
Performance Tuning
Workshop

Samuel Khuvis

Scientific Applications Engineer, OSC

October 29, 2019

1/101

Workshop Set up

I Workshop – set up account at my.osc.edu
I If you already have an OSC account, sign in to my.osc.edu
I Go to Project
I Project access request
I PROJECT CODE = PZS0724

I Slides are the workshop website:
https://www.osc.edu/˜skhuvis/opt19_fall

2/101

my.osc.edu
my.osc.edu
https://www.osc.edu/~skhuvis/opt19_fall

Outline

I Introduction
I Debugging
I Hardware overview
I Performance measurement and analysis
I Help from the compiler
I Code tuning/optimization
I Parallel computing

3/101

Introduction

4/101

Workshop Philosophy

I Aim for “reasonably good” performance
I Discuss performance tuning techniques common to most HPC

architectures
I Compiler options
I Code modification

I Focus on serial performance
I Reduce time spent accessing memory

I Parallel processing
I Multithreading
I MPI

5/101

Hands-on Code
During this workshop, we will be using a code based on the
HPCCG miniapp from Mantevo.
I Performs Conjugate Gradient (CG) method on a 3D chimney

domain.
I CG is an iterative algorithm to numerically approximate the

solution to a system of linear equations.
I Run code with mpiexec -np <numprocs> ./test HPCCG

nx ny nz, where nx, ny, and nz are the number of nodes in
the x, y, and z dimension on each processor.

I Download with git clone
git@code.osu.edu:khuvis.1/performance2019 handson.git

I Make sure that the following modules are loaded:
intel/18.0.3 mvapich2/2.3

6/101

More important than Performance!

I Correctness of results
I Code readability/maintainability
I Portability - future systems
I Time to solution vs execution time

7/101

Factors Affecting Performance

I Effective use of processor features
I High degree of internal concurrency in a single core

I Memory access pattern
I Memory access is slow compared to computation

I File I/O
I Use an appropriate file system

I Scalable algorithms
I Compiler optimizations

I Modern compilers are amazing!
I Explicit parallelism

8/101

Debugging

9/101

What can a debugger do for you?

I Debuggers let you
I execute your program one line at a time (“step”)
I inspect variable values
I stop your program at a particular line (“breakpoint”)
I open a “core” file (after program crashes)

I HPC debuggers
I support multithreaded code
I support MPI code
I support GPU code
I provide a nice GUI

10/101

Compilation flags for debugging

For debugging:
I Use -g flag
I Remove optimization or set to -O0
I Examples:

I icc -g -o mycode mycode.c
I gcc -g -O0 -o mycode mycode.c

I Use icc -help diag to see what compiler warnings and
diagnostic options are available for the Intel compiler

I Diagnostic options can also be found by reading the man page
of gcc with man gcc

11/101

ARM DDT

I Available on all OSC clusters
I module load arm-ddt

I To run a non-MPI program from the command line:
I ddt --offline --no-mpi ./mycode [args]

I To run a MPI program from the command line:
I ddt --offline -np num procs ./mycode [args]

12/101

ARM DDT

13/101

Hands-on - Debugging with DDT

I Compile and run the code:
make
mpiexec −np 2 . / test HPCCG 150 150 150

I Debug any issues with ARM DDT:
I Set compiler flags to -O0 -g (CPP OPT FLAGS in Makefile),

then recompile
I make clean; make
I module load arm-ddt
I ddt -np 2 ./test hpcg 150 150 150

14/101

Hands-on - Debugging with DDT - Solution

15/101

Hardware Overview

16/101

Pitzer Cluster Specification

17/101

Pitzer Cache Statistics

Cache level Size Latency Max BW Sustained BW
(KB) (cycles) (bytes/cycle) (bytes/cycle)

L1 DCU 32 4–6 192 133
L2 MLC 1024 14 64 52
L3 LLC 28160 50–70 16 15

18/101

Pitzer Cache Structure

I L3 cache bandwidth is ∼ 5x bandwidth of main memory
I L2 cache bandwidth is ∼ 20x bandwidth of main memory
I L1 cache bandwidth is ∼ 60x bandwidth of main memory

19/101

Some Processor Features

I 40 cores per node
I 20 cores per socket * 2 sockets per node

I Vector unit
I Supports AVX512
I Vector length 8 double or 16 single precision values
I Fused multiply-add

I Hyperthreading
I Hardware support for 4 threads per core
I Not currently enabled on OSC systems

20/101

Keep data close to the processor - file systems
I NEVER DO HEAVY I/O IN YOUR HOME

DIRECTORY!
I Home directories are for long-term storage, not scratch files
I One user’s heavy I/O load can affect all users

I For I/O-intensive jobs
I Local disk on compute node (not shared)

I Stage files to and from home directory into $TMPDIR using
the pbsdcp command (i.e. pbsdcp file1 file2 $TMPDIR)

I Execute program in $TMPDIR
I Scratch file system

I /fs/scratch/username or $PFSDIR
I Faster than other file systems
I Good for parallel jobs
I May be faster than local disk

I For more information about OSC’s filesystem see
osc.edu/supercomputing/storage-environment-at-
osc/available-file-systems

I For example batch scripts showing use of $TMPDIR and
$PFSDIR see
osc.edu/supercomputing/batch-processing-at-osc/job-scripts

21/101

https://www.osc.edu/supercomputing/storage-environment-at-osc/available-file-systems
https://www.osc.edu/supercomputing/storage-environment-at-osc/available-file-systems
https://www.osc.edu/supercomputing/batch-processing-at-osc/job-scripts

Performance measurement and analysis

22/101

What is good performance
I FLOPS

I Floating Point OPerations per Second
I Peak performance

I Theoretical maximum (all cores fully utilized)
I Pitzer - 720 trillion FLOPS (720 teraflops)

I Sustained performance
I LINPACK benchmark

I Solves a dense system of linear equations
I Pitzer - 543 teraflops

I STREAM benchmark
I Measures sustainable memory bandwidth (in MB/s) and the

corresponding computation rate for vector kernels.
I Applications are often memory-bound, meaning performance is

limited by memory bandwidth of the system
I Pitzer - Copy: 299095.01 MB/s, scale: 298741.01 MB/s, add:

331719.18 MB/s, triad: 331712.19 MB/s
I Application performance is typically much less than

peak/sustained performance since applications usually do not
take full advantage of all hardware features.

23/101

Performance Measurement and Analysis

I Wallclock time
I How long the program takes to run

I Performance reports
I Easy, brief summary

I Profiling
I Detailed information, more involved

24/101

Timing - command line
I Time a program

I /usr/bin/time command
/ u s r / b i n / t ime j 3
5415.03 u s e r 13 .75 system 1 : 3 0 : 2 9 e l a p s e d 99%CPU \
(0 a v g t e x t+0avgdata 0 m a x r e s i d e n t) k \
0 i n p u t s+0outpu t s (255 major +509333 minor) p a g e f a u l t s 0 swaps

I Note: Hardcode the path - less information otherwise
I /usr/bin/time gives results for

I user time (CPU time spent running your program)
I system time (CPU time spent by your program in system calls)
I elapsed time (wallclock)

I % CPU = (user+system)/elapsed
I memory, pagefault, and swap statistics
I I/O statistics

25/101

Timing routines embedded in code

I Time portions of your code
I C/C++

I Wallclock: time(2), difftime(3), getrusage(2)
I CPU: times(2)

I Fortran 77/90
I Wallclock: SYSTEM CLOCK(3)
I CPU: DTIME(3), ETIME(3)

I MPI (C/C++/Fortran)
I Wallclock: MPI Wtime(3)

26/101

Profiling Tools Available at OSC

I Profiling tools
I ARM Performance Reports
I ARM MAP
I Intel VTune
I Intel Trace Analyzer and Collector (ITAC)
I Intel Advisor
I TAU Commander
I HPCToolkit

27/101

What can a profiler show you?

I Whether code is
I compute-bound
I memory-bound
I communication-bound

I How well the code uses available resources
I Multiple cores
I Vectorization

I How much time is spent in different parts of the code

28/101

Compilation flags for profiling

I For profiling
I Use -g flag
I Explicitly specify optimization level -On
I Example: icc -g -O3 -o mycode mycode.c

I Use the same level of optimization you normally do
I Bad example: icc -g -o mycode mycode.c

I Equivalent to -O0

29/101

ARM Performance Reports

I Easy to use
I “-g” flag not needed - works on precompiled binaries

I Gives a summary of your code’s performance
I view report with browser

I For a non-MPI program:
I module load arm-pr
I perf-report --no-mpi ./mycode [args]

I For an MPI program:
I perf-report -np num procs ./mycode [args]

30/101

31/101

32/101

ARM MAP

I Interpretation of profile requires some expertise
I Gives details about your code’s performance
I For a non-MPI program:

I module load arm-map
I map --profile --no-mpi ./mycode [args]

I For an MPI program:
I map --profile -np num procs ./mycode [args]

I View and explore resulting profile using ARM client

33/101

34/101

More information about ARM Tools

I www.osc.edu/resources/available software/software list/ARM
I www.arm.com

35/101

https://www.osc.edu/resources/available_software/software_list/ARM
https://www.arm.com

Intel Trace Analyzer and Collector (ITAC)

I Graphical tool for profiling MPI code (Intel MPI)
I To use:

I module load intelmpi # then compile (-g) code
I mpiexec -trace ./mycode

I View and explore existing results using GUI with
traceanalyzer:
I traceanalyzer <mycode>.stf

36/101

ITAC GUI

37/101

Profiling - What to look for?

I Hot spots - where most of the time is spent
I This is where we’ll focus our optimization effort

I Excessive number of calls to short functions
I Use inlining! (compiler flags)

I Memory usage
I Swapping, thrashing - not allowed at OSC (job gets killed)

I CPU time vs wall time (% CPU)
I Low CPU utilization may mean excessive I/O delays

38/101

Help from the compiler

39/101

Compiler and Language Choice

I HPC software traditionally written in Fortran or C/C++
I OSC supports several compiler families

I Intel (icc, icpc, ifort)
I Usually gives fastest code on Intel architecture

I Portland Group (PGI - pgcc, pgc++, pgf90)
I Good for GPU programming, OpenACC

I GNU (gcc, g++, gfortran)
I Open source, universally available

40/101

Compiler Options for Performance Tuning

I Why use compiler options?
I Processors have a high degree of internal concurrency
I Compilers do an amazing job at optimization
I Easy to use - Let the compiler do the work!
I Reasonably portable performance

I Optimization options
I Let you control aspects of the optimization

I Warning:
I Different compilers have different default values for options

41/101

Compiler Optimization

I Function inlining
I Eliminate function calls

I Interprocedural optimization/analysis (ipo/ipa)
I Same file or multiple files

I Loop transformations
I Unrolling, interchange, splitting, tiling

I Vectorization
I Operate on arrays of operands

I Automatic parallelization of loops
I Very conservative multithreading

42/101

What compiler flags to try first?

I General optimization flags (-O2, -O3, -fast)
I Fast math
I Interprocedural optimization/analysis

I Profile again, look for changes
I Look for new problems/opportunities

43/101

Floating Point Speed vs. Accuracy

I Faster operations are sometimes less accurate
I Some algorithms are okay, some quite sensitive
I Intel compilers

I Fast math by default with -O2 and -O3
I Use -fp-model precise if you have a problem (slower)

I GNU compilers
I Precise math by default with -O2 and -O3 (slower)
I Use -ffast-math for faster performance

44/101

Interprocedural Optimization/Inlining

I Inlining
I Replace a subroutine or function call with the actual body of

the subprogram
I Advantages

I Overhead of calling the subprogram is eliminated
I More loop optimizations are possible if calls are eliminated

I One source file
I Typically automatic with -O2 and -O3

I Multiple source files compiled separately
I Use compiler option for compile and link phases

45/101

Optimization Compiler Options - Intel compilers

-fast Common optimiza-
tions

-On Set optimization level
(0,1,2,3)

-ipo Interprocedural op-
timization, multiple
files

-O3 Loop transforms
-xHost Use highest instruc-

tion set available
-parallel Loop auto-

parallelization

I Don’t use -fast for MPI
programs with Intel compilers

I Use same compiler command to
link for -ipo with separate
compilation

I Many other optimization
options are available

I See man pages for details
I Recommended options:

-O3 -xHost
I Example:

ifort -O3 program.f90

46/101

Optimization Compiler Options - PGI compilers

-fast Common optimiza-
tions

-On Set optimization
level (0,1,2,3,4)

-Mipa Interprocedural
analysis

-Mconcur Loop auto-
parallelization

I Many other optimization
options are available

I Use same compiler
command to link for -Mipa
with separate compilation

I See man pages for details
I Recommended options:

-fast
I Example:

pgf90 -fast
program.f90

47/101

Optimization Compiler Options - GNU compilers

-On Set optimiza-
tion level
(0,1,2,3)

N/A for sepa-
rate compilation

Interprocedural
optimization

-O3 Loop transforms
-ffast-math Potentially un-

safe float pt op-
timizations

-march=native Use highest
instruction set
available

I Many other optimization
options are available

I See man pages for details
I Recommended options:

-O3 -ffast-math
I Example:

gfortran -O3
program.f90

48/101

Hands-on – Compiler options

I Compile and run with different compiler options.
t ime mpiexec −np 2 . / test HPCCG 150 150 150

I Which compiler options give the best performance?

49/101

Hands-on – Compiler options – Sample times

I Compile and run with different compiler options.
t ime mpiexec −np 2 . / test HPCCG 150 150 150

I Which compiler options give the best performance?

Option Time
-g 129

-O0 -g 129
-O1 -g 74
-O2 -g 74
-O3 -g 74

50/101

Hands-on - Performance Report

Now that you have selected the optimal compiler flags, get an
overview of the bottlenecks in the code with the ARM performance
report.

module l o a d arm−pr
p e r f −r e p o r t −np 2 . / test HPCCG 150 150 150

Open the html file in your browser to view the report. What are
the bottlenecks in the code?

51/101

Hands-on - Performance Report

52/101

Compiler Optimization Reports

I Let you understand
I how well the compiler is doing at optimizing your code
I what parts of code need work

I Generated at compile time
I Describe what optimizations were applied at various points in

the source code
I May tell you why optimizations could not be performed

53/101

Compiler Optimization Reports

I Intel compilers
I -qopt-report
I Output to a file

I Portland Group compilers
I -Minfo
I Output to stderr

I GNU compilers
I -fopt-info
I Output to stderr by default

54/101

Sample from an Optimization Report

LOOP BEGIN at l a p l a c e −good . f (10 ,7)
remark #15542: l oop was not v e c t o r i z e d : i n n e r l oop was a l r e a d y v e c t o r i z e d

LOOP BEGIN at l a p l a c e −good . f (11 ,10)
<Pee l ed l oop f o r v e c t o r i z a t i o n>
LOOP END

LOOP BEGIN at l a p l a c e −good . f (11 ,10)
remark #15300: LOOP WAS VECTORIZED

LOOP END

LOOP BEGIN at l a p l a c e −good . f (11 ,10)
<Remainder l oop f o r v e c t o r i z a t i o n>

remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at l a p l a c e −good . f (11 ,10)
<Remainder l oop f o r v e c t o r i z a t i o n>
LOOP END

LOOP END

55/101

Hands-on - Optimization Report

Add the -qopt-report=5 compiler flag and recompile to view an
optimization report.

56/101

Hands-on - Optimization Report - Solution

57/101

A word about algorithms

I Problem-dependent - can’t generalize
I Scalability is important

I How computational time increases with problem size
I Replace with an equivalent algorithm of lower complexity
I Replace home-grown algorithm with call to optimized library

58/101

Code tuning and optimization

59/101

Code modifications for Optimization

I Vectorization
I Vectorizable loops
I Vectorization inhibitors

I Memory optimizations
I Unit stride memory access
I Efficient cache usage

60/101

Vectorization/Streaming
I Code is structured to operate on arrays of operands

I Single Instruction, Multiple Data (SIMD)
I Vector instructions built into processor (AVX512, AVX, SSE,

etc.)
I Vector length 16 single or 8 double precision on Pitzer

I Best performance with unit stride
I Fortran 90, MATLAB have this idea built in
I A vectorizable loop:

do i =1,N
a (i)=b (i)+x (i)∗ c (i)

end do

61/101

Vectorization Inhibitors

I Not unit stride
I Loops in wrong order (column-major vs. row-major)

I Usually fixed by the compiler
I Loops over derived types

I Function calls
I Sometimes fixed by inlining
I Can split loop into two loops

I Too many conditionals
I “if” statements

I Indexed array accesses (i.e. a[b[i]])

62/101

Hands-on - Vectorization
I Make sure that you are compiling with -xHost to ensure

optimal vectorization.
I Look at the most expensive function in the code using ARM

MAP.
module l o a d arm−map
map −np 2 . / test HPCCG 150 150 150

I Check the optimization report generated by the compiler
(with -qopt-report=5) to see if any of the loops in this
function is not being vectorized.

I Modify the code to enable vectorization and rerun the code.
Do these changes improve performance?

I Hint: You should see a recommendation in the optimization
report to add the -qopt-zmm-usage=high command-line
option for your function. Make sure to add it to the Makefile.

I Hint: Try replacing an assignment to an array element with a
temporary variable to enable vectorization.

63/101

Hands-on - Vectorization - Solution

64/101

Hands-on - Vectorization - Solution

Replace lines 83–84 of HPC sparsemv.cpp

f o r (i n t j =0; j < c u r n z z ; j ++)
y [i] += c u r v a l s [j]∗ x [c u r i n d s [j]] ;

with

f o r (i n t j =0; j < c u r n z z ; j ++)
sum += c u r v a l s [j]∗ x [c u r i n d s [j]] ;

y [i] = sum ;

Reduces runtime from 74 seconds to 56 seconds.

65/101

Unit Stride Memory Access

I Often the most important factor in your code’s performance!!!
I Loops that work with arrays should use a stride of one

whenever possible
I C, C++ are row-major, in a 2D array, they store elements

consecutively by row:
I First array index should be outermost loop
I Last array index should be innermost loop

I Fortran is column-major, so the reverse is true:
I Last array index should be outermost loop
I First array index should be innermost loop

I Avoid arrays of derived data types, structs, or classes (i.e. use
struct of arrays (SoA) instead of arrays of structures (AoS))

66/101

Data Layout: Object-Oriented Languages

I Arrays of objects may give poor performance on HPC systems
if used naively
I C structs
I C++ classes
I Fortran 90 user-defined types

I Inefficient use of cache - not unit stride
I Can often get factor of 3 or 4 speedup just by fixing it

I You can use them efficiently! Be aware of data layout
I Data layout may be the only thing modern compilers can’t

optimize

67/101

Efficient Cache Usage

I Cache lines
I 8 words (64 bytes) of consecutive memory
I Entire cache line is loaded when a piece of data is fetched

I Good example - Entire cache line used
I 2 cache lines used for every 8 loop iterations
I Unit stride

r e a l ∗8 a (N) , b (N)
do i =1,N

a (i)=a (i)+b (i)
end do

2 cache l i n e s :
a (1) , a (2) , a (3) , . . . a (8)
b (1) , b (2) , b (3) , . . . b (8)

68/101

Efficient Cache Usage - Cache Lines (cont.)
I Bad example - Unneeded data loaded

I 1 cache line loaded for each loop iteration
I 8 words loaded, only 2 words used
I Not unit stride

TYPE : : node
r e a l ∗8 a , b , c , d , w, x , y , z

END TYPE node
TYPE(node) : : s (N)
do i =1,N

s (i)%a = s (i)%a + s (i)%b
end do

cache l i n e :
a (1) , b (1) , c (1) , d (1) ,w(1) , x (1) , y (1) , z (1)

69/101

Hands-on - Memory utilization

I Use ARM MAP to identify the most expensive parts of the
code.
module l o a d arm−map
map −np 2 . / test HPCCG 150 150 150

I Look for any inefficient memory access patterns.
I Modify the code to improve memory access patterns and

rerun the code. Do these changes improve performance?
I Hint: Look for nested loops that are not ordered correctly.

70/101

Hands-on - Memory utilization - Solution

71/101

Hands-on - Memory utilization - Solution

Replace lines 110–113 of generate matrix.cpp:

f o r (i n t i z =0; i z<nz ; i z ++) {
f o r (i n t i y =0; i y<ny ; i y ++) {

f o r (i n t i x =0; i x<nx ; i x ++) {

with:

f o r (i n t i x =0; i x<nx ; i x ++) {
f o r (i n t i y =0; i y<ny ; i y ++) {

f o r (i n t i z =0; i z<nz ; i z ++) {

Reduces runtime form 56 seconds to 19 seconds.

72/101

Optimized Mathematical Libraries
I MKL (Intel Math Kernel Library)

I BLAS
I LAPACK
I FFT
I Vectorized transcendental functions (sin, cos, exp)

I AI libraries
I Intel MKL-DNN
I Intel DAAL
I CuDNN

I FFTW
I ScaLAPACK
I SuperLU
I ... and many others

73/101

Profiling Interpreted Languages

I Most interpreted languages have their own profiling tools
I For example, Python has cProfile and R has Profvis
I Performance considerations:

I Vectorization
I Efficient memory utilization
I Using appropriate data structures
I Use built-in functions where possible
I Best practices for the language

74/101

Profiling Python with cProfile

75/101

Profiling R with profvis

> i n s t a l l . packages (’ p r o f v i s ’)
> l i b r a r y (’ p r o f v i s ’)
> p r o f v i s ({
s o u r c e (’ benchmark . R ’)
}

76/101

Parallel computing

77/101

Parallel Computing

I Multithreading
I Shared-memory model (single node)
I OpenMP support in compilers

I Message Passing Interface (MPI)
I Distributed-memory model (single or multiple nodes)
I Several available libraries

I GPUs

78/101

What is OpenMP?

I Shared-memory, threaded parallel programming model
I Portable standard
I A set of compiler directives
I A library of support functions
I Supported by vendors’ compilers

I Intel
I Portland Group
I GNU
I Cray

79/101

Parallel loop execution - Fortran

I Inner loop vectorizes
I Outer loop executes on multiple threads

PROGRAM omploop
INTEGER , PARAMETER : : N = 1000
INTEGER i , j
REAL , DIMENSION(N,N) : : a , b , c , x
. . . ! I n i t i a l i z e a r r a y s
!$OMP PARALLEL DO
do j =1,N

do i =1,N
a (i , j)=b (i , j)+x (i , j)∗ c (i , j)

end do
end do
!$OMP END PARALLEL DO
END PROGRAM omploop

80/101

Parallel loop execution - C
I Inner loop vectorizes
I Outer loop executes on multiple threads

i n t main ()
{

i n t N = 1000
f l o a t ∗a , ∗b , ∗c , ∗x

. . . // A l l o c a t e and i n i t i a l i z e a r r a y s
#pragma omp p a r a l l e l f o r

fo r (i n t i =0; i<N; i ++) {
f o r (i n t j =0; j<N; j ++) {

a [i ∗N+j]=b [i ∗N+j]+x [i ∗N+j]∗ c [i ∗N+j]
}

}
}

81/101

Compiling a program with OpenMP
I Intel compilers

I Add the -qopenmp option

i f o r t −qopenmp ompex . f 9 0 −o ompex

I gnu compilers
I Add the -fopenmp option

gcc −fopenmp ompex . c −o ompex

I Portland group compilers
I Add the -mp option

pgf90 −mp ompex . f 9 0 −o ompex

82/101

Running an OpenMP program

I Request multiple processors through PBS
I Example: nodes=1:ppn=40

I Set the OMP NUM THREADS environment variable
I Default: Use all available cores

I For best performance run at most one thread per core
I Otherwise too much overhead
I Applies to typical HPC workload, exceptions exist

83/101

Running an OpenMP program - Example

#PBS −N omploop
#PBS − j oe
#PBS − l nodes =1:ppn=40
#PBS − l w a l l t i m e =1:00

cd $PBS O WORKDIR
export OMP NUM THREADS=40
/ u s r / b i n / t ime . / omploop

84/101

More Information about OpenMP

I www.openmp.org
I OpenMP Application Program Interface

I Version 4.5, November 2015
I http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf

I OSC will host an XSEDE OpenMP workshop on November 5,
2019.

I Self-paced tutorial materials available from
https://portal.xsede.org/online-training

85/101

http://www.openmp.org
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://portal.xsede.org/online-training

What is MPI?

I Message Passing Interface
I Multiple processes run on one or more nodes
I Distributed-memory model

I A message passing library
I A run-time environment

I mpiexec
I Compiler wrappers
I Supported by all major parallel machine manufacturers

86/101

MPI Functions

I MPI has functions for point-to-point communication (i.e.
MPI Send, MPI Recv)

I MPI also provides a number of functions for typical collective
communication patterns, including:
I MPI Bcast: broadcasts value from root process to all other

processes
I MPI Reduce: reduces values on all processes to a single value

on a root process
I MPI Allreduce: reduces value on all processes to a single

value and distributes the result back to all processes
I MPI Gather: gathers together values from a group of

processes to a root process
I MPI Alltoall: sends data from all processes to all processes

87/101

OpenMP vs. MPI

88/101

A simple MPI program

#inc lude <mpi . h>
#inc lude <s t d i o . h>
i n t main (i n t argc , char ∗ a r g v [])
{

i n t rank , s i z e

M P I I n i t (& argc ,& a r g v)
MPI Comm rank (MPI COMM WORLD,& rank)
MPI Comm size (MPI COMM WORLD,& s i z e)
p r i n t f (” H e l l o from node %d o f %d\n” , rank , s i z e)
M P I F i n a l i z e ()
return (0)

}

89/101

MPI Implementations Available at OSC

I mvapich2
I default

I Intel MPI
I available only with Intel compilers

I OpenMPI

90/101

Compiling MPI programs

I Compile with the MPI compiler wrappers
I mpicc, mpicxx, and mpif90
I Accept the same arguments as the compilers they wrap

mpicc −o h e l l o h e l l o . c

I Compiler and MPI implementation depend on modules loaded

91/101

Running MPI programs
I MPI programs must run in batch only

I Debugging runs may be done with interactive batch jobs
I mpiexec

I Automatically determines execution nodes from PBS
I Starts the program running, 2x40=80 copies

#PBS −N m p i h e l l o
#PBS − j oe
#PBS − l nodes =2:ppn=40
#PBS − l w a l l t i m e =1:00

cd $PBS O WORKDIR
mpiexec . / h e l l o

92/101

More Information about MPI

I www.mpi-forum.org
I MPI: A Message-Passing Interface Standard

I Version 3.1, June 4, 2015
I http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

I OSC will host an XSEDE MPI workshop on September 3–4,
2019.

I Self-paced tutorial materials available from
https://portal.xsede.org/online-training

93/101

http://www.mpi-forum.org
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://portal.xsede.org/online-training

Hands-on - MPI

I Use ITAC to get a timeline of the run of the code.
module l o a d i n t e l m p i
mpiexec −t r a c e −np 40 . / t e s t h p c g 150 150 150
t r a c e a n a l y z e r < s t f f i l e >

I Look at the Event Timeline (under Charts).
I Do you see any communication patterns that could be

replaced by a single MPI command?
I Hint: Ungroup the MPI group, zoom in on one of the MPI

communications (black lines) and try to find the MPI calls in
the code.

94/101

Hands-on - MPI - Solution

95/101

Hands-on - MPI - Solution
Replace lines 82–89 of ddot.cpp:
M P I B a r r i e r (MPI COMM WORLD) ;
i f (rank == 0)

f o r (d s t r a n k =1; d s t r a n k<s i z e ; d s t r a n k++)
MPI Send(& g l o b a l r e s u l t , 1 , MPI DOUBLE ,

d s t r a n k , 1 , MPI COMM WORLD) ;
i f (rank != 0)

MPI Recv(& g l o b a l r e s u l t , 1 , MPI DOUBLE , 0 , 1 ,
MPI COMM WORLD, MPI STATUS IGNORE) ;

M P I B a r r i e r (MPI COMM WORLD) ;

with
M P I A l l r e d u c e (& l o c a l r e s u l t , &g l o b a l r e s u l t ,

1 , MPI DOUBLE , MPI SUM ,
MPI COMM WORLD) ;

96/101

GPU-Accelerated Computing

I GPU = Graphics Processing Unit
I Can be used to accelerate computation

I OSC clusters have some nodes with NVIDIA GPUs
I Many-core processors

I more cores than multi-core
I Can be programmed with CUDA

I low level
I PGI and GNU compilers support OpenACC

I easier than CUDA
I similar to OpenMP

97/101

Summary: What should you do with your code?

I Experiment with compiler optimization flags
I Profile it
I Read optimization reports
I Analyze data layout, memory access patterns
I Examine algorithms

I Complexity
I Availability of optimized version

I Look for potential parallelism and any inhibitors to parallelism
I Improve vectorization

98/101

Resources to get your questions answered
FAQs: osc.edu/resources/getting_started/supercomputing_faq
HOW TOs: osc.edu/resources/getting_started/howto

Performance Collection Guide:
osc.edu/resources/getting_started/howto/howto_collect_
performance_data_for_your_program

Office Hours:
go.osu.edu/rc-osc Tuesdays 1-3 p.m. or Weekdays 4-5 at
Pomerene Hall

System updates:
I Read Message of the Day on login
I Follow @HPCNotices on Twitter

99/101

osc.edu/resources/getting_started/supercomputing_faq
osc.edu/resources/getting_started/howto
osc.edu/resources/getting_started/howto/howto_collect_performance_data_for_your_program
osc.edu/resources/getting_started/howto/howto_collect_performance_data_for_your_program
go.osu.edu/rc-osc

Other Sources of Information

I Online manuals
I man ifort
I man pgc++
I man gcc

I Related workshop courses
I www.osc.edu/supercomputing/training

I Online tutorials from Cornell
I https://cvw.cac.cornell.edu/

I oschelp@osc.edu

100/101

https://www.osc.edu/supercomputing/training
https://cvw.cac.cornell.edu/
mailto:oschelp@osc.edu

101/101

	Introduction
	Debugging
	Hardware Overview
	Performance measurement and analysis
	Help from the compiler
	Code tuning and optimization
	Parallel computing

