

Workshop Set up

- Workshop project set up account at my.osc.edu
 - If you already have an OSC account, sign in to my.osc.edu
 - Go to Project
 - Project Access Request

PROJECT CODE = PZS0724

- Slides are on event page: osc.edu/events
- Workshop website:
 - https://khill42.github.io/OSC IntroHPC/

Computing Services to Accelerate Research and Innovation

An introduction to OSC services, hardware, and environment

Kate Cahill
Education & Training Specialist

"OSC is here to empower your research."

About OSC

- Founded in 1987
- Statewide resource for all universities in Ohio
 - high performance computing services
 - computational science expertise
 - " ... propel Ohio's research universities and private industry to the forefront of computational based research."
- Funded through the Ohio Department of Higher Education
- Reports to the Chancellor
- Located on OSU's west campus
- Fiscal agent is OSU

The OH-TECH Consortium

Ohio Supercomputer Center provides high performance computing, software, storage and support services for Ohio's scientists, faculty, students, businesses and their research partners.

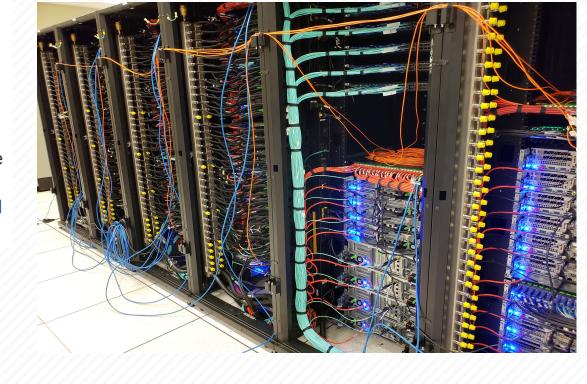
OARnet connects Ohio's universities, colleges, K-12, health care and state and local governments to its high-speed fiber optic network backbone. OARnet services include co-location, support desk, federated identity and virtualization.

OhioLINK serves nearly 600,000 higher education students and faculty by providing a statewide system for sharing 50 million books and library materials, while aggregating costs among its 90 member institutions.

Service Catalog

Cluster Computing

A fully scalable center with mid-range machines to match those found at National Science Foundation centers and other national labs.


Research Data Storage

High-performance, large capacity data storage spaces along with others that are perfect for a wide variety of research data.

Education

High performance computing and networking resources come together to create an exciting and innovative teaching and research environment.

Web Software Development

Our expert web development team helps you create custom web interfaces to simplify the use of powerful HPC resources.

Scientific Software Development

Deep expertise in developing and deploying software that runs efficiently and correctly on large scale cluster computing platforms.

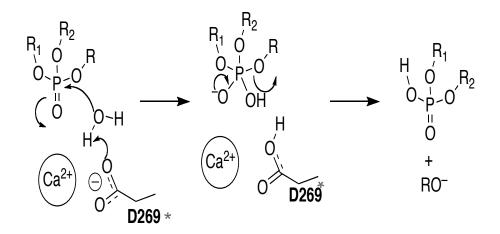
HPC Example Projects and Concepts

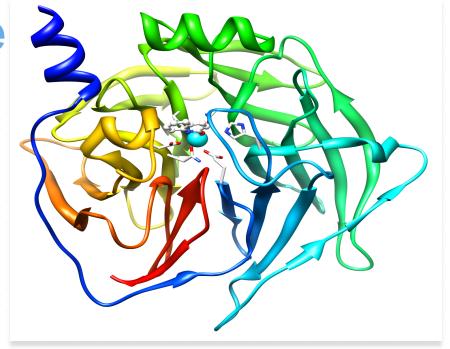
"The difference between us and a computer is that, the computer is blindingly stupid, but it is capable of being stupid many, many million times a second." – Douglas Adams

Why would HPC be necessary for your work?

- Your simulations or analyses take too long on your personal computer
- The size of your data is too large to be contained (storage) or accessed (memory) on your computer
- You would like to free up your own system to do other tasks
- You need particular software for your work

Mapping


Researchers who normally use OSC systems to enhance satellite images of glaciers turned their technology to disaster relief assistance following Nepal's April 2015 earthquake


PI: Ian Howat, Ohio State University

Source: NSF Office of Polar Programs

Treating Nerve Agent Exposure

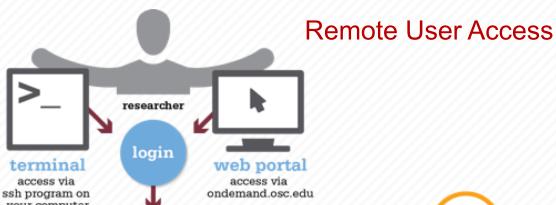
Treating Nerve Agent Exposure

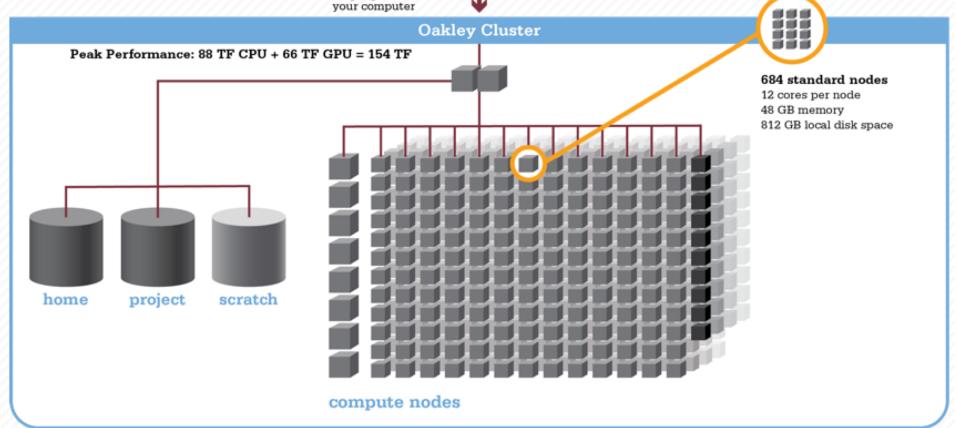
With the power of OSC computing services, a team studies how to capture and destroy organophosphorus nerve agents using modified proteins.

PI: Christopher Hadad, Ohio State University

What is the difference between your laptop and a supercomputer?

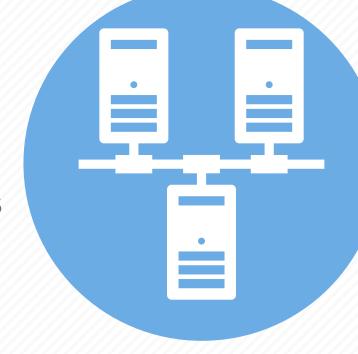
HPC Terminology


- Cluster
 - A group of computers (nodes) connected by a high-speed network, forming a supercomputer
- Node
 - Equivalent to a high-end workstation, part of a cluster


Core

- A processor (CPU), multiple cores per processor chip
- FLOPS
 - "FLoating-point Operations (calculations) Per Second"
- GPU (Graphical Processing Unit)
 - A separate multi-core processor that can handle many small calculations

Structure of a Supercomputer >-



Memory

- Holds data that is being calculated on, as well as computational instructions
- Shared memory is local to one node and several process

threads can share the same data addresses.

• Distributed memory is on multiple nodes and each process normally has its own copy or part of the data.

Storage

Different types of "disk" for different needs

- Local disk in the node, often SSD
- Shared scratch

Parallel filesystems, eg Lustre or GPFS
Traditionally tuned for high bandwidth, not high IOPS
May have a "burst buffer" layer in front of it
Short-term storage only!!

Longer-term or archive

Getting Started at OSC

"If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?" - Seymour Cray

Who can get an OSC project?

- Academic project
 - Principal investigator (PI) must be a full-time faculty member or research scientist at an Ohio academic institution
 - PI may authorize accounts for students, post-docs, collaborators, etc.
 - Classroom projects are also available
 - No cost to Ohio academic users
- Commercial projects
 - Commercial organizations may purchase time on OSC systems

Accounts and Projects at OSC

Project

- Headed by a PI
- May include other users
- Basis for accounting at OSC
- Submit proposal for computing resources for a project

Account

- Username and password to access HPC systems
- Each account used by one person (please!)
- If you work on multiple projects, you will have one account that can access all of them

Allocations and Charges

- Charges are in terms of resource units
- Resource units
 - OWENS & PITZER 1 resource unit (RU) = 10 CPU hours
 - RUBY 1 resource unit (RU) = 20 CPU hours
 - CPU hour = walltime x (total # of cores requested)
- Project receives an allocation of RUs
- Jobs are charged to a project

Fee structure

 The first 10,000 RUs on all academic projects are subsidized

 Usage above 10,000 RUs will be billed to the Pl's institution at \$0.075/RU

 Pls should contact their Office of Research for details on local billing

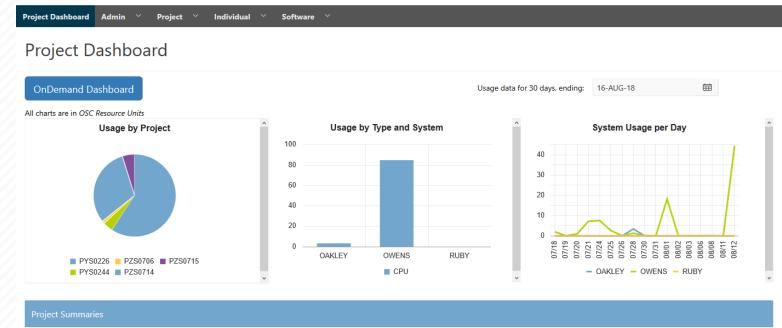
Requesting a New Project-

https://www.osc.edu/supercomputing/support/account

- Startup grant
 - One per PI per lifetime
 - Provide contact info, institution, department
 - 5000 RUs
- Additional allocations for a project
 - Submit a proposal for more RUs
 - Standard: 10,000
 - Major: 30,000
 - Discovery: >30,000
 - Peer-reviewed
 - Grants awarded by Statewide Users Group (SUG)
- Classroom accounts
- Request at <u>my.osc.edu</u>

My.osc.edu

- Site for managing your identity at OSC
- Update your email
- Change your password
- Recover access to your account
- Change your shell
- And a lot more in the future
 - Project reporting
 - Authorized user management
 - Requesting services (e.g. software access)


Client Portal- my.osc.edu

Features

- Create your account
- Update your email
- Change your password
- Recover access to your account
- Change your shell

PI resources

- Project reporting
- Authorized user management
- Requesting services (e.g. software access)

						row(s	s) 1 - 8 of 61 Next 🕨
Project	Status	Title	Principle Investigator	Usage (RU)	Balance (RU)	Storage (TB)	More
PYS0226	ACTIVE	PG RESEARCH	Alan Chalker	52.41	71295	1.0635	Usage Details
PYS0244	ACTIVE	COMMERCIAL PROJECT: IN STATE	Alan Chalker	3.57	99186.4405	-	Usage Details
PZS0694	ACTIVE	OPEN ONDEMAND	Alan Chalker	0	4948.602	=	Usage Details
PZS0685	ACTIVE	PRIVATE 2018	Alan Chalker	0	1991201	-	Usage Details
PAW0001	ACTIVE	AWSMDEV	Alan Chalker	0	99175.0748	-	Usage Details
PAN0014	ACTIVE	TEST FOR BASIL	Alan Chalker	0	49975.6687	-	Usage Details
PZS0666	ACTIVE	EMC2 VFT HPC WEB APPLICATION COLLABORATION	Alan Chalker	0	303.1967	-	Usage Details
PND0017	DISABLED	NDEMC PROJECT	Alan Chalker	0	5000	-	Usage Details

Your Contact Info

- Keep your contact information current
 - Use my.osc.edu to manage your account details.
- If your student continues to use OSC after graduation, make sure email address is updated
 - Acceptable if still collaborating with you
- May need to contact you about problems
- Will need to contact you about regular password changes
- You can opt out of routine notifications

System Status

- Check system status on:
 - Message of the day (/etc/motd) displayed at login
 - Twitter: @HPCnotices
 - Email for major outages or problems
- Scheduled downtimes
 - Quarterly maintenance usually one day outage
 - Jobs held for up to two weeks prior
 - Last downtime was February 5

Statewide Users Group (SUG)

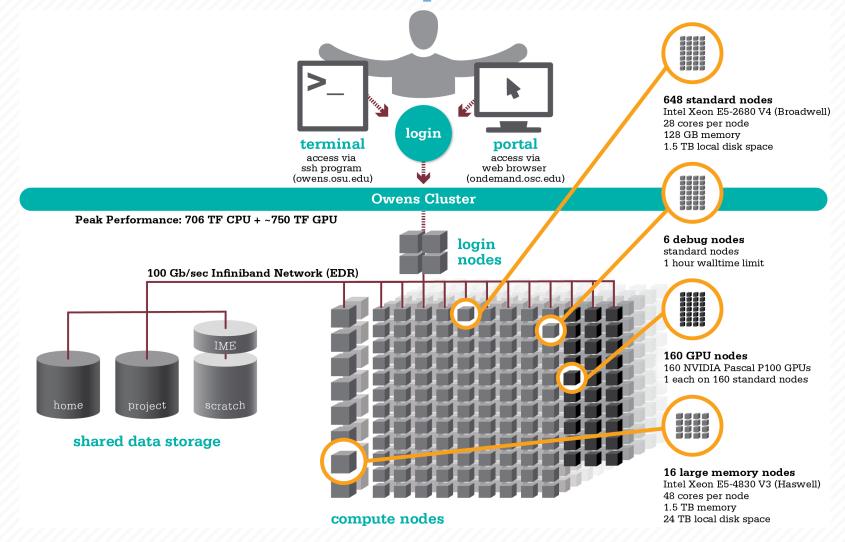
- The Statewide Users Group (SUG) is made up of OSC users
 - Provides program and policy advice to OSC
 - Meets twice a year
 - Headed by a chairperson elected yearly
- Standing committees
 - Allocations
 - Software and Activities
 - Hardware and Operations
- Get involved!
 - Next meeting will be April 18

Citing OSC

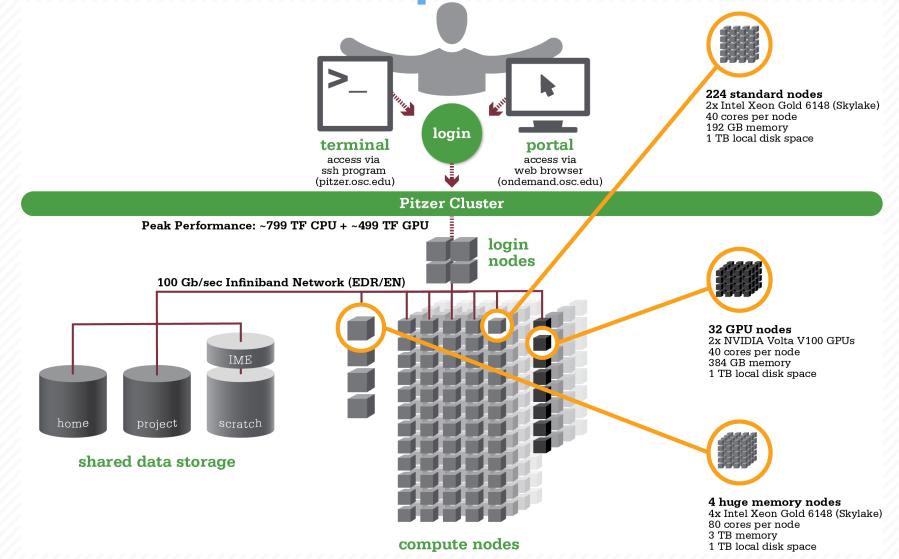
- Please cite OSC in your publications:
 - Details at www.osc.edu/citation
- These publications should be reported to OSC

Hardware Overview

"To err is human, but to really foul things up you need a computer." – Paul Ehrlich


System Configurations

	Pitzer (2018)	Owens (2016)	Ruby (2014)			
Theoretical						
Performance	~1300 TF	~1600 TF	~144 TF			
# Nodes	260	824	240			
# CPU Cores	10,560	23,392	4,800			
Total Memory	~70.6 TB	~120 TB	~15.3 TB			
Memory per Core	>5 GB	>5 GB	3.2 GB			
Interconnect	EDR IB	EDR IB	FDR/EN IB			



Owens Cluster Specifications

Pitzer Cluster Specifications

Login Nodes – Usage

- Purpose
 - Submit jobs to batch system
 - Edit files
 - Manage your files
 - Interactive work small scale
- Limits
 - 20 minutes CPU time
 - 1GB memory
- Use the batch system for serious computing!

Resources to get your questions answered

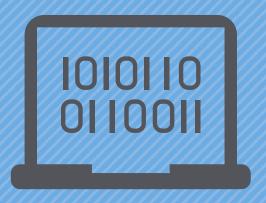
FAQs: https://www.osc.edu/resources/getting_started/supercomputing_faq

HOW TOs: https://www.osc.edu/resources/getting started/howto

New User Guide: https://www.osc.edu/resources/getting_started/new_user_resource_guide

Updated presentations: https://www.osc.edu/~kcahill/NewUser

Office Hours:


go.osu.edu/rc-osc Alternate Tuesdays 1-3 p.m. at Research Commons Walk in: Wed & Fri. 1-2:30 p.m. at Pomerene Hall

System updates

- Read Message of the Day on login
- Follow @HPCNotices on Twitter

Batch Processing

"There's an old story about the person who wished his computer were as easy to use as his telephone. That wish has come true, since I no longer know how to use my telephone." – Bjarne Stroustrup

Why do supercomputers use queuing? login terminal web portal access via access via ssh program on ondemand.osc.edu your computer job queue cluster Submit a batch script to the queue using the "qsub" command.. scheduler A job scheduler manages the queue to ensure jobs run job #2 efficiently. home project active jobs storage Multiple jobs run using a variety of nodes depending on the time constraints, number and type of nodes requested. compute nodes

Idea Behind Batch Processing

- Whatever you would normally type at the command prompt goes into your batch script
- Output that would normally go to the screen goes into a log file (or files)
- The system runs your job when resources become available
- Very efficient in terms of resource utilization

Batch System at OSC

- Compute nodes are allocated through the batch system
 - PBS Portable Batch System
 - Torque resource manager
 - Moab scheduler
- Documentation at www.osc.edu/supercomputing/batch-processing-at-osc

Steps for Running a Job on the Compute Nodes

- 1. Create a batch script for a job
- 2. Submit the job
- 3. Job gets queued
- 4. Job runs when resources become available
- 5. Get your results when the job finishes

Specifying Resources in a Job Script

- Nodes and cores (processors) per node, GPUs
- Memory (optional)
- Walltime
 - Overestimate slightly job will be deleted if it hits limit
 - Shorter job may start sooner due to backfill
- Project #
- Software licenses
 - See specific software page on OSC website

Sample Batch Script

```
#PBS -N serial fluent
#PBS -1 walltime=1:00:00
                                     Job setup information
#PBS -1 nodes=1:ppn=28:gpus=1
                                      for PBS
#PBS -j oe
#PBS -1 software=fluent+1
                                        # This is a comment
# Set up the FLUENT environment
module load fluent
# Move to directory job was submitted from
cd $PBS O WORKDIR
# Copy input files to compute node
                                                  Commands
cp run.input $TMPDIR
                                                  to be run
cd $TMPDIR
# Run fluent and copy results back to home
fluent 3d -g < run.input
cp 'results*' $PBS O WORKDIR
```

Put all this into a text file!

Submitting a Job and Checking Status

- Command to submit a job
 - qsub script_file
- Response from PBS (example)
 - 123456.owens-batch.ten.osc.edu
- Show status of batch jobs
 - qstat -a jobid
 - qstat -u username
 - qstat -f jobid
- Delete a batch job
 - qdel jobid

List of Batch commands on osc.edu

Scheduling Policies and Limits

- Walltime limit
 - 168 hours for serial jobs (single node)
 - 96 hours for parallel jobs (multiple nodes)
- Per-user limits
 - 128 concurrently running jobs
 - 2040 processor cores in use
 - 1000 jobs in the batch system, running or queued
- Per-group limits
 - 192 concurrently running jobs
 - 2040 processor cores in use

Waiting for Your Job To Run

- Queue wait time depends on many factors
 - System load
 - Resources requested
 - nodes, cores, large memory, gpus, software licenses
 - Fair share limits (if load is high)
 - reduced priority for users or groups using a lot of resources

Job Output

- Screen output ends up in file job_name.ojobid
 - Copied to your working directory when job ends
 - Example: testjob.o1234567
- To see screen output while job is running
 - qpeek jobid
 - Example: qpeek 1234567

Resources requested:

nodes=2:ppn=28

Resources used:

cput=125:18:32

walltime=02:14:32

mem=34.824GB

vmem=77.969GB

Resource units charged (estimate):

12.556 RUs

Interactive Batch Jobs

- Interactive, but handled through batch system
 - Resource limits same as standard batch limits
- Useful for tasks forbidden on login nodes
 - Debug parallel programs
 - Run a GUI program that's too large for login node
- May not be practical when system load is high
 - Long wait, same as standard batch job
- To submit an interactive batch job (example)
 - qsub -I -X -l nodes=2:ppn=28 -l walltime=1:00:00 -m abe

Batch Queues

- The three clusters have separate batch systems
 - Submit job and check status on the same cluster
- Debug reservation
 - A few nodes on each system are reserved for short jobs
 (≤ 1 hour)
 - Special flag required: qsub -q debug job_script.sh

Parallel Computing

- Each processor is fast, but real speed comes from using multiple processors
- Multithreading
 - Use multiple cores on a single node
 - Shared memory
- Message passing (MPI)
 - Use one or multiple nodes
 - Distributed memory

To Take Advantage of Parallel Computing

- Program must be written to take advantage of multiple cores and/or multiple nodes
- Many commercial applications have multithreaded or parallel versions
- Must use mpiexec for multiple nodes
- Can't just request more nodes or cores and expect your job to run faster

OH-TECH

Ohio Technology Consortium
A Division of the Ohio Department of Higher Education

- info@osc.edu
- y twitter.com/osc
- f facebook.com/ohiosupercomputercenter
- w osc.edu
- **B** oh-tech.org/blog
- in linkedin.com/company/ohiosupercomputer-center