11 and 12 compiler is almost complete—STL sets, maps and
multi-maps cannot be fully explored—only the total number of items is displayed; other data types are
unaffected.

To disable pretty printing set the environment variable ALLINEA_DISABLE_PRETTY_PRINTING
to 1 before starting DDT. This will enable—in the case of, for example, the incomplete std: :set
implementations—you to manually inspect the variable.

E.7 Pathscale EKO compilers

Not supported by MAP.

Known issues: The default Fortran compiler options may not generate enough information for DDT to
show where memory was allocated from—View Pointer Details will not show which line of source code
memory was allocated from. To enable this, please compile and link with the following flags:

-W1, - -export-dynamic -TENV:frame_pointer=0N -funwind-tables

For C programs, simply compiling with - g is sufficient.

When using the Fortran compiler, you may have to place breakpoints in myfile. i instead of my-
file.f90 or myfile.F90. We are currently investigating this; please let us know if it applies to
your code.

Procedure names in modules often have extra information appended to them. This does not otherwise
affect the operation of DDT with the Pathscale compiler.

The Pathscale 3.1 OpenMP library has an issue which makes it incompatible with programs that call the
fork system call on some machines.

Some versions of the Pathscale compiler (e.g. 3.1) do not emit complete DWARF debugging information
for typedef’ed structures. These may show up in DDT with a void type instead of the expected

type.

Multi-dimensional allocatable arrays can also be given incorrect dimension upper/lower bounds—this
has only been reproduced for large arrays, small arrays seem to be unaffected. This has been observed
with version 3.2 of the compiler, newer/older versions may also exhibit the same issue.

E.8 Portland Group Compilers

DDT has been tested with Portland Tools 9 onwards.

(© 2017 Allinea Software Ltd. 214

Allinea Forge 7.0

MAP has been tested with version 14 of the PGI compilers. Older versions are not supported as they do
not allow line level profiling. Always compile with -Meh_frame to provide sufficient information for
profiling.

If you experience problems with missing or incomplete stack traces (i.e. [partial trace] entries
in MAP or no stack traces for allocations in DDT’s View Pointer Details window) try re-compiling your
program with the -Mframe argument. The PGI compiler may omit frame pointers by default which can
mean Allinea Forge cannot properly discover your stack frames and you will be unable to see which lines
of code your program has stopped at.

Known issues: Included files in Fortran 90 generate incorrect debug information with respect to file and
line information. The information gives line numbers which refer to line numbers from the included file
but give the including file as the file.

The PGI compiler may emit incorrect line number information for templated C++ functions or omit it
entirely. This may cause DDT to show your program on a different line to the one expected, and also
mean that breakpoints may not function as expected.

The PGI compiler does not emit the correct debugging tags for proper support of inheritance in C++,
which prevents viewing of base class members.

When using memory debugging with statically linked PGI executables (-Bstatic) because of the in-
built ordering of library linkage for F77/F90, you will need to add a Localr c file to your PGI installation
which defines the correct linkage when using DDT and (static) memory debugging. To your {pgi-
path}/bin/localrc append the following:

switch -Bstaticddt is

help(Link for DDT memory debugging with static binding)
helpgroup(linker)

append (LDARGS=- -eh-frame-hdr -z muldefs)

append(LDARGS=-Bstatic)

append (LDARGS=-L{DDT-Install-Path}/1ib/64)

set (CRTL=$if (-Bstaticddt, -1ldmallocthcxx -1lc -1lns$(PREFIX)c
-1$(PREFIX)c, -1lc -1ns$(PREFIX)c -1$(PREFIX)c))

set(LC=$%if (-Bstaticddt, -1ldmallocthcxx -1lgcc -1lgcc_eh -1lc -1lgcc

-1gcc_eh -1c, -1gcc -1lc -1gcc));

pgf90 -help will now list -Bstaticddt as a compilation flag. You should now use that flag for
memory debugging with static linking.

This does not affect the default method of using PGI and memory debugging, which is to use dynamic
libraries.

Note that some versions of 1d (notably in SLES 9 and 10) silently ignore the - -eh-frame-hdr argu-
ment in the above configuration, and a full stack for F90 allocated memory will not be shown in DDT.
You can work around this limitation by replacing the system 1d, or by including a more recent 1d earlier
in your path. This does not affect memory debugging in C/C++.

When you pass an array splice as an argument to a subroutine that has an assumed shape array argument,
the offset of the array splice is currently ignored by DDT. Please contact support@allinea.com if this
affects you.

DDT may show extra symbols for pointers to arrays and some other types. For example if your program
uses the variable ialloc2d then the symbol ialloc2d$sd may also be displayed. The extra symbols
are added by the compiler and may be ignored.

(© 2017 Allinea Software Ltd. 215

mailto:support@allinea.com

Allinea Forge 7.0

The Portland compiler also wraps F90 allocations in a compiler-handled allocation area, rather than di-
rectly using the systems memory allocation libraries directly for each allocate statement. This means that
bounds protection (Guard Pages) cannot function correctly with this compiler.

DDT passes on all variables that the compiler has told gdb to be in scope for a routine. For the PGI
compiler this can include internal variables and variables from Fortran modules even when the only
clause has been used to restrict access. DDT is unable to restrict the list to variables actually used in
application code.

Versions of the PGI compiler prior to 14.9 are unable to compile a static version of the Allinea MPI
wrapper library, attempting to do so will result in messages such as “Error: symbol 'MPI_F_-
MPI_IN_PLACE' can not be both weak and common”. This is due to a bug in the PGI
compiler’s weak object support.

For information concerning the Portland Accelerator model and debugging this with DDT, please see the
15 CUDA GPU Debugging of this userguide.

(© 2017 Allinea Software Ltd. 216

Allinea Forge 7.0

F Platform Notes and Known Issues

This page notes any particular issues affecting platforms. If a supported machine is not listed on this
page, it is because there is no known issue.

F1 CRAY

For ‘Native’ SLURM mode systems GDB 7.6.2 must be selected as debugger (see Section A.5.1 System)
or the job might not start properly.

MAP users on Cray need to read 18.2.1 Debugging Symbols and 18.2.6 Static Linking on Cray X-Series
Systems. We supply module files in FORGE_INSTALLATION_PATH/share/modules/cray (see
18.2.7 Dynamic and Static Linking on Cray X-Series Systems using the modules environment).

Note that the default mode for compilers on this platform is to link statically. Section E.8 Portland Group
Compilers describes how to ensure that DDT’s memory debugging capabilities will work with the PGI
compilers in this mode.

Message queue debugging is not provided by the XT/XE/XK environment.
Cray XK6/7 GPU debugging requires the CUDA Toolkit 5 or above to be installed.

Cray XK6/7 GPU debugging requires a working TMPDIR to be available, if /tmp is not available. It is
important that this directory is not a shared filesystem such as NFS or Lustre. To set TMPDIR for the
compute nodes only use the DDT_BACKEND_TMPDIR environment variable instead (DDT will auto-
matically propagate this to the compute nodes).

Running single process scalar codes (i.e. non-MPI/SHMEM/UPC applications) on the compute nodes
requires an extra step—as these are required to be executed by aprun but aprun will not execute these
via the ordinary debug-supporting protocols.

The preferred and simple workaround is to use the . qtf templates (e.g. cray-slurm.qtf orcray-
pbs. qtf) which handle this automatically by (for non-MPI codes) ensuring that an alternative protocol
is followed. To use these qtf files, select File — Options (Allinea Forge — Preferences on Mac OS
X), go to the Job Submission page and enable submission via the queue, and ensure that the Also submit
scalar jobs via the queue setting is enabled. The change is to explicitly use aprun for non-MPI processes
and this can be seen in the provided queue template files:

if ["MPI_TAG" == "none"]; then
aprun -n 1 env AUTO_LAUNCH_TAG
else
AUTO_LAUNCH_TAG
fi

Running a dynamically-linked single process non-MPI program that will run on a compute node (i.e. non-
MPI CUDA or OpenACC code) will require an additional flag to the compiler: - target=native—this
prevents the compiler linking in the MPI job launch routines that will otherwise interfere with debuggers
on this platform. Alternatively, convert the program to an MPI one by adding MPI_Init and MPI_Fi-

nalize statements and run it as a one-process MPI job.

(© 2017 Allinea Software Ltd. 217

Allinea Forge 7.0

F.2 GNU/Linux Systems
F2.1 General

When using a 64-bit Linux please note that it is essential to use the 64-bit version of Allinea Forge on
this platform. This applies regardless of whether the debugged program is 32-bit or 64-bit.

POSIX thread cancellation does not work when running under a debugger. This is because the ‘signal
info’ associated with a signal is lost when the signal is intercepted and re-sent by the debugger, causing
the cancellation request to be ignored by the receiving thread.

More generally the ‘signal info’ associated with a signal is not available when running under a debug-
ger.

Some 64-bit GNU/Linux systems which have a bug in the GNU C library (specifically 1ibthread._-
db.so.1) which can crash the debugger when debugging multi-threaded programs. Check with your
Linux distribution for a fix. As a workaround you can try compiling your program as a statically linked
executable using the -static compiler flag.

For the ARM architecture—breakpoints can be unreliable and will randomly be passed without stopping
for some multicore processors (including the NVIDIA Tegra 2) unless a kernel option (fix) is built-in.
The required kernel option is:

CONFIG_ARM_ERRATA_720789=y

This option is not present by default in many kernel builds.

F.2.2 SUSE Linux

There is a known issue with SUSE 11 which may cause you to experience a crash similar to this

Other: *** glibc detected *** /home/user/wave_c: free(): invalid
pointer: 0x00007ffff7e02a80 ***

Other: ======= Backtrace: =========

Other: /1ib64/libc.so.6[0x7fffeef81118]

Other: /1ib64/libc.so.6(cfree+0x76)[0x7fffeef82c76]

Other: /1ib64/libnss_nis.so0.2(_nss_nis_getpwuid_r+0xe9)[0
x7fffecd4f089]

Other: /1ib64/libnss_compat.so.2[0x7fffed125ab8]

The implementation of 1ibnss_nis.so.2 attempts to resolve symbol names using its direct depen-
dencies before using the global namespace. This causes the libc implementation of, for example, free
to be linked instead of the intended 1ibdmalloc implementation.

If you encounter this crash, then the only solution is to disable memory debugging and contact SUSE
about the availability of a fix.

F.3 IBM Blue GenelQ

MAP is not supported on Blue Gene/Q.
Express Launch mode is not supported on Bluegene/Q.

DDT must be installed in a directory that is visible from the front end node(s), the service nodes and the
I/0 nodes.

(© 2017 Allinea Software Ltd. 218

Allinea Forge 7.0

Message queues are not currently supported on this platform.

Memory Debugging Guard Page are not supported on this platform due to lack of support for memory
protection in CNK.

Sparklines are not shown on Bluegene/Q.

F.3.1 Attaching

To attach to a running job:
1. Open the Attach window by clicking on the Attach button on the Welcome page.

2. DDT needs to know which login / batch node runjob is running on. Click the Choose Hosts. ..
button to add the necessary login / batch node if not already present. You must be able to SSH into
the login / batch node without a password.

3. Select the Automatically-detected jobs tab. Do not use the List of processes tab.
4. Optionally specify a subset of ranks to attach to in the Attach to processes box.
5. Click the Attach to... button.

The following caveats apply:
e Re-attaching to a job is not supported. You may only attach to a job once.
e No other tool must be attached, or have been attached, to the job.

e It is possible to attach to a subset of ranks. However, because re-attaching is not supported, it is
not possible to subsequently change the subset.

e It may take a little time for a job to show up in the Attach window after you submit it. If a newly
started job does not show up wait a while then click Rescan nodes.

F.4 Intel Xeon

Intel Xeon processors starting with Sandy Bridge include Running Average Power Limit (RAPL) coun-
ters. MAP can use the RAPL counters to provide energy and power consumption information for your
programs.

F4.1 Enabling RAPL energy and power counters when profiling

To enable the RAPL counters to be read by MAP you must load the intel_rapl kernel module.

The intel_rapl module is included in Linux kernel releases 3.13 and later. For testing purposes
Allinea have backported the powercap and intel_rapl modules for older kernel releases. You may
download the backported modules from:

http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2

Please note: these backported modules are unsupported and should be used for testing purposes only.
No support is provided by Allinea, your system vendor or the Linux kernel team for the backported
modules.

(© 2017 Allinea Software Ltd. 219

http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2

Allinea Forge 7.0

F.5 Intel Xeon Phi (Knight’s Landing)

The Intel Xeon Phi Knight’s Landing platform is only supported in self-hosted mode, like an x86_64
platform.

You may experience higher than normal overhead when using MAP on this platform. See section G.9.14
for more information.

F.6 Intel Xeon Phi (Knight’s Corner)

F.6.1 Requirements

MPSS Minimum Version
DDT 2.1.4982-15
Offload Support (DDT) | 2.1.6720-13
MAP 2.1.6720-19

Important: All Intel MPSS 3.1 and 3.2 releases at the time of writing suffer from a serious issue which
prevents debugging offload programs. The recommend workaround from Intel is to copy the debug
information for the system libraries to the Xeon Phi card. On the host, run:

$ scp -r /opt/mpss/3.1.2/sysroots/kiom-mpss-linux/1ib64/.debug
root@mic0O:/1ib64/

Please contact Allinea for up to date information.

F.6.2 Installation
To debug or profile programs running on Intel Xeon Phi cards you need to download and install the
relevant combined host and Xeon Phi installation tarball for your host machine.

The Allinea Forge installation for the Xeon Phi card must be accessible from the Xeon Phi card itself,
either using NFS (recommended) or a filesystem overlay (not recommended as it reduces the available
memory).

To profile on Xeon Phi cards, /home must be mounted and shared between the cards, the host nodes and
the login nodes.

See also the sections G.9.12 MAP harmless linker warnings on Xeon Phi and G.9.13 MAP harmless error
messages on Xeon Phi.

Note: Your existing licence may not support debugging on the Intel Xeon Phi card. If you have the
coprocessor option in your licence please contact Allinea for a free upgrade.

F.6.3 Configuration

DDT MAP
Native Xeon Phi non-MPI Programs remote remote
Native Xeon Phi Intel MPI Programs remote remote
Native Xeon Phi Cray MPT Programs GUI / offline | GUI/ offline

(© 2017 Allinea Software Ltd. 220

Allinea Forge 7.0

Heterogeneous Intel MPI Programs GUI / offline | GUI/ offline
Heterogeneous Cray MPT Programs GUI / offline | GUI / offline
Heterogeneous Programs (#pragma offload) | GUI / offline | GUI / offline

Native Xeon Phi non-MPI Programs

Debugging

Note: The DDT GUI can not run on the Xeon Phi card directly.

To debug a native Xeon Phi non-MPI program:

1.

9.

2
3
4
5.
6
7
8

Start DDT on the host (using the host installation of DDT).

. Click the Remote Launch drop-down on the Welcome Page and select Configure...
. Enter the host name of the Xeon Phi card (e.g. micdev-mic®) in the Host Name box.

. Select the path to the Xeon Phi installation of DDT in the Installation Directory box.

Click Test Remote Launch and ensure the settings are correct.

. Click Ok.
. Click Run and Debug a Program on the Welcome Page.

. Select a native Xeon Phi program in the Application box in the Run window.

Click Run.

Profiling

To profile a native Xeon Phi non-MPI program:

1.

9.

Start MAP on the host (using the host installation of MAP).

. Click the Remote Launch drop-down on the Welcome Page and select Configure...
. Enter the host name of the Xeon Phi card (e.g. micdev-mic0) in the Host Name box.
. Select the path to the Xeon Phi installation of MAP in the Installation Directory box.

2
3
4
5.
6
7
8

Click Test Remote Launch and ensure the settings are correct.

. Click Ok.
. Click Profile a program on the Welcome Page.

. Select your native Xeon Phi MPI program in the Application box in the Run window.

Click Run.

Native Xeon Phi Intel MPI Programs

Debugging

Note: The DDT GUI can not run on the Xeon Phi card directly.

To debug a native Xeon Phi Intel MPI program:

1.
2.

Start DDT on the host (using the host installation of DDT).

Click the Remote Launch drop-down on the Welcome Page and select Configure. ..

(© 2017 Allinea Software Ltd. 221

9.

N o kW

Allinea Forge 7.0

Enter the host name of the Xeon Phi card (e.g. micdev-mic0) in the Host Name box.
Select the path to the Xeon Phi installation of DDT in the Installation Directory box.
Click Test Remote Launch and ensure the settings are correct.

Click Ok.

Click Run and Debug a Program on the Welcome Page.

Select a native Xeon Phi Intel MPI program in the Application box in the Run window.

e DDT should have detected ‘Intel MPI (MPMD)’ as the MPI implementation in File — Op-
tions (Allinea Forge — Preferences on Mac OS X) — System.

Click Run.

Profiling

To profile a native Xeon Phi Intel MPI program:

1.

2
3
4
5
6
7
8
9

10.

Ensure the Intel Compilers and MPI are in your path.

. Start MAP on the host (using the host installation of MAP).

. Click the Remote Launch drop-down on the Welcome Page and select Configure...

. Enter the host name of the Xeon Phi card (e.g. micdev-mic®) in the Host Name box.
. Select the path to the Xeon Phi installation of MAP in the Installation Directory box.

. Click Test Remote Launch and ensure the settings are correct.

. Click Ok.

. Click Profile a program on the Welcome Page.

. Select your native Xeon Phi Intel MPI program in the Application box in the Run window.

e MAP should have detected ‘Intel MPI (MPMD)’ as the MPI implementation in File — Op-
tions (Allinea Forge — Preferences on Mac OS X) — System.

Click Run.

Native Xeon Phi Cray MPT Programs

Debugging

Note: The DDT GUI can not run on the Xeon Phi card directly.

To debug a native Xeon Phi Cray MPT program:

1.

2
3
4,
5
6

Start DDT on the login node or host (using the host installation of DDT).

. Open the Options window: File — Options (Allinea Forge — Preferences on Mac OS X) .

. Select Intel MPI (MPMD) as the MPI Implementation on the System page.

Check the Heterogeneous system support check box on the System page.

. Click Run and Debug a Program on the Welcome Page.

. Select a native Xeon Phi Cray MPT program in the Application box in the Run window.

e DDT should have detected ‘Cray MPT’ as the MPI implementation in File — Options
(Allinea Forge — Preferences on Mac OS X) — System.

(© 2017 Allinea Software Ltd. 222

Allinea Forge 7.0

7. Add the -k argument to the aprun Arguments box.
8. Click Run.
Profiling
To profile a native Xeon Phi Intel MPI program:
1. Start MAP on the login node or host (using the host installation of DDT).
2. Open the Options window: File — Options (Allinea Forge — Preferences on Mac OS X) .
3. Select Intel MPI (MPMD) as the MPI Implementation on the System page.
4. Check the Heterogeneous system support check box on the System page.
5. Click Profile a program on the Welcome Page.
6. Select your native Xeon Phi Cray MPT program in the Application box in the Run window.

e MAP should have detected ‘Cray MPT’ as the MPI implementation in File — Options
(Allinea Forge — Preferences on Mac OS X) — System.

7. Add the -k argument to the aprun Arguments box.
8. Click Run.

Heterogeneous (host + Xeon Phi) Intel MPI Programs

Debugging

To debug a heterogeneous (host + Xeon Phi) Intel MPI program:
1. Start DDT on the host (using the host installation of DDT).
2. Open the Options window: File — Options (Allinea Forge — Preferences on Mac OS X) .
3. Select Intel MPI (MPMD) as the MPI Implementation on the System page.

Check the Heterogeneous system support check box on the System page.

Click Ok.

Click Run and Debug a Program in the Welcome Page.

Select the path to the host executable in the Application box in the Run window.

e

Enter an MPMD style mpiexec command line in the mpiexec Arguments box, for example:
-np 8 -host micdev /home/user/examples/hello-host : -np 32 -
host micdev-micO@ /home/user/examples/hello-mic
9. Set Number of processes to be the total number of processes launched on both the host and Xeon
Phi (e.g. 40 for the above mpiexec Arguments line).
10. Add I_MPI_MIC=enable to the Environment Variables box.
11. Click Run. You may need to wait a minute for the Xeon Phi processes to connect.
Profiling
To profile a native Xeon Phi Intel MPI program:
1. Open the Options window: File — Options (Allinea Forge — Preferences on Mac OS X) .
2. Select Intel MPI (MPMD) as the MPI Implementation on the System page.

(© 2017 Allinea Software Ltd. 223

Allinea Forge 7.0

Check the Heterogeneous system support check box on the System page.
Click Ok.
Click Run and Debug a Program in the Welcome Page.

Select the path to the host executable in the Application box in the Run window.

N o~ W

Enter an MPMD style mpiexec command line in the mpiexec Arguments box, for example:
-np 8 -host micdev /home/user/examples/wave-host : -np 32 -
host micdev-micO@ /home/user/examples/wave-xeon-phi
8. Set Number of processes to be the total number of processes launched on both the host and Xeon
Phi (e.g. 40 for the above mpiexec Arguments line).
9. Add I_MPI_MIC=enable to the Environment Variables box.

10. Click Run. You may need to wait a minute for the Xeon Phi processes to connect.

Heterogeneous Programs (#pragma offload)

Intel recommend setting the following environment variables before debugging offload programs:

COI_SEP_DISABLE=FALSE
AMPLXE_COI_DEBUG_SUPPORT=TRUE
MYO_WATCHDOG_MONITOR=-1

The OFFLOAD_MAIN environment must be unset, or set to on_offload oron_offload_all when
debugging offload programs in DDT. If OFFLOAD_MAIN is set to on_start then DDT will not attach
to the offloading host processes.

Memory debugging is not supported for programs that use #pragma offload.
Debugging

When debugging offloaded code (i.e. code offloaded to the Xeon phi using #pragma offload) DDT
can automatically attach to the offload process running on the Xeon Phi Card.

To debug a heterogeneous program that uses #pragma offload:
1. Start DDT on the host (using the host installation of DDT).
2. Open the Options window: File — Options (Allinea Forge — Preferences on Mac OS X) .
Select Intel MPI (MPMD) as the MPI Implementation on the System page.
Check the Heterogeneous system support check box on the System page.
Click Ok.
Ensure Control — Default Breakpoints — Stop on Xeon Phi offload is checked.

Click Run and Debug a Program on the Welcome Page.

©® N o ok~ W

Select a heterogeneous program that uses #pragma offload in the Application box in the Run
window.

9. Click Run.
Profiling

MAP does not support profiling of offloaded code (i.e. code offloaded to the Xeon phi using #pragma
offload). The host portion of the program may be profiled as normal.

(© 2017 Allinea Software Ltd. 224

Allinea Forge 7.0

F.7 Fujitsu FX10

DDT supports debugging MPI jobs on the FX10. Profiling with MAP is not supported.

F.7.1 FX10 Installation

To debug on the FX10 you need two separate Allinea Forge installations, one for the login nodes (Redhat
6.0 x86-64) and one for the compute nodes (XTC OS 1.3.6 s64fx). They need to be linked together by
creating a symbolic link from the compute node Allinea Forge installation (XTC OS 1.3.6 s64fx) to the
login node Allinea Forge installation (Redhat 6.0 x86-64):

1n -s /path/to/allinea/forge-XTC0S-1.3.6-s64fx/1libexec/ddt-debugger-fx10 \
/path/to/allinea/forge-Redhat-6.0-x86_64/1libexec/ddt-debugger-fx10.s64fx

NB: The Allinea Forge installation for the compute nodes requires GCC 4.6.1 to be installed. This
needs to be done by a System Engineer of Fujitsu.

Furthermore, our port forwarder Apfel (Allinea port forwarder light) must be installed and configured on
every 10 node to route our network requests between compute and login nodes. It is designed to run as
an Xxinetd service or in stand-alone mode.

1. Make sure the Apfel binary is available on each I/O node. It is sufficient to copy the binary
/path/to/allinea/forge-XTC0S-1.3.6-s64fx/1libexec/apfel into a directory
available on the I/0 nodes.

2. Then create the file /etc/xinetd.d/apfel with the following lines as base configuration (it
is highly recommended to choose a restricted non-root user for security reasons):

Allinea port forwarder
service apfel

{
socket_type = stream
wait = no
server = /path/to/apfel
user = root
log_on_success += DURATION USERID
log _on_failure += USERID

}

3. And add the following lines to /etc/services:
Allinea port forwarder
apfel 4242/tcp
4. Finally enable it by restarting xinetd with:
[root] $ service xinetd restart
xinetd will now listen on port 4242 and launch Apfel for incoming requests. If in your licence a port

other then 4242 is specified you need to change the configuration of Apfel to listen on the first port
specified in the licence.

If you don’t want to run Apfel as xinetd service, you can alternatively start it in stand-alone mode
with:

$ /path/to/apfel --listen 4242

(© 2017 Allinea Software Ltd. 225

Allinea Forge 7.0

F.7.2 FX10 Configuration

1. Ensure the procdesc and getmyionode utilities are in your PATH (on the login and compute
node).

2. Open the Options window: File — Options (Allinea Forge — Preferences on Mac OS X)
3. Select Fujitsu FX10 as the MPI Implementation on the System page.

4. Open pnavi-fx10.qtf as Submission Template File on the Job Submission Settings page and disable
Quick Restart.

5. Click Ok.
6. Click Run and Debug a Program in the Welcome Page.

7. Select the path to the executable in the Application box and set the number of processes etc. in the
Run window.

8. Click Submit. You may need to wait a while until the job has been submitted and for the processes
to connect.

F.7.3 FX10 Memory Debugging

In order to use memory debugging your program has to be statically linked with our memory debugging
library (see 12.3.1 Static Linking). When linking your program you have to make sure to link the memory
debugging library before - 1mpg, to achieve this you will need the full link command line as run by the
Fujitsu compiler/linker by adding the - v option.

[examples] $ mpifccpx -v main.o

The output will look similar to (some parts are ommitted):

fcepx: Fujitsu C/C++ Compiler Driver Version 1.2.1 P-id: T01606-03 (Jan 25 2013 17:17:00)
/opt/FJSVfxlang/1.2.1/bin/../util/bin/sparc64-unknown-1linux-gnu-1d

-1fjrtcl -1ltrtth -L/opt/FJSVXosDevkit/sparc64fx/target/usr/1ib64 -1lmpg -lmpgpthread

/opt/FJISVXosDevkit/sparc64fx/target/usr/1ib64/crtn.o

GNU 1d version 2.17
Now locate - 1mpg (bold in the above example), insert

-L/path/to/allinea/forge-XTC0S-1.3.6-s64fx/1ib/64 \
-Bstatic -ldmallocthcxx -Bdynamic -y malloc

and execute the link command line again. The -y malloc is used to trace symbols and if you see the
next line as part of the linker output you know that the memory debugging library was successfully linked
with your program.

libdmallocthcxx.a(malloc_th.o): definition of malloc

To make sure you link with the right memory debugging library see 12.3.1 Static Linking.

(© 2017 Allinea Software Ltd. 226

Allinea Forge 7.0

F.7.4 FX10 Known Issues

e Debugging scalar jobs, core files, attaching and manual launch are not supported.

e Jobs must be submitted via a non-interactive queue submission script, - -interact sessions
don’t work.

e The Quick Restart feature is not available.
e Watchpoints and C++ STL pretty printing are not supported on the FX10.

e Standard output/error cannot be shown, because it is consumed by the queuing system and written
to files. If you use the default template submission script, they are written to your-executable-
ddt.output and your-executable-ddt.error (into the same directory as your executable).

F.8 NVIDIA CUDA
F.8.1 CUDA Known Issues

e DDT’s memory leak reports do not track GPU memory leaks.
e Debugging paired CPU/GPU core files is possible but is not yet fully supported.
e CUDA metrics in MAP are not available for statically-linked programs.

e CUDA metrics in MAP are measured at the node level, not the card level.

F9 ARM
F.9.1 ARMv8 (ARM 64bit) Known Issues

e On the ARMv8 (ARM 64bit) architecture, watchpoints are not supported.

e For best operation, DDT requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, DDT may show the incorrect values for
local variables in program code if the program is currently stopped inside a runtime library. At a
minimum we recommend the glibc and OpenMP (if applicable) debug symbols are installed.

e For best operation, MAP requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, MAP may report time in partial traces or
unknown locations without debug symbols. At a minimum we recommend the glibc and OpenMP
(if applicable) debug symbols are installed.

e MAP does not support CPU instruction metrics on this platform.

F10 POWER
F.10.1 POWERS8 (POWER 64bit) Known Issues
e For best operation, DDT requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, DDT may show the incorrect values for

local variables in program code if the program is currently stopped inside a runtime library. At a
minimum we recommend the glibc and OpenMP (if applicable) debug symbols are installed.

(© 2017 Allinea Software Ltd. 227

Allinea Forge 7.0

e For best operation, MAP requires debug symbols for the runtime libraries to be installed in addition
to debug symbols for the program itself. In particular, MAP may report time in partial traces or
unknown locations without debug symbols. At a minimum we recommend the glibc and OpenMP
(if applicable) debug symbols are installed.

e MAP does not support CPU instruction metrics on this platform.

(© 2017 Allinea Software Ltd. 228

Allinea Forge 7.0

G General Troubleshooting and Known Issues

If you have problems with any of the Allinea Forge products, please take a look at the topics in this
section—you might just find the answer you’re looking for. Equally, it’s worth checking the support
pages on http://www.allinea.com and making sure you have the latest version.

G.1 General Troubleshooting

G.1.1 Problems Starting the GUI

If the GUI is unable to start this is usually due to one of three reasons:

e Cannot connect to an X server. If you are running on a remote machine, make sure that your
DISPLAY variable is set appropriately and that you can run simple X applications such as xterm
from the same command-line.

e The licence file is invalid—in this case the software will issue an error message. You should verify
that you have a licence file for the correct product in the licence directory and check that the date
inside it is still valid. If the program still refuses to start, please contact Allinea.

e You are using a licence server, but the Allinea Forge products cannot connect to it. See the licence
server user guide for more information on troubleshooting these problems.

G.1.2 Problems Reading this Document

If when pressing F1 a blank screen appears instead of this document, there may be corrupt files that are
preventing the documentation system (Qt Assistant) from starting. You can resolve this by removing the
stale files, which are found in $HOME/ . local/share/data/Allinea.

G.2 Starting a Program
G.2.1 Problems Starting Scalar Programs

There are a number of possible sources for problems. The most common is—for users with a multi-
process licence—that the Run Without MPI Support check box has not been checked. If the software
reports a problem with MPI and you know your program is not using MPI, then this is usually the cause.
If you have checked this box and the software still mentions MPI then we would very much like to hear
from you!

Other potential problems are:

e A previous Allinea session is still running, or has not released resources required for the new ses-
sion. Usually this can be resolved by killing stale processes. The most obvious symptom of this is
a delay of approximately 60 seconds and a message stating that not all processes connected. You
may also see, in the terminal, a QServerSocket message

e The target program does not exist or is not executable

e Allinea Forge products’ backend daemon—ddt - debugger—is missing from the bin direc-
tory—in this case you should check your installation, and contact Allinea for further assistance.

(© 2017 Allinea Software Ltd. 229

http://www.allinea.com

Allinea Forge 7.0

G.2.2 Problems Starting Multi-Process Programs

If you encounter problems whilst starting an MPI program, the first step is to establish that it is possible to
run a single-process (non-MPI) program such as a trivial “Hello, World!”—and resolve such issues that
may arise. After this, attempt to run a multi-process job—and the symptoms will often allow a reasonable
diagnosis to be made.

In the first instance verify that MPI is working correctly by running a job, without any of Allinea Forge
products applied, such as the example in the examples directory.

mpirun -np 8 ./a.out

Verify that mpirun is in the PATH, or the environment variable ALLINEA_MPIRUN is set to the full
pathname of mpirun.

If the progress bar does not report that at least process 0 has connected, then the remote ddt - debugger
daemons cannot be started or cannot connect to the GUI.

Sometimes problems are caused by environment variables not propagating to the remote nodes whilst
starting a job. To a large extent, the solution to these problems depend on the MPI implementation that
is being used. In the simplest case, for rsh based systems such as a default MPICH 1 installation, correct
configuration can be verified by rsh-ing to a node and examining the environment. It is worthwhile rsh-
ing with the env command to the node as this will not see any environment variables set inside the .profile
command. For example if your nodes use a . profile instead of a . bashrc for each user then you
may well see a different output when running rsh node env than when you run rsh node and then
run env inside the new shell.

If only one, or very few, processes connect, it may be because you have not chosen the correct MPI
implementation. Please examine the list and look carefully at the options. Should no other suitable MPI
be found, please contact Allinea for advice.

If a large number of processes are reported by the status bar to have connected, then it is possible that
some have failed to start due to resource exhaustion, timing out, or, unusually, an unexplained crash. You
should verify again that MPI is still working, as some MPI distributions do not release all semaphore
resources correctly (for example MPICH 1 on Redhat with SMP support built in).

To check for time-out problems, set the ALLINEA NO_TIMEOUT environment variable to 1 before
launching the GUI and see if further progress is made. This is not a solution, but aids the diagnosis. If
all processes now start, please contact Allinea for further long-term advice.

G.2.3 No Shared Home Directory

If your home directory is not accessible by all the nodes in your cluster then your jobs may fail to start.
To resolve the problem open the file ~/.allinea/system.config in a text editor. Change the
shared directory optioninthe [Startup] section so it points to a directory that is available and
shared by all the nodes. If no such directory exists, change the use session cookies optionto no
instead.

G.2.4 DDT says it can’t find your hosts or the executable

This can happen when attempting to attach to a process running on other machines. Ensure that the
host name(s) that DDT complains about are reachable using ping. If DDT fails to find the executable,
ensure that it is available in the same directory on every machine. See section A.4 Connecting to remote
programs (remote-exec) for more information on configuring access to remote machines.

(© 2017 Allinea Software Ltd. 230

Allinea Forge 7.0

G.2.5 The progress bar doesn’t move and Allinea Forge ‘times out’

It’s possible that the program ddt -debugger hasn’t been started by mpirun or has aborted. You can
log onto your nodes and confirm this by looking at the process list before clicking Ok when Allinea Forge
times out. Ensure ddt -debugger has all the libraries it needs and that it can run successfully on the
nodes using mpirun.

Alternatively, there may be one or more processes (ddt -debugger, mpirun, rsh) which could not
be terminated. This can happen if Allinea Forge is killed during its startup or due to MPI implementation
issues. You will have to kill the processes manually, using ps X to get the process ids and then kil1l or
kill -9 to terminate them.

This issue can also arise for mpich-p4mpd, and the solution is explained in Appendix D MPI Distribu-
tion Notes and Known Issues.

If your intended mpirun command is not in your PATH, you may either add it to your PATH or set the
environment variable ALLINEA_MPIRUN to contain the full pathname of the correct mpirun.

If your home directory is not accessible by all the nodes in your cluster then your jobs may fail to start in
this fashion. See section G.2.3 No Shared Home Directory.

G.3 Attaching

G.3.1 The system does not allow connecting debuggers to processes (Fe-
dora, Ubuntu)

The Ubuntu ptrace scope control feature does not allow a process to attach to other processes it did not
launch directly (see http://wiki.ubuntu.com/Security/Features#ptrace for details).
To disable this feature until the next reboot run the following command:

echo 0 | sudo tee /proc/sys/kernel/yama/ptrace_scope
To disable it permanently, add this lineto /etc/sysctl.d/10-ptrace.conf (or/etc/sysctl.
conf):

kernel.yama.ptrace_scope = 0

(This will take effect after the next reboot.)

Note that on Fedora, ptrace may be blocked by SELinux in addition to Yama. See section G.3.2.

G.3.2 The system does not allow connecting debuggers to processes (Fe-
dora, Red Hat)

The deny_ptrace boolean in SELinux (used by Fedora and Red Hat) does not allow a process to attach
to other processes it did not launch directly (see http://fedoraproject.org/wiki/Features/SELinuxDenyPtrace
for details).

To disable this feature until the next reboot run the following command:

setsebool deny_ptrace 0

To disable it permanently run this command:

setsebool -P deny_ptrace 0

(© 2017 Allinea Software Ltd. 231

http://wiki.ubuntu.com/Security/Features#ptrace
http://fedoraproject.org/wiki/Features/SELinuxDenyPtrace

Allinea Forge 7.0

As of Fedora 22, ptrace may be blocked by Yama in addition to the SELinux boolean. See section G.3.1.

G.3.3 Running processes don’t show up in the attach window

This is usually a problem with either your remote -exec script or your node list file. First check that
the entry in your node list file corresponds with either localhost (if you’re running on your local machine)
or with the output of hostname on the desired machine.

Secondly try running /path/to/allinea/forge/libexec/remote-exec manuallyi.e. /path/
to/allinea/forge/libexec/remote-exec<hostname>1ls and check the output of this. If
this fails then there is a problem with your remote-exec script. If rsh is still being used in your script
check that you can rsh to the desired machine. Otherwise check that you can attach to your machine in the
way specified in the remote - exec script. (See also A.4 Connecting to remote programs (remote-exec))

If you still experience problems with your script then contact Allinea for assistance.

G.4 Source Viewer
G.4.1 No variables or line number information

You should compile your programs with debug information included, this flag is usually -g.

G.4.2 Source code does not appear when you start Allinea Forge

If you cannot see any text at all, perhaps the default selected font is not installed on your system. Go
to File — Options (Allinea Forge — Preferences on Mac OS X) and choose a fixed width font such as
Courier and you should now be able to see the code.

If you see a screen of text telling you that Allinea Forge could not find your source files, follow the instruc-
tions given. If you still cannot see your source code, check that the code is available on the same machine
as you are running the software on, and that the correct file and directory permissions are set. If some files
are missing, and others found, try adding source directories and rescanning for further instruction.

If the problem persists, contact support@allinea.com .
G.4.3 Code folding does not work for OpenACC/OpenMP pragmas

This is a known issue. If an OpenACC or OpenMP pragma is associated with a multi-line loop, then the
loop block may be folded instead.

G.5 Input/Output

G.5.1 Output to stderr is not displayed

Allinea Forge automatically captures anything written to stdout / stderr and display it. Some shells
(such as csh) do not support this feature in which case you may see your stderr mixed with stdout,

or you may not see it at all. In any case we strongly recommend writing program output to files instead,
since the MPI specification does not cover stdout / stderr behaviour.

(© 2017 Allinea Software Ltd. 232

mailto:support@allinea.com

Allinea Forge 7.0

G.5.2 Unwind Errors

When using MAP you may see errors reported in the output of the form:

Allinea Sampler: 3 libunwind: Unspecified (general) error (4/172
samples)

Allinea Sampler: 3 Maximum backtrace size in sampler exceeded, stack
too deep. (1/172 samples)

These indicate that MAP was only able to obtain a partial stack trace for the sample. If the proportion of
samples that generate such errors is low, then they can safely be ignored.

If a large proportion of samples exhibit these errors, then consult the advice on partial traces in E.6 Intel
Compilers or E.8 Portland Group Compilers if you are using these compilers. If this does not help, then
please contact support@allinea.com .

G.6 Controlling a Program

G.6.1 Program jumps forwards and backwards when stepping through
it

If you have compiled with any sort of optimisations, the compiler will shuffle your programs instructions
into a more efficient order. This is what you are seeing. We always recommend compiling with -00
when debugging, which disables this behaviour and other optimisations.

If you are using the Intel OpenMP compiler, then the compiler will generate code that appears to jump in
and out of the parallel blocks regardless of your - 00 setting. Stepping inside parallel blocks is therefore
not recommended for the faint-hearted!

G.6.2 DDT sometimes stop responding when using the Step Threads To-
gether option

DDT may stop responding if a thread exits when the Step Threads Together option is enabled. This is
most likely to occur on Linux platforms using NPTL threads. This might happen if you tried to Play to
here to a line that was never reached—in which case your program ran all the way to the end and then
exited.

A workaround is to set a breakpoint at the last statement executed by the thread and turn off Step Threads
Together when the thread stops at the breakpoint. If this problem affects you please contact support@allinea.com

G.7 Evaluating Variables

G.7.1 Some variables cannot be viewed when the program is at the start
of a function

Some compilers produce faulty debug information, forcing DDT to enter a function during the prologue
or the variable may not yet be in scope. In this region, which appears to be the first line of the function,
some variables have not been initialised yet. To view all the variables with their correct values, it may be
necessary to play or step to the next line of the function.

(© 2017 Allinea Software Ltd. 233

mailto:support@allinea.com
mailto:support@allinea.com

Allinea Forge 7.0

G.7.2 Incorrect values printed for Fortran array

Pointers to non-contiguous array blocks (allocatable arrays using strides) are not supported. If this issue
affects you, please email support@allinea.com for a workaround or fix. There are also many compiler
limitations that can cause this. See Appendix E for details.

G.7.3 Evaluating an array of derived types, containing multiple-dimension
arrays

The Locals, Current Line and Evaluate views may not show the contents of these multi-dimensional
arrays inside an array of derived types. However, you can view the contents of the array by clicking on
its name and dragging it into the evaluate window as an item on its own, or by using the MDA

G.7.4 C++ STL types are not pretty printed

The pretty printers provided with Allinea DDT are compatible with GNU compilers version 4.7 and
above, and Intel C++ version 12 and above.

G.8 Memory Debugging

G.8.1 The View Pointer Details window says a pointer is valid but doesn’t
show you which line of code it was allocated on

The Pathscale compilers have known issues that can cause this—please see the compiler notes in section
C of this appendix for more details.
The Intel compiler may need the - fp argument to allow you to see stack traces on some machines.

If this happens with another compiler, please contact support@allinea.com with the vendor and version
number of your compiler.

G.8.2 mprotect fails error when using memory debugging with guard
pages

This can happen if your program makes more than 32768 allocations; a limit in the kernel prevents DDT
from allocating more protected regions than this. Your options are:

e Running echo 123456 >/proc/sys/vm/max_map_count (requires root) will increase the
limit to 61728 (123456 / 2, as some allocations use multiple maps).

e Disable guard pages completely; this will hinder DDT’s ability to detect heap over/underflows.

e Disable guard pages temporarily; you can disable them at program start, add a breakpoint before
the allocations you wish to add guard pages for, and then reenable the feature.

See 12.3 Configuration for information on how to disable guard pages.

(© 2017 Allinea Software Ltd. 234

mailto:support@allinea.com
mailto:support@allinea.com

Allinea Forge 7.0

G.8.3 Allocations made before or during MPI_Init show up in Current
Memory Usage but have no associated stack back trace

Memory allocations that are made before or during MPI_Init appear in Current Memory Usage along
with any allocations made afterwards. However the call stack at the time of the allocation is not recorded
for these allocations and will not show up in the Current Memory Usage window.

G.8.4 Deadlockwhen calling printf ormalloc from a signal handler
The memory allocation library calls (e.g. malloc) provided by the memory debugging library are not
async-signal-safe unlike the implementations in recent versions of the GNU C library.

POSIX does not require malloc to be async-signal-safe but some programs may expect this behaviour.
For example a program that calls printf from a signal handler may deadlock when memory debugging
is enabled in DDT since the C library implementation of printf may call malloc.

The web page below has a table of the functions that may be safely called from an asynchronous signal
handler:

http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03/

G.8.5 Program runs more slowly with Memory Debugging enabled

The Memory Debugging library performs more checks than the normal runtime’s memory allocation
routines—that’s what makes it a debugging library! However those checks also makes it slower. If your
program is running too slow when Memory Debugging is enabled there are a number of options you can
change to speed it up.

Firstly try reducing the Heap Debugging option to a lower setting (e.g. if it is currently on High, try
changing it to Medium or Low).

You can increase the heap check interval from the default of 100 to a higher value. The heap check interval
controls how many allocations may occur between full checks of the heap (which may take some time).
A higher setting (1000 or above) is recommended if your program allocates and deallocates memory very
frequently (e.g. inside a computation loop).

You can disable the Store backtraces for memory allocations option, at the expense of losing backtraces
in the View Pointer Details and Current Memory Usage windows.

G.9 MAP specific issues
G.9.1 My compiler is inlining functions

Yes, they do that. Unfortunately their abilities to include sufficient information to reconstruct the original
call tree vary between vendors. We’ve found that the following flags work best:

e Intel: -g -03 -fno-inline-functions

e PGI: -g -03 -Meh_frame

e GNU: -g -03 -fno-inline

Be aware that some compilers may still inline functions even when explicitly asked not to.

(© 2017 Allinea Software Ltd. 235

http://www.opengroup.org/onlinepubs/009695399/functions/xsh_chap02_04.html#tag_02_04_03/

Allinea Forge 7.0

There is typically some small performance penalty for disabling function inlining or enabling profiling
information.

Alternatively, you can let the compiler inline the functions and just compile with -g -03. Or -g -05
or whatever your preferred performance flags are. MAP will work just fine, but you will often see time
inside an inlined function being attributed to its parent in the Stacks view. The Source Code view should
be largely unaffected.

G.9.2 Tail Recursion Optimization

If a function returns the result of calling another function, for example:

int someFunction()

{

return otherFunction();

}

the compiler may change the call to otherFunction into a jump. This means that, when inside oth-
erFunction, the calling function, someFunction, no longer appears on the stack.

This optimization is called tail recursion optimization. It may be disabled for the GNU C compiler by
pasing the -fno-optimize-sibling-calls argumentto gccC.

G.9.3 MPI Wrapper Libraries

Unlike DDT, MAP wraps MPI calls in a custom shared library. We either copy a precompiled wrapper
that is compatible with your system or build one just for your system each time you run MAP. See section
C.2 MAP for the list of supported MPIs. Sometimes it won’t work, if it doesn’t, please tell us. It should
work on every system we’ve ever seen, first time, every time. In the meantime, you can also try setting
ALLINEA_WRAPPER_COMPILE=1 and MPICC directly:

$ MPICC=my-mpicc-command bin/map -n 16 ./wave_c

G.9.4 Thread support limitations

MAP provides limited support for programs when threading support is set to MPI_THREAD_SERIALIZED
or MPI_THREAD_MULTIPLE in the call to MPI_Init_thread. MPI activity on non-main threads
will contribute towards the MPI-time of the program, but not the MPI metric graphs. Additionally, MPI
activity on a non-main thread may result in additional profiling overhead due to the mechanism employed
by MAP for detecting MPI activity. It is recommended that the pthread view mode is used for interpreting
MPI activity instead of the OpenMP view mode, since OpenMP view mode will scale MPI-time depend-
ing on the resources requested. Hence, non-main thread MPI activity may provide nonintuitive results
when detected outside of OpenMP regions.

Warnings will be displayed when the user initiates and completes profiling a program which sets MPI_
THREAD_SERIALIZED or MPI_THREAD_MULTIPLE as the required thread support.

MAP does fully support calling MPI_Init_thread with either MPI_THREAD_SINGLE or MPI_
THREAD_FUNNELED specified as the required thread support. It should be noted that the requirements
that the MPI specification make on programs using MPI_THREAD_FUNNELED are the same as made
by MAP: all MPI calls must be made on the thread that called MPI_Init_thread. In many cases,
multi-threaded MPI programs can be refactored such that they comply with this restriction.

(© 2017 Allinea Software Ltd. 236

Allinea Forge 7.0

G.9.5 No thread activity whilst blocking on an MPI call

Unfortunately MAP is currently unable to record thread activity on a process where a long-duration MPI
call is in progress. If you have an MPI call that takes a significant amount of time to complete (i.e. there is
a sawtooth on the MPI call duration metric graph—see section 26.5) MAP will display no thread activity
for the process executing that call for most of that MPI call’s duration.

G.9.6 I'm not getting enough samples

By default we start sampling every 20ms, but if you get warnings about too few samples on a fast run,
or want more detail in the results, you can change that. To increase the frequency to every 10ms set
environment variable ALLINEA_SAMPLER_INTERVAL=10. Note that the sampling frequency is au-
tomatically decreased over time to ensure a manageable amount of data is collected whatever the length
of the run. Increasing the sampling frequency is not recommended if there are lots of threads and/or very
deep stacks in the target program as this may not leave sufficient time to complete one sample before the
next sample is started.

G.9.7 | just see main (external code) and nothing else

This can happen if you compile without - g. It can also happen if you move the executable out of the direc-
tory it was compiled in. Tell us if it’s happened to you; in the meantime check your compile line includes
- g and try right-clicking on the Project Files panel in MAP and choosing Add Source Directory. ..

G.9.8 MAP is reporting time spent in a function definition

Any overheads involved in setting up a function call (pushing arguments to the stack etc) are usually
assigned to the function definition. Some compilers may assign them to the opening brace ‘{’ and clos-
ing brace ‘}’ instead. If this function has been inlined, the situation becomes further complicated and
any setup time (e.g. allocating space for arrays) is often assigned to the definition line of the enclosing
function.

We’re looking for ways to unravel this and present a more intuitive picture; any ideas or suggestions are
much appreciated!

G.9.9 MAP is not correctly identifying vectorized instructions

The instructions identified as vectorized (packed) are enumerated below. We also identify the AVX-2
variants of these instructions (with a “v” prefix). Contact support@allinea.com if you believe your
code contains vectorized instructions that have not been listed and are not being identified in the CPU
floating-point/integer vector metrics.

Packed floating-point instructions: addpd addps addsubpd addsubps andnpd and-
nps andpd andps divpd divps dppd dpps haddpd haddps hsubpd hsubps
maxpd maxps minpd minps mulpd mulps rcpps rsqrtps sqrtpd sqrtps subpd
subps

Packed integer instructions: mpsadbw pabsb pabsd pabsw paddb paddd paddq paddsb
paddsw paddusb paddusw paddw palignr pavgb pavgw phaddd phaddsw phaddw
phminposuw phsubd phsubsw phsubw pmaddubsw pmaddwd pmaxsb pmaxsd pmaxsw
pmaxub pmaxud pmaxuw pminsb pminsd pminsw pminub pminud pminuw pmuldq
pmulhrsw pmulhuw pmulhw pmulld pmullw pmuludq pshufb pshufw psignb

(© 2017 Allinea Software Ltd. 237

mailto:support@allinea.com

Allinea Forge 7.0

psignd psignw pslld psllg psllw psrad psraw psrld psrlg psrlw psubb
psubd psubg psubsb psubsw psubusb psubusw psubw

G.9.10 Linking with the static MAP sampler library fails with an undefined
reference to _real _dlopen

When linking with the static MAP sampler library you may get undefined reference errors similar to the
following:

../1lib/64/1ibmap-sampler.a(dl.o): In function °~__ _wrap_dlopen':
/build/overnight/ddt-2015-01-28-12322/code/ddt/map/sampler/buildé4 -
static/../src/dl.c:21: undefined reference to "_ real dlopen'

../1ib/64/1libmap-sampler.a(dl.o): In function °~__wrap_dlclose':
/build/overnight/ddt-2015-01-28-12322/code/ddt/map/sampler/buildé64-
static/../src/dl.c:28: undefined reference to "_ real _dlclose'

collect2: 1d returned 1 exit status

To avoid these errors follow the instructions in section 18.2.5 Static Linking, specifically noting the use
of the -W1, @/home/user/myprogram/allinea-profiler.1ld syntax.

G.9.11 Linking with the static MAP sampler library fails with FDE overlap
errors

When linking with the static MAP sampler library you may get FDE overlap errors similar to:

ld: .eh_frame_hdr table[791] FDE at 0000000000822830 overlaps table
[792] FDE at 0000000000825788

This can occur when the version of binutils on a system has been upgraded to 2.25 or later and is most
common seen on Cray machines using CCE 8.5.0 or higher. To fix this issue re-run make-profiler -
libraries --1lib-type=static and use the freshly generated static libraries and allinea-
profiler.1d to link these with your program. See section 18.2.5 Static Linking for more details. If
you are not using a Cray or SUSE build of Allinea Forge and you require a binutils 2.25 compatibile static
library please contact support@allinea.com .

The error message occurs because the version of 1ibmap-sampler.a you attempted to link was
not compatible with the version of 1d in binutils verions >= 2.25. For Cray machines there is a sep-
arate library 1ibmap-sampler-binutils-2.25. a provided for use with this updated linker. The
make-profiler-1libraries script will automatically select the appropriate library to use based on
the version of 1d found in your PATH.

If you erroneously attempt to link 1ibmap-sampler-binutils-2.25. a with your program using
a version of 1d prior to 2.25 you will get errors such as

/usr/bin/1ld.x: libmap-sampler.a(dl.o): invalid relocation type 42

If this happens check that the correct version of 1d is in your PATH and re-run make-profiler-
libraries --lib-type=static.

G.9.12 MAP harmless linker warnings on Xeon Phi

When explicitly linking with 1ibmap - sampler -pmpi. so generated usingmake-profiler-1libraries
--platform=xeon-phi you may see the following compiler warnings:

(© 2017 Allinea Software Ltd. 238

mailto:support@allinea.com

Allinea Forge 7.0

x86_64-kiom-1linux-1d: warning: libimf.so, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-1link)
x86_64-klom-linux-1d: warning: libsvml.so, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-1link)
X86_64-kiom-1linux-1d: warning: libirng.so, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-1link)
X86_64-kiom-1linux-1d: warning: libintlc.so.5, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-1link)

These warnings are harmless and may be ignored but you must ensure that the Xeon Phi Intel runtime
libraries are in your LD_LIBRARY_PATH when running your program.

G.9.13 MAP harmless error messages on Xeon Phi

When running MAP on a Xeon Phi host, where the MAP installation has been configured for F.6 Intel
Xeon Phi (Knight’s Corner) heterogeneous support, but your MPI program was compiled without MIC
options, you may see harmless ‘ERROR’ messages similar to the following:

Other: ERROR: Id.so: object ‘/home/user/.allinea/wrapper/libmap-sampler-pmpi-mic3-mic-115427.s0’
from LD_PRELOAD cannot be preloaded: ignored.

These may be safely ignored.

G.9.14 MAP adds unexpected overhead to my program

MAP’s sampler library will add a little overhead to the execution of your program. Usually this is less
than 5% of the wall clock execution time. Under some circumstances, however, the overhead may exceed
this, especially for short runs. This is particularly likely if your program has high OpenMP overhead
(e.g. >40%). In this case the measurements reported by MAP will be affected by this overhead and
therefore less reliable. Increasing the run time of your program (e.g. by changing the size of the input) will
decrease the overall overhead, although the initial few minutes will still incur the higher overhead.

At high per-process thread counts, for example on the Intel Xeon Phi (Knight’s Landing), MAP’s sam-
pler library may incur a more significant overhead. By default, when MAP detects a large number of
threads it will automatically reduce the sampling interval in order to limit the performance impact. The
behaviour can be modified by setting the ALLINEA_SAMPLER_INTERVAL_PER_THREAD environ-
ment variable, see section 18.10.

G.9.15 MAP takes an extremely long time to gather and analyze my OpenBLAS-
linked application

OpenBLAS versions 0.2.8 and earlier incorrectly stripped symbols from the .symtab section of the library,
causing binary analysis tools such as Allinea MAP and objdump to see invalid function lengths and
addresses.

This causes MAP to take an extremely long time disassembling and analyzing apparently overlapping
functions containing millions of instructions.

A fix for this was accepted into the OpenBLAS codebase on October 8th 2013 and versions 0.2.9 and
above should not be affected.

To work around this problem without updating OpenBLAS, simply run “strip libopenblas*.so”—this
removes the incomplete .symtab section without affecting the operation or linkage of the library.

(© 2017 Allinea Software Ltd. 239

Allinea Forge 7.0

G.9.16 MAP over-reports MPI, 1/0, accelerator or synchronisation time

MAP employs a heuristic to determine which function calls should be considered as MPI operations. If
your code defines any function that starts with MPI_ (case insensitive) those functions will be treated as
part of the MPI library resulting in the time spent in MPI calls to be over-reported by the activity graphs
and the internals of those functions to be omitted from the Parallel Stack View. Starting your functions
names with the prefix MPI_should be avoided and is in fact explicitly forbidden by the MPI specification
(page 19 sections 2.6.2 and 2.6.3 of the MPI 3 specification document http://www.mpi-forum.org/docs/
mpi-3.0/mpi30-report.pdf#page=49):

All MPI names have an MPI_ prefix, and all characters are capitals. Programs must not
declare names, e.g., for variables, subroutines, functions, parameters, derived types, abstract
interfaces, or modules, beginning with the prefix MPI_.

Similarly MAP categorises I/O functions and accelerator functions by name. Other prefixes to avoid
starting your function names with include PMPI_, PMI_ OMPI_, omp_, GOMP_, shmem_ cuda_, __-
cuda, cu[A-Z][a-z] and allinea_. All of these prefixes are case-insensitive. Also avoid naming
a function start_pes or any name also used by a standard I/O or synchronisation function (write,
open, pthread_join, sem_wait etc).

G.9.17 MAP collects very deep stack traces with boost::coroutine

A known bug in Boost (https://svn.boost.org/trac/boost/ticket/12400) prevents MAP from unwinding the
call stack correctly. This can be worked around by applying the patch attached to the bug report to your
boost installation, or by specifying a manual stack allocator that correctly initialises the stack frame. First
add the following custom stack allocator:

#include <boost/coroutine/coroutine.hpp>
#include <boost/coroutine/stack_context. hhpp>

struct custom_stack_allocator {
void allocate(
boost: :coroutines: :stack_context & ctx,
std::size_t size) {

void * limit = std::malloc(size);
if (! limit)
throw std::bad_alloc();

//Fix. RBP in the 1st frame of the stack will contain 0
const int fill=0;

std::size_t stack_hdr_size=0x100;

if (size<stack_hdr_size)
stack_hdr_size=size;

memset(static_cast< char * >(limit)+size-stack_hdr_size,
fill,
stack_hdr_size);

ctx.size = size;
ctx.sp = static_cast< char * >(limit) + ctx.size;

(© 2017 Allinea Software Ltd. 240

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49
https://svn.boost.org/trac/boost/ticket/12400

Allinea Forge 7.0

void deallocate(boost::coroutines::stack _context & ctx) {
void * limit = static_cast< char * >(ctx.sp) - ctx.size;
std: :free(limit);

};

Then modify your program to use the custom allocator whenever a coroutine is created:

boost::coroutines::coroutine<int()> my_coroutine(<func>,
boost::coroutines::attributes(),custom_stack allocator());

For more information, see the boost : : coroutine documentation on stack allocators for your version
of Boost.

G.10 Obtaining Support

If this guide hasn’t helped you, then the most effective way to get support is to email us with a detailed
report. If possible, you should obtain a log file for the problem and email this to support@allinea.com

You can generate a log file by checking the Help — Logging — Automatic menu item or by starting Forge
with the - -debug and - - 10g arguments:

$ ddt --debug --log=<log>
$ map --debug --log=<log>

where <10g> is the name of the log file to generate.

Then simply reproduce the problem using as few processors and commands as possible and close the
program as usual. On some systems this file might be quite large; if this is the case, please compress it
using a program such as gzip or bzip2 before attaching it to your email.

If your problem can only be replicated on large process counts, then please do not use the Help — Logging
— Debug menu item or - -debug argument as this will generate very large log files. Instead use the
Help — Logging — Standard menu option or just the - - L0og argument.

If you are connecting to a remote system, then the log file is generated on the remote host and copied back
to the client when the connection is closed. The copy will not happen if the target application crashes or
the network connection is lost. In these cases, the remote copy of the log file can be found in the tmp
subdirectory of the Allinea configuration directory for the remote user account (which is ~/.allinea,
unless overridden by the ALLINEA_CONFIG_DIR environment variable).

Sometimes it may be helpful to illustrate your problem with a screenshot of Allinea Forge’s main win-
dow. To take a screenshot, choose the Take Screenshot... option under the Window menu. You will be
prompted for a file name to save the screenshot to.

(© 2017 Allinea Software Ltd. 241

mailto:support@allinea.com

Allinea Forge 7.0

H Queue Template Script Syntax

H.1 Queue Template Tags

Each of the tags that will be replaced is listed in the following table—and an example of the text that will
be generated when Allinea Forge submits your job is given for each.

Note: It is often sufficient to simply use AUTO_LAUNCH_TAG. See section A.3.1 The Template Script for

an example.

Tag

Description

After Submission Example

AUTO_LAUNCH_TAG

This tag expands to the entire
replacement for your ‘mpirun’
command line.

ddt-mpirun -np 4 myex-
ample.bin

TAG

mpirun (can vary with MPI im-
plementation)

DDTPATH_TAG The path to the Allinea Forge in- | /opt/allinea/forge
stallation
WORKING_DIRECTORY_TAG | The working directory Allinea | /users/ned
Forge was launched in
NUM_PROCS_TAG Total number of processes 16
NUM_PROCS_PLUS_ONE_ Total number of processes + 1 17
TAG
NUM_NODES_TAG Number of compute nodes 8
NUM_NODES_PLUS_ONE_ Number of compute nodes + 1 9
TAG
PROCS_PER_NODE_TAG Processes per node 2
PROCS_PER_NODE_PLUS_ Processes per node + 1 3
ONE_TAG
NUM_THREADS_TAG Number of OpenMP threads per | 4
node (empty if OpenMP if “off”)
OMP_NUM_THREADS_TAG Number of OpenMP threads per | 4
node (empty if OpenMP is “off”)
MPIRUN_TAG mpirun binary (can vary with | /usr/bin/mpirun
MPI implementation)
AUTO_MPI_ARGUMENTS_ Required command line flags for | -np 4

EXTRA_MPI_ARGUMENTS_
TAG

Additional mpirun arguments
specified in the Run window

-partition DEBUG

PROGRAM_TAG

Target path and filename

/users/ned/a.out

PROGRAM_ARGUMENTS_TAG

Arguments to target program

-myarg myval

INPUT_FILE_TAG

The stdin file specified in the
Run window

/users/ned/input.dat

Additionally, any environment variables in the GUI environment ending in _“TAG are replaced throughout
the script by the value of those variables.

(© 2017 Allinea Software Ltd.

242

Allinea Forge 7.0

H.2 Defining New Tags

As well as the pre-defined tags listed in the table above you can also define new tags in your template
script whose values can be specified in the GUI.

Tag definitions have the following format:

EXAMPLE_TAG: { keyl=valuel, key2=value2,

Where keyl, key2, ...

ues.

are attribute names and valuel, value?2, ...

}

The tag will be replaced wherever it occurs with the value specified in the GUI, for example:

#PBS -option EXAMPLE_TAG

The following attributes are supported:

are the corresponding val-

Attribute Purpose Example
type text: General text input. type=text
select: Select from two or more options.
check: Boolean.
file: File name.
number: Real number.
integer: Integer number.
label The label for the user interface widget. label="Account"
default Default value for this tag default="interactive"
text type
mask Input mask: mask="09:09:09"
0: ASCII digit permitted but not required.
9: ASCII digit required. 0-9.
N: ASCII alphanumeric character required.
A-7, a—z, 0-9.
n: ASCII alphanumeric character permitted
but not required.
options type
options Options to use, separated by the | character options="not_-
shared|shared"
check type
checked Value of a check tag if checked. checked="enabled"
unchecked Value of a check tag if unchecked. unchecked="enabled"
integer and number types
min Minimum value. min="0"
max Maximum value. max="100"
step Amount to step by when the up or down ar- | step="1"
rows are clicked.
decimals Number of decimal places. decimals="2"
suffix Display only suffix (will not be included intag | suffix="s"
value).
prefix Display only prefix (will not be included in | prefix="§"
tag value).
file type

(© 2017 Allinea Software Ltd.

243

Allinea Forge 7.0

mode open-file: an existing file. mode="open-file"
save-file: anew or existing file.
existing-directory: anexisting direc-
tory.

open-files: one or more existing files,
separated by spaces.

caption Window caption for file chooser. caption="Select File"
dir Initial directory for file chooser. dir="/work/output"
filter Restrict the files displayed in the file chooser | filter="Text files
to a certain file pattern. (*.txt)"
Examples

JOB_TYPE_TAG: {type=select,options=parallel| \
serial, label="Job Type",6 default=parallel}

WALL_CLOCK_ LIMIT_TAG: {type=text,label="Wall Clock Limit", \
default="00:30:00",mask="09:09:09"}

NODE_USAGE_TAG: {type=select,options=not_shared| \
shared, label="Node Usage",6 default=not_shared}

ACCOUNT_TAG: {type=text,label="Account",6 global}

See the template files in {installation-directory} /templates for more examples.

To specify values for these tags click the Edit Template Variables button on the Job Submission Options
page (See Figure 116 Queuing Systems above) or the Run window. You will see a window similar to the
one below:

Queue Submission Parameters x|
Job Type: [parallel S l
Wall Cleck Limit: |00:30:00
Mode Usage: [not_shared = l
Accounk: [user l
[oK l [Cancel l

Figure 117: Queue Parameters Window

The values you specify are substituted for the corresponding tags in the template file when you run a
job.

(© 2017 Allinea Software Ltd. 244

Allinea Forge 7.0

H.3 Specifying Default Options

A queue template file may specify defaults for the options on the Job Submission page so that when a
user selects the template file these options are automatically filled in.

Name Job Submission Setting Example
submit Submit command | qgsub -n NUM_NODES_TAG
Note: the command may | -t WALL_CLOCK_LIMIT.-
include tags. TAG --mode script -A
PROJECT_TAG
display Display command The output | gstat
from this command is shown
while waiting for a job to start.
job regexp Job regexp (\d+)
cancel Cancel command qdel JOB_ID_TAG
submit scalar Also submit scalar jobs through | yes
the queue
show num_procs Number of processes: Specify in | yes
Run window
show num_nodes Number of nodes: Specify in | yes
Run Window
show procs_per_node Processes per node: Specify in | yes
Run window
procs_per_node Processes per node: Fixed 16

Example

submit: qsub -n NUM_NODES_TAG -t WALL_CLOCK LIMIT_TAG \
--mode script -A PROJECT_TAG

display: qstat

job regexp: (\d+)

cancel: qdel JOB_ID TAG

H.4 Launching

Ordinarily, your queue script will probably end in a line that starts mpirun with your target executable.

In a template file, this needs to be modified to run a command that will also launch the Allinea Forge-

backend agents.

Some methods to do this are mentioned in this section.

H.4.1 Using AUTO LAUNCH TAG

This is the easiest method, and caters for the majority of cases. Simply replace your mpirun command
line with AUTO_LAUNCH_TAG. Allinea Forge will replace this with a command appropriate for your
configuration (one command on a single line).

e.g. an mpirun line that looks like this:

(© 2017 Allinea Software Ltd.

245

Allinea Forge 7.0

mpirun -np 16 program_name myargl myarg2

simply becomes:

AUTO_LAUNCH_TAG

AUTO_LAUNCH_TAG is roughly equivalent to:
DDT_MPIRUN_TAG DDT_DEBUGGER_ARGUMENTS_TAG \
MPI_ARGUMENTS_TAG PROGRAM_TAG ARGS_TAG

A typical expansion is:

/opt/allinea/forge/bin/ddt-mpirun --ddthost logini,192.168.0.191 \
--ddtport 4242 --ddtsession 1 \

--ddtsessionfile /home/user/.allinea/session/loginl-1 \
--ddtshareddirectory /home/user --np 64 \

--npernode 4 myprogram argl arg2 arg3

H.4.2 Using ddt-mpirun

If you need more control than is available using AUTO_LAUNCH_TAG, Allinea Forge also provides a
drop-in mpirun replacement that can be used to launch your job. Note: this is only suitable for use in a
queue template file when Allinea Forge is submitting to the queue itself.

You should replace mpirun with DDTPATH_TAG/bin/ddt-mpirun. For example, if your script
currently has the line:

mpirun -np 16 program_name myargl myarg2

Then (for illustration only) the equivalent that Allinea Forge would need to use would be:
DDTPATH_TAG/bin/ddt-mpirun -np 16 program_name myargl myarg2

For a template script you use tags in place of the program name, arguments etc. so they can be specified

in the GUI rather than editing the queue script each time:

DDTPATH_TAG/bin/ddt-mpirun -np NUM_PROCS_TAG \
EXTRA_MPI_ARGUMENTS_TAG DDTPATH_TAG/bin/ddt-debugger \
DDT_DEBUGGER_ARGUMENTS_TAG PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

See H.1 Queue Template Tags for more information on template tags.

H.4.3 MPICH 1 based MPI

If AUTO_LAUNCH_TAG or ddt -mpirun are not suitable, you can also use the following method for
MPICH 1 based MPIs.

If your mpirun command line looks like:

mpirun -np 16 program_name myargl myarg2

You need to export the TOTALVIEW environment variable, and add the - tv parameter to mpirun. For
example:

(© 2017 Allinea Software Ltd. 246

Allinea Forge 7.0

export TOTALVIEW=DDTPATH_TAG/bin/ddt-debugger-mps
MPIRUN_TAG -np NUM_PROCS_TAG \
-tv PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

H.4.4 Scalar Programs

If AUTO_LAUNCH_TAG isn’t suitable, you can also use the following method to launch scalar jobs with
your template script:

DDTPATH_TAG/bin/ddt-client DDT_DEBUGGER_ARGUMENTS_TAG \
PROGRAM_TAG PROGRAM_ARGUMENTS_TAG

H.5 Using PROCS PER NODE TAG

Some queue systems allow you to specify the number of processes, others require you to select the number
of nodes and the number of processes per node. The software caters for both of these but it is important
to know whether your template file and queue system expect to be told the number of processes (NUM_
PROCS_TAG) or the number of nodes and processes per node (NUM_NODES_TAG and PROCS_PER_
NODE_TAG). If these terms seem strange, see sample.qtf for an explanation of the queue template
system.

H.6 Job ID Regular Expression

The Regexp for job id regular expression is matched on the output from your submit command. The first
bracketed expression in the regular expression is used as the job ID. The elements listed in the table are
in addition to the conventional quantifiers, range and exclusion operators.

Element Matches
C A character represents itself
\t A tab
. Any character
\d Any digit
\D Any non-digit
\s White space
\S Non-white space
\w Letters or numbers (a word character)
\W Non-word character

For example, your submit program might return the output job id j1128 has been submit-
ted—one possible regular expression for retrieving the job id is id\s(.+)\shas.

If you would normally remove the job from the queue by typing job_remove j1128 then you should
enter job_removeJOB_ID_TAG as the cancel command.

(© 2017 Allinea Software Ltd. 247

Allinea Forge 7.0

H.7 Allinea IPMI Energy Agent
The Allinea IPMI Energy Agent allows Allinea MAP and Allinea Performance Reports to measure the
total energy consumed by the compute nodes in a job in conjunction with the Allinea Advanced Metrics

Pack add-on. The IPMI Energy Agent is a separate download from our website: http://www.allinea.com/
ipmi-energy-agent.

H.7.1 Requirements

e The compute nodes must support IPMI.

The compute nodes must have an IPMI exposed power sensor.

The compute nodes must have an OpenIPMI compatible kernel module installed (i.e. ipmi_-
devintf).

The compute nodes must have the corresponding device node in /dev (e.g. /dev/ipmi0).

The compute nodes must run a supported operating system.
e The IPMI Energy Agent must be run as root.

To quickly list the names of possible IPMI power sensors on a compute node use the following com-
mand:

ipmitool sdr | grep 'Watts'

(© 2017 Allinea Software Ltd. 248

http://www.allinea.com/ipmi-energy-agent
http://www.allinea.com/ipmi-energy-agent

Index

Align Stacks, 68

Allinea DDT
Getting Started, 27
Getting Support, 199
Installation, 14
Introduction, 12
Online Resources, 13
Starting a program, 59

Allinea MAP
Getting Started, 134
Getting Support, 199
Installation, 14
Introduction, 13
Online Resources, 13

Altix, 200

AMD
OpenCL, 211

Apple, 23

ARM, 200, 201, 218

Attaching, 40, 119
Choose Hosts, 40
Command Line, 40
Hosts File, 40

Backtrace, 68

Berkeley UPC, 203

Blue Gene/Q, 218

Bounds Checking, 99

Branch instructions, 177

Breakpoints, 60
Conditional, 62
Deleting, 62
Saving, 63

Buffer Overflow, 51

Building Applications, 48, 160

Bull MPI, 203

Colour Scheme, 197
Completed instructions, 177
Complex Numbers, 77
Configuration, 33
Site Wide, 190
Consistency Checking
Heap, 101
Core Files, 37, 119
CPU branch, 170
CPU floating-point, 169
CPU floating-point vector, 170
CPU integer, 169
CPU integer vector, 170

CPU memory access, 169
CPU power usage, 173
CPU time, 170
Cray, 121, 217
Cray MPT, 203
Cray Native SLURM, 209, 217
Cray X, 203
Cray XK6, 217
Cross-Process Comparison, 88, 105
Cross-Thread Comparison, 88
CUDA
Breakpoints, 63
CUDA Fortran, 122
DDT: CUDA, 115
GPU Debugging, 115
Memory Debugging, 99
NVIDIA, 115
Running, 29
Cycles per instruction, 176

Data

Changing, 80
Deadlock, 98
Disassembler, 90
Disk read transfer, 171
Disk write transfer, 171
DP FLOPS, 176

Editing Source Code, 47, 160
End Session, 31
Environment Variables, 30
Express Launch, 31, 135
External Editor, 197

Fencepost Checking, 106
Floating-point scalar instructions, 177

Floating-point vector instructions, 177

Font, 197

Fortran Modules, 76
Fujitsu FX10, 225
Fujitsu MPI, 225
Function Listing, 51

gdbserver, 44
GPU, 115
Attaching, 119
GPU Language Support, 121
GPU memory usage, 173
GPU power usage, 173
GPU temperature, 173
GPU utilization, 173

249

Allinea Forge 7.0

Heap Overflow, 106
Hotkeys, 59
HP MPI, 204

Inf, 72
Input, 92, 147
Installation, 14
Linux, 14
Mac OS X, 16
Text-mode Install, 15
Windows, 16
Intel Compiler, 30, 207, 213
Intel Message Checker, 204
Intel MPI, 204
MPMD, 36
remote-exec, 32
Involuntary context switches, 170
IPMI, 248

Job Submission, 41, 148

Cancelling, 41, 148

Custom, 41

Regular Expression, 41, 148, 247
Jump To Line, 50

Double Clicking, 54

Kernel-mode CPU time, 170

L1 cache misses, 176
L2 cache misses, 177
L2 data cache misses, 176
L3 cache misses, 177
Licensing
Licence Files, 17
Single Process Licence, 33, 147
Supercomputing and Other Floating Licences,
18
Workstation and Evaluation Licences, 17
Loadleveler, 201, 202
Log file, 241
Lustre file opens, 174
Lustre metadata operations, 174
Lustre read transfer, 174
Lustre write transfer, 174

Mac OS X, 25
Macros, 76
Main Window
Overview, 46
Manual Launch
ddt-client, 35
Debugging Multi-Process Non-MPI programs,
35

(© 2017 Allinea Software Ltd.

MAPEJSON
JSONFormat, 183
Memory Debugging, 99
Configuration, 99
Enabling, 30
Memory Statistics, 108
mprotect fails, 234
Memory Leak, 51
Memory Usage, 106
Memory usage, 171
Message Queues, 96, 204
Mispredicted branch instructions, 177
Moab, 201, 202
MOM nodes, 203
MPC, 205
mpirun, 205
MPI
Function Counters, 112
History/Logging, 111
MPI Rank, 54
MPI Ranks, 89
mpirun, 29
Running, 29
Troubleshooting, 230
MPI call duration, 171
MPI point-to-point/collective bytes, 172
MPI point-to-point/collective operations, 172
MPI sent/received, 172
MPI_Init
remote-exec, 32
MPICH, 146
p4, 206
p4 mpd, 206
MPICH 1
remote-exec, 32
MPICH 2
MPMD, 36
remote-exec, 32
MPICH 3, 206
MPMD, 36
remote-exec, 32
mpirun
remote-exec, 32
mpirun_rsh, 207
MPMD
Compatibility Mode, 36
Intel MPI, 36
MPICH 2, 36
MPICH 3, 36
remote-exec, 146
Running, 36, 182

250

MVAPICH, 206
MVAPICH 2, 207

Node memory usage, 171
nvcc, 115
NVIDIA Tegra 2, 218

Obtaining Help, 199
Offline debugging, 123
Online Resources, 13
Open MPI, 207
MPMD, 36
Compatibility Mode, 36
OpenACC, 121
OpenCL, 115
OpenGL, 87
OpenMP
OMP_NUM_THREADS, 33
Running, 29, 33
Oracle Grid Engine, 201, 202

PAPI, 176
Parallel Stack View, 69
PBS, 201, 202
PGI Accelerators, 122
Plugins
Enabling, 30
Pointer details, 104, 105
Pointers, 80
Portland Group, 214
Pretty Printers, 78
Process Details, 90
Process Groups, 54
Deleting, 54
Programming errors, 197

Queue Submission, 41

Cancelling, 41
Queue Submission via Express Launch, 41
Queue Template Syntax, 242

Raw Command, 91
Rebuilding Applications, 48, 160
Receive queue, 98
Registers
Viewing, 90
Remote Client, 19
Configuration, 19
Installation
Mac OS X, 16
Windows, 16
Multiple Hops, 20
Remote Script, 21

(© 2017 Allinea Software Ltd.

Allinea Forge 7.0

remote-exec
Required, 32
Restarting, 59
Reverse Connect, 21
Running
MPMD, 36, 182
Scalar, 33

Scalar
Running, 33
Search, 49, 50
Selected Lines View, 161
Send queue, 98
Session
Saving, 46
Session Menu, 59
SGI, 208
SGI MPT
remote-exec, 32
Shared Arrays, 80
Signal Handling, 72
Divisions by zero, 72
Floating Point Exception, 72
Segmentation fault, 72
SIGFPE, 72
SIGILL, 72
SIGPIPE, 72
SIGSEGV, 72
SIGUSR1, 73
SIGUSRZ2, 73
Single Stepping, 59
SLURM, 209
SMP
Performance, 229
Source Code, 47, 71, 156
Editing, 47, 160
Missing Files, 48
Rebuilding, 48, 160
Searching, 49, 50
Viewing, 47, 156
Sparkline, 88
Spectrum MPI, 209
Stack Frame, 68
Standard Error, 92, 154
Standard Output, 92, 154
Starting, 25
Starting MAP, 134
Static Analysis, 51
Static checking, 197
Step Threads Together, 57
Stopping, 59
Synchronizing Processes, 63

251

System load, 170
System power usage, 173

Tab size, 197

Time in global memory accesses, 173
Time spent on selected lines, 161
TORQUIE, 201, 202

Tracepoints, 65

Unexpected queue, 98
Unwind Errors, 233

UPC, 79

User-mode CPU time, 170

Variables, 74
Searching, 49, 50
Unused Variables, 51
Vector instructions, 177
Version Control, 52
Breakpoints and Tracepoints, 66
Vislt, 128, 201
Visualize Whitespace, 197
VNG, 23
Voluntary context switches, 170

Warning Symbols, 51
Watchpoints, 64
Welcome Page, 25
Welcome Screen, 135

X forwarding, 23
X11, 229
XKS6, 217

(© 2017 Allinea Software Ltd.

Allinea Forge 7.0

252

	Contents
	I Allinea Forge
	1 Introduction
	1.1 Allinea DDT
	1.2 Allinea MAP
	1.3 Online Resources

	2 Installation
	2.1 Linux/Unix Installation
	2.1.1 Graphical Install
	2.1.2 Text-mode Install

	2.2 Mac Installation
	2.3 Windows Installation
	2.4 Licence Files
	2.5 Workstation and Evaluation Licences
	2.6 Supercomputing and Other Floating Licences
	2.7 Architecture Licensing

	3 Connecting to a Remote System
	3.1 Remote Connections Dialog
	3.2 Remote Launch Settings
	3.2.1 Remote Script

	3.3 Reverse Connect
	3.3.1 Overview
	3.3.2 Usage
	3.3.3 Connection Details

	3.4 Using X Forwarding or VNC

	4 Starting

	II DDT
	5 Getting Started
	5.1 Running a Program
	5.1.1 Application
	5.1.2 MPI
	5.1.3 OpenMP
	5.1.4 CUDA
	5.1.5 UPC
	5.1.5.1 GCC UPC
	5.1.5.2 Berkeley UPC

	5.1.6 Memory Debugging
	5.1.7 Environment Variables
	5.1.8 Plugins

	5.2 Express Launch
	5.2.1 Run Dialog Box

	5.3 remote-exec Required By Some MPIs
	5.4 Debugging Single-Process Programs
	5.5 Debugging OpenMP Programs
	5.6 Manual Launching of Multi-Process Non-MPI programs
	5.7 Debugging MPMD Programs
	5.7.1 Debugging MPMD Programs without Express Launch
	5.7.2 Debugging MPMD Programs in Compatibility mode

	5.8 Opening Core Files
	5.9 Attaching To Running Programs
	5.9.1 Automatically Detected MPI Jobs
	5.9.2 Attaching To A Subset Of An MPI Job
	5.9.3 Manual Process Selection
	5.9.4 Configuring Attaching to Remote Hosts
	5.9.5 Using DDT Command-Line Arguments

	5.10 Starting A Job In A Queue
	5.11 Using Custom MPI Scripts
	5.12 Starting DDT From A Job Script
	5.13 Attaching via gdbserver

	6 Overview
	6.1 Saving And Loading Sessions
	6.2 Source Code
	6.2.1 Viewing
	6.2.2 Editing
	6.2.3 Rebuilding and Restarting
	6.2.4 Committing changes

	6.3 Project Files
	6.3.1 Application / External Code

	6.4 Finding Lost Source Files
	6.5 Finding Code Or Variables
	6.5.1 Find Files or Functions
	6.5.2 Find
	6.5.3 Find in Files

	6.6 Jump To Line / Jump To Function
	6.7 Static Analysis
	6.8 Version Control Information

	7 Controlling Program Execution
	7.1 Process Control And Process Groups
	7.1.1 Detailed View
	7.1.2 Summary View

	7.2 Focus Control
	7.2.1 Overview of changing focus
	7.2.2 Process Group Viewer
	7.2.3 Breakpoints
	7.2.4 Code Viewer
	7.2.5 Parallel Stack View
	7.2.6 Playing and Stepping
	7.2.7 Step Threads Together
	7.2.8 Stepping Threads Window

	7.3 Hotkeys
	7.4 Starting, Stopping and Restarting a Program
	7.5 Stepping Through A Program
	7.6 Stop Messages
	7.7 Setting Breakpoints
	7.7.1 Using the Source Code Viewer
	7.7.2 Using the Add Breakpoint Window
	7.7.3 Pending Breakpoints
	7.7.4 Conditional Breakpoints

	7.8 Suspending Breakpoints
	7.9 Deleting A Breakpoint
	7.10 Loading And Saving Breakpoints
	7.11 Default Breakpoints
	7.12 Synchronizing Processes
	7.13 Setting A Watchpoint
	7.14 Tracepoints
	7.14.1 Setting a Tracepoint
	7.14.2 Tracepoint Output

	7.15 Version Control Breakpoints and Tracepoints
	7.16 Examining The Stack Frame
	7.17 Align Stacks
	7.18 ``Where are my processes?''�Viewing Stacks in Parallel
	7.18.1 Overview
	7.18.2 The Parallel Stack View in Detail

	7.19 Browsing Source Code
	7.20 Simultaneously Viewing Multiple Files
	7.21 Signal Handling
	7.21.1 Custom Signal Handling (Signal Dispositions)
	7.21.2 Sending Signals

	8 Viewing Variables And Data
	8.1 Sparklines
	8.2 Current Line
	8.3 Local Variables
	8.4 Arbitrary Expressions And Global Variables
	8.4.1 Fortran Intrinsics
	8.4.2 Changing the language of an Expression
	8.4.3 Macros and #defined Constants

	8.5 Help With Fortran Modules
	8.6 Viewing Complex Numbers in Fortran
	8.7 C++ STL Support
	8.8 Custom Pretty Printers
	8.8.1 Example

	8.9 Viewing Array Data
	8.10 UPC Support
	8.11 Changing Data Values
	8.12 Viewing Numbers In Different Bases
	8.13 Examining Pointers
	8.14 Multi-Dimensional Arrays in the Variable View
	8.15 Multi Dimensional Array Viewer (MDA)
	8.15.1 Array Expression
	8.15.2 Filtering by Value
	8.15.3 Distributed Arrays
	8.15.4 Advanced: How Arrays Are Laid Out in the Data Table
	8.15.5 Auto Update
	8.15.6 Comparing Elements Across Processes
	8.15.7 Statistics
	8.15.8 Export
	8.15.9 Visualization

	8.16 Cross-Process and Cross-Thread Comparison
	8.17 Assigning MPI Ranks
	8.18 Viewing Registers
	8.19 Process Details
	8.20 Disassembler
	8.21 Interacting Directly With The Debugger

	9 Program Input And Output
	9.1 Viewing Standard Output And Error
	9.2 Saving Output
	9.3 Sending Standard Input

	10 Logbook
	10.1 Usage
	10.2 Annotation
	10.3 Comparison Window

	11 Message Queues
	11.1 Viewing The Message Queues
	11.2 Interpreting the Message Queues
	11.3 Deadlock

	12 Memory Debugging
	12.1 Enabling Memory Debugging
	12.2 CUDA Memory Debugging
	12.3 Configuration
	12.3.1 Static Linking
	12.3.1.1 Static linking on most systems
	12.3.1.2 Static linking on Cray

	12.3.2 Available Checks
	12.3.3 Changing Settings at Run Time

	12.4 Pointer Error Detection and Validity Checking
	12.4.1 Library Usage Errors
	12.4.2 View Pointer Details
	12.4.3 Cross-Process Comparison of Pointers
	12.4.4 Writing Beyond An Allocated Area
	12.4.5 Fencepost Checking
	12.4.6 Suppressing an Error

	12.5 Current Memory Usage
	12.5.1 Detecting Leaks when using Custom Allocators/Memory Wrappers

	12.6 Memory Statistics

	13 Checkpointing
	13.1 What Is Checkpointing?
	13.2 How To Checkpoint
	13.3 Restoring A Checkpoint

	14 Using and Writing Plugins
	14.1 Supported Plugins
	14.2 Installing a Plugin
	14.3 Using a Plugin
	14.4 Writing a Plugin
	14.5 Plugin Reference

	15 CUDA GPU Debugging
	15.1 Licensing
	15.2 Preparing to Debug GPU Code
	15.3 Launching the Application
	15.4 Controlling GPU threads
	15.4.1 Breakpoints
	15.4.2 Stepping
	15.4.3 Running and Pausing

	15.5 Examining GPU Threads and Data
	15.5.1 Selecting GPU Threads
	15.5.2 Viewing GPU Thread Locations
	15.5.3 Understanding Kernel Progress
	15.5.4 Source Code Viewer

	15.6 GPU Devices Information
	15.7 Attaching to running GPU applications
	15.8 Opening GPU Core Files
	15.9 Known Issues / Limitations
	15.9.1 Debugging Multiple GPU processes
	15.9.2 Thread control
	15.9.3 General
	15.9.4 Pre sm_20 GPUs
	15.9.5 Debugging Multiple GPU processes on Cray limitations

	15.10 GPU Language Support
	15.10.1 Cray OpenACC
	15.10.2 PGI Accelerators and CUDA Fortran

	16 Offline Debugging
	16.1 Using Offline Debugging
	16.1.1 Reading a File for Standard Input
	16.1.2 Writing a File from Standard Output

	16.2 Offline Report Output (HTML)
	16.3 Offline Report Output (Plain Text)
	16.4 Run-Time Job Progress Reporting
	16.4.1 Periodic Snapshots
	16.4.2 Signal-Triggered Snapshots

	17 Using DDT with the VisIt Visualization Tool
	17.1 Support for VisIt
	17.2 Patching and Building VisIt
	17.3 Compatibility
	17.4 Enabling VisIt Support in DDT
	17.5 Setting Visualization Points (Vispoints)
	17.6 Using Vispoints in DDT
	17.7 Returning to DDT
	17.8 Focusing on a Domain & VisIt Picks
	17.9 Using DDT with a pre-instrumented program

	III MAP
	18 Getting Started
	18.1 Express Launch
	18.1.1 Run Dialog Box

	18.2 Preparing a Program for Profiling
	18.2.1 Debugging Symbols
	18.2.2 .eh-frame-hdr section
	18.2.3 Linking
	18.2.4 Dynamic Linking on Cray X-Series Systems
	18.2.5 Static Linking
	18.2.6 Static Linking on Cray X-Series Systems
	18.2.7 Dynamic and Static Linking on Cray X-Series Systems using the modules environment
	18.2.8 map-link modules Installation on Cray X-Series

	18.3 Profiling a Program
	18.3.1 Application
	18.3.2 Duration
	18.3.3 MPI
	18.3.4 OpenMP
	18.3.5 Environment Variables
	18.3.6 Profiling
	18.3.7 Profiling Only Part of a Program
	18.3.7.1 C
	18.3.7.2 Fortran

	18.4 remote-exec Required By Some MPIs
	18.5 Profiling a Single-Process Program
	18.6 Sending Standard Input
	18.7 Starting A Job In A Queue
	18.8 Using Custom MPI Scripts
	18.9 Starting MAP From A Job Script
	18.10 MAP Environment Variables

	19 Program Output
	19.1 Viewing Standard Output And Error
	19.2 Displaying Selected Processes
	19.3 Restricting Output
	19.4 Saving Output

	20 Source Code
	20.1 Viewing
	20.2 OpenMP programs
	20.3 Dealing with complexity: code folding
	20.4 Editing
	20.5 Rebuilding and Restarting
	20.6 Committing changes

	21 Selected Lines View
	21.1 Limitations

	22 Stacks View
	23 OpenMP Regions View
	24 Functions View
	25 Project Files View
	26 Metrics View
	26.1 CPU Instructions
	26.1.1 Per-line CPU Instructions

	26.2 CPU Time
	26.3 I/O
	26.4 Memory
	26.5 MPI
	26.6 Detecting MPI imbalance
	26.7 Accelerator
	26.8 Energy
	26.8.1 Requirements

	26.9 Lustre
	26.10 Zooming
	26.11 Viewing Totals Across Processes / Nodes

	27 PAPI Metrics
	27.1 PAPI Config file
	27.2 PAPI Overview Metrics
	27.3 PAPI Cache Misses
	27.4 PAPI Branch Prediction
	27.5 PAPI Floating-Point

	28 Main-thread, OpenMP and Pthread view modes
	28.1 Main thread only mode
	28.2 OpenMP mode
	28.3 Pthread mode

	29 Processes and Cores View
	30 Running MAP from the Command Line
	30.1 Profiling MPMD Programs
	30.1.1 Profiling MPMD Programs without Express Launch

	31 Exporting profiler data in JSON format
	31.1 JSON format
	31.2 Activities
	31.2.1 Description of categories
	31.2.2 Categories available in main_thread activity
	31.2.3 Categories available in openmp and pthreads activities

	31.3 Metrics
	31.4 Example JSON output

	IV Appendix
	A Configuration
	A.1 Configuration files
	A.1.1 Site Wide Configuration
	A.1.2 Startup Scripts
	A.1.3 Importing Legacy Configuration
	A.1.4 Converting Legacy Site-Wide Configuration Files
	A.1.5 Using Shared Home Directories on Multiple Systems
	A.1.6 Using a Shared Installation on Multiple Systems

	A.2 Integration With Queuing Systems
	A.3 Template Tutorial
	A.3.1 The Template Script
	A.3.2 Configuring Queue Commands
	A.3.3 Configuring How Job Size is Chosen
	A.3.4 Quick Restart

	A.4 Connecting to remote programs (remote-exec)
	A.5 Optional Configuration
	A.5.1 System
	A.5.2 Job Submission
	A.5.3 Code Viewer Settings
	A.5.4 Appearance
	A.5.5 VisIt

	B Getting Support
	C Supported Platforms
	C.1 DDT
	C.2 MAP

	D MPI Distribution Notes and Known Issues
	D.1 Berkeley UPC
	D.2 Bull MPI
	D.3 Cray MPT
	D.4 HP MPI
	D.5 IBM PE
	D.6 Intel MPI
	D.7 MPC
	D.7.1 MPC in the Run Window
	D.7.2 MPC on the Command Line

	D.8 MPICH 1 p4
	D.9 MPICH 1 p4 mpd
	D.10 MPICH 2
	D.11 MPICH 3
	D.12 MVAPICH 1
	D.13 MVAPICH 2
	D.14 Open MPI
	D.15 Platform MPI
	D.16 SGI MPT / SGI Altix
	D.16.1 Using DDT with Cray ATP (the Abnormal Termination Process)

	D.17 SLURM
	D.18 Spectrum MPI

	E Compiler Notes and Known Issues
	E.1 AMD OpenCL compiler
	E.2 Berkeley UPC Compiler
	E.3 Cray Compiler Environment
	E.3.1 Compile Serial Programs on Cray

	E.4 GNU
	E.4.1 GNU UPC

	E.5 IBM XLC/XLF
	E.6 Intel Compilers
	E.7 Pathscale EKO compilers
	E.8 Portland Group Compilers

	F Platform Notes and Known Issues
	F.1 CRAY
	F.2 GNU/Linux Systems
	F.2.1 General
	F.2.2 SUSE Linux

	F.3 IBM Blue Gene/Q
	F.3.1 Attaching

	F.4 Intel Xeon
	F.4.1 Enabling RAPL energy and power counters when profiling

	F.5 Intel Xeon Phi (Knight's Landing)
	F.6 Intel Xeon Phi (Knight's Corner)
	F.6.1 Requirements
	F.6.2 Installation
	F.6.3 Configuration

	F.7 Fujitsu FX10
	F.7.1 FX10 Installation
	F.7.2 FX10 Configuration
	F.7.3 FX10 Memory Debugging
	F.7.4 FX10 Known Issues

	F.8 NVIDIA CUDA
	F.8.1 CUDA Known Issues

	F.9 ARM
	F.9.1 ARMv8 (ARM 64bit) Known Issues

	F.10 POWER
	F.10.1 POWER8 (POWER 64bit) Known Issues

	G General Troubleshooting and Known Issues
	G.1 General Troubleshooting
	G.1.1 Problems Starting the GUI
	G.1.2 Problems Reading this Document

	G.2 Starting a Program
	G.2.1 Problems Starting Scalar Programs
	G.2.2 Problems Starting Multi-Process Programs
	G.2.3 No Shared Home Directory
	G.2.4 DDT says it can't find your hosts or the executable
	G.2.5 The progress bar doesn't move and Allinea Forge `times out'

	G.3 Attaching
	G.3.1 The system does not allow connecting debuggers to processes (Fedora, Ubuntu)
	G.3.2 The system does not allow connecting debuggers to processes (Fedora, Red Hat)
	G.3.3 Running processes don't show up in the attach window

	G.4 Source Viewer
	G.4.1 No variables or line number information
	G.4.2 Source code does not appear when you start Allinea Forge
	G.4.3 Code folding does not work for OpenACC/OpenMP pragmas

	G.5 Input/Output
	G.5.1 Output to stderr is not displayed
	G.5.2 Unwind Errors

	G.6 Controlling a Program
	G.6.1 Program jumps forwards and backwards when stepping through it
	G.6.2 DDT sometimes stop responding when using the Step Threads Together option

	G.7 Evaluating Variables
	G.7.1 Some variables cannot be viewed when the program is at the start of a function
	G.7.2 Incorrect values printed for Fortran array
	G.7.3 Evaluating an array of derived types, containing multiple-dimension arrays
	G.7.4 C++ STL types are not pretty printed

	G.8 Memory Debugging
	G.8.1 The View Pointer Details window says a pointer is valid but doesn't show you which line of code it was allocated on
	G.8.2 mprotect fails error when using memory debugging with guard pages
	G.8.3 Allocations made before or during MPI_Init show up in Current Memory Usage but have no associated stack back trace
	G.8.4 Deadlock when calling printf or malloc from a signal handler
	G.8.5 Program runs more slowly with Memory Debugging enabled

	G.9 MAP specific issues
	G.9.1 My compiler is inlining functions
	G.9.2 Tail Recursion Optimization
	G.9.3 MPI Wrapper Libraries
	G.9.4 Thread support limitations
	G.9.5 No thread activity whilst blocking on an MPI call
	G.9.6 I'm not getting enough samples
	G.9.7 I just see main (external code) and nothing else
	G.9.8 MAP is reporting time spent in a function definition
	G.9.9 MAP is not correctly identifying vectorized instructions
	G.9.10 Linking with the static MAP sampler library fails with an undefined reference to __real_dlopen
	G.9.11 Linking with the static MAP sampler library fails with FDE overlap errors
	G.9.12 MAP harmless linker warnings on Xeon Phi
	G.9.13 MAP harmless error messages on Xeon Phi
	G.9.14 MAP adds unexpected overhead to my program
	G.9.15 MAP takes an extremely long time to gather and analyze my OpenBLAS-linked application
	G.9.16 MAP over-reports MPI, I/O, accelerator or synchronisation time
	G.9.17 MAP collects very deep stack traces with boost::coroutine

	G.10 Obtaining Support

	H Queue Template Script Syntax
	H.1 Queue Template Tags
	H.2 Defining New Tags
	H.3 Specifying Default Options
	H.4 Launching
	H.4.1 Using AUTO_LAUNCH_TAG
	H.4.2 Using ddt-mpirun
	H.4.3 MPICH 1 based MPI
	H.4.4 Scalar Programs

	H.5 Using PROCS_PER_NODE_TAG
	H.6 Job ID Regular Expression
	H.7 Allinea IPMI Energy Agent
	H.7.1 Requirements

