
Hands-On Exercises for Performance Tuning

Workshop

Samuel Khuvis

May 23, 2019

These exercises go along with the Performance Tuning workshop. The
code is based on the HPCCG miniapp from Mantevo. These exercises
assume the use of the Intel 18.0.3 compiler and MVAPICH2 2.3, but you
are welcome to use other compilers.

1. Open a Pitzer desktop session through OnDemand (1 node for 4 hours)
and open a terminal.

2. Download the source code:

g i t c l one git@code . osu . edu : khuvis . 1/
performance2019 handson . g i t

3. Begin by compiling and running the code:

module load i n t e l / 1 8 . 0 . 3 mvapich2 /2 .3
make
mpiexec −np 2 . / t e s t hp cc g 150 150 150

4. Your run in the previous step should have exited early with a segmentation
fault. So, use the ARM DDT debugger to determine where the code failed
and fix the error. Make sure to set the optimization level to -O0 and add
debug symbols with -g by changing the value of CPP OPT FLAGS in the
Makefile, then recompile.

make c l ean
make
module load arm−ddt
ddt −np 2 . / t e s t hpcg 150 150 150

5. Now that you have a working code, test different compiler options for
optimization levels to see how it affects performance.

1



time mpiexec −np 2 . / t e s t hpcg 150 150 150

Compiler flag Runtime (seconds)
-O0

-O1

-O2

-O3

6. Next, add the -qopt-report=5 compiler flag and recompile to view an
optimization report.

7. Next, let’s get an overview of the bottlenecks in the code with the ARM
performance report:

module load arm−pr
per f−r epor t −np 2 . / t e s t hpcg 150 150 150

Open the html file in your browser to view the report. What are the
bottlenecks in the code?

8. Use ARM MAP to see which functions/lines of the code are most expen-
sive.

module load arm−map
map −np 2 . / t e s t hpcg 150 150 150

Look for any opportunities to improve the memory access patterns among
the most expensive functions.

9. Next, look for any opportunities to improve vectorization among the most
expensive function you identified with ARM MAP.

10. Use ITAC to get a timeline of the run of the code.

module load in t e lmp i
mpiexec −t r a c e −np 40 . / t e s t hpcg 150 150 150
t r a c e a n a l y z e r < s t f f i l e >

Look at the Event Timeline (under Charts). Do you see any communi-
cation patterns that could be replaced by a single MPI command? Note:
you may need to run on a larger number of nodes to see the benefits (i.e.,
8 nodes).

2


