SDFT Day 1: AI Workflow Examples

Keywords: computer vision, image normalization, classifiers, NLP, speech, transformers models

Learning Outcomes

AI Workflow for Computer Vision

- Learn about sources of variability in image data and challenges in working with large images
- Gain familiarity with common steps in and image analysis pipeline and their computational requirements
 NLP and Speech Pipelines
- Review classical ML techniques for NLP (Naïve Bayes, SVM, Linear Regression)
- Gain familiarity with Transformer-based model tuning (BERT)
- Understand commonalities and differences between pipelines for classical and transformer-based models

Exercises Walkthrough of Newsgroup Classification pipeline with Classical ML Walkthrough of Newsgroup Classification >_ pipeline with BERT finetuning **Optional: Speech** **Recognition Pipeline – digit** recognizer

Files: /fs/ess/PZS1124/AI_BOOTCAMP_EF

SDFT Day 2: HPC Resources for AI and Python support at OSC

Keywords: HPC systems, GPUs/accelerators, data management, python, jupyter, conda, pip

Learning Outcomes

HPC Resources for AI

- Understand common HPC system makeup and organization
- Identify system components that are most critical for AI workflows
- Understand that supporting notebooks and data transfer tools are equally as important as hardware

Python at OSC

- Understand how python is integrated with software environment management (modules)
- Gain familiarity with common python package management tools and their use
- Consider support for python version and custom package defaults for python notebook deployments

Exercises

Explore use of the NIH National Cancer Institute (NCI)Genomic Data Commons (GDC) data transfer tool	>_	
Practice installing python packages with conda and pip	>_	
Create a custom jupyter kernel to use with interactive notebook		

/fs/ess/PZS1124/AI_BOOTCAMP_KT/su2023-day1/ README.txt

SDFT Day 3: Advanced Parallelization Strategies for Distributed DNN Training

Keywords: data parallelism, model parallelism, distributed training, distributed inference, inference frameworks

Learning Outcomes

Parallelization Strategies

- Understand data parallelism approach and communication requirements for distributed training
- Get introduced to model layer level, neuron-level and hybrid parallelism techniques
- Be exposed to tradeoffs due to memory requirements for ML and choices for parallelization

Distributed Inferencing

• Gain familiarity with inference frameworks and supported parallelism

Exercises

Explore batch sizes for DDN training with multi- GPU with ResNet model and FashionMNIST dataset	>_	
Compare training using pipeline parallelism for 'out-of-core' DNN models using Pytorch-Gpipe.	>_	

/fs/ess/PZS1124/AI_BOOTCAMP_DK/session3/

SDFT Day 4: Advanced Parallelization Strategies for Distributed Inference and Hyperparameter Optimization

Keywords: DL Inference, quantization, Hyperparameter Optimization, DeepSpeed, DeepHyper

Learning Outcomes

Distributed Inference

- Understand how DL inference differs from training
- Be familiar with different inference scenarios: online vs batch, data center vs. edge
- Become aware of quantization for reducing model size Distributed DNN Training/Inference using DeepSpeed
- Become aware of tools that optimize large models to make training more tractable

Scalable Hyperparameter Optimization using DeepHyper

- Understand the difference between a model parameter and a hyperparameter use to control learning
- Become familiar with hyperparameter optimization be aware of common optimization algorithms

Exercises

Explore training 2.5B parameter BERT model with DeepSpeed and ZeRO	>_	
Explore using DeepHyper to optimize hyperparmeters for a text classification model	>_	

SDFT Day 5: Tools for Understanding and Debugging

Keywords: profiling, debugging, Pytorch-Lightning, Tensorboard, visualizations for NNs

Learning Outcomes

Tools for debugging python code

- Become aware of best practices and available tools for debugging
- Become aware of capabilities of HPC debugging tools Tools for understanding performance of python code
- Understand uses and general capabilities of software profiling tools

Tools for managing and understanding ML training

- Become aware of tools including Pytorch-Lightning and Tensorboard and their basic capabilities
- Learn about some visualizations techniques that are helpful for understanding training results.

Exercises

Explore using Linero DDT to debug a toy python example.	>_	
Explore using the cPython package and Linero MAP to profile python code.	>_	
Demonstration of Pytorch- Lightning and TensorBoard		

/fs/ess/PZS1124/AI_BOOTCAMP_KT
/su23-day5/

SDFT Day 6: Advanced HPC Technology

Keywords: CPU Chips, GPUs, DPUs, AI Accelerators, Communication middleware, OneAPI

Learning Outcomes

CPUs

• Become familiar with current CPU technology from leading chip vendors: Intel, AMD and Arm

GPUs

- Understand how GPUs differ from CPU.
- Become familiar with current GPU technology from leading chip vendors: NVIDIA, AMD and Intel

DPUs and AI Accelerators

- Be exposed to network DPUs and AI accelerator devices Software stacks
- Understand the possible integrations between MPI, GPU/Accelerator and network
- Be exposed to a comprehensive software stack; Intel's OneAPI as an example

Exercises

No exercises

Al Bootcamp Project, NSF AWD 2118250

SDFT Day 7: AI Accelerator Testbeds

Keywords: AI Accelerators, Cerebras, Habana, Graphcore, Kubernetes

Learning Outcomes

SDSC Voyager Testbed

- Learn about the Voyager project and getting system access
- Be exposed to the Intel Habana Gaudi and Inference devices and programming environment

PSC Neocortex Resource

- Learn about the Neocortex project getting system access
- Be exposed to the Cerebras wafer capabilities and development environment

TAMU ACES Graphcore IPU

- Learn about the ACES Testbed and getting system access
- Be exposed to the Graphcore IPU capabilities and software stack

Exercises

Demo of running a TensorFlow example with Kubernetes on Voyager		
Train an image classifier on Neocortex using the MNIST data set.	=	
Convert a pytorch NN model to run on the IPU	>_	

SDFT Day 8: Large Language Models

Keywords: LLMs, Transformers, encoder, decoder, instruction tuning, reinforcement learning, hallucinations

Learning Outcomes

LLM Development and scaling

- Review the transformer models and their evolution
- Understand what 'large' means in terms of parameters, training data and computing requirements
- Learn about commonly used models such as ChatGPT, PaLM, LLaMA, etc.

LLM Tuning techniques

• Be introduced to common model tuning approaches including instruction tuning and reinforcement learning

LLM capabilities

- Become familiar with LLM capabilities on common benchmark problems
- Consider opportunities for using LLMs given current strengths
- Be aware of some of the limitations of current models such as producing hallucinations

Exercises

Submit a request for an LLM, discuss cases where it		
might produce	n/a	n/a
hallucinations		

Key to icons for exercises

