Performance Tuning

Workshop

Samuel Khuvis

Scientific Applications Engineer, OSC

» Workshop — set up account at my.osc.edu

> If you already have an OSC account, sign in to my.osc.edu
» Go to Project

> Project access request
> PROJECT CODE = PZS0724

» Slides are on event page: osc.edu/events

» Workshop website: https://www.osc.edu/~skhuvis/opt19

my.osc.edu
my.osc.edu
https://www.osc.edu/~skhuvis/opt19

vVvvyVvYVvyyypy

Introduction

Debugging

Hardware overview

Performance measurement and analysis
Help from the compiler

Code tuning/optimization

Parallel computing

Introduction

4/87

» Aim for “reasonably good"” performance

» Discuss performance tuning techniques common to most HPC
architectures

» Compiler options

» Code modification
» Focus on serial performance

» Reduce time spent accessing memory
» Parallel processing

» Multithreading
> MPI

During this workshop, we will be using a code based on the
HPCCG miniapp from Mantevo.

>

>

>

Performs Conjugate Gradient (CG) method on a 3D chimney
domain.

CG is an iterative algorithm to numerically approximate the
solution to a system of linear equations.

Run code with mpiexec -np <numprocs> ./test_HPCCG
nx ny nz, where nx, ny, and nz are the number of nodes in
the x, y, and z dimension on each processor.

Download with git clone

git@code.osu.edu:khuvis.1/performance2019 handson.git

Make sure that the following modules are loaded:
intel/18.0.3 mvapich2/2.3

» Correctness of results
» Code readability/maintainability
» Portability - future systems

» Time to solution vs execution time

v

v

Effective use of processor features

» High degree of internal concurrency in a single core
Memory access pattern

» Memory access is slow compared to computation
File 1/0

» Use an appropriate file system
Scalable algorithms
Compiler optimizations

» Modern compilers are amazing!

Explicit parallelism

Debugging

9/87

P> Debuggers let you
> execute your program one line at a time (“step”)
P inspect variable values
> stop your program at a particular line (“breakpoint™)
> open a “core” file (after program crashes)
» HPC debuggers
» support multithreaded code
» support MPI code
» support GPU code
» provide a nice GUI

For debugging:
> Use -g flag
> Remove optimization or set to -00

> Examples:
> icc -g -o mycode mycode.c
> gcc -g -00 -o mycode mycode.c
> Use icc -help diag to see what compiler warnings and
diagnostic options are available for the Intel compiler
» Diagnostic options can also be found by reading the man page
of gcc with man gecc

> Available on all OSC clusters
» module load arm-ddt

» To run a non-MPI program from the command line:
> ddt --offline --no-mpi ./mycode [args]

» To run a MPI program from the command line:
» ddt --offline -np num procs ./mycode [args]

ARM DDT

He Ede vew Contol Took Window :
r@aan %D—n&uJ’z '

G crop: 3] o

carrs o O e O e | 5mp et st 1@ ©
=
e | e | P g % e % |

o | et | G |

Lt b rtsnes & patst = 01 rerurns

g i S

na = aneraytaton, nesghbr, force
b = presurert, force)
Lrcarisg = 11 15t = ntams;

weisrsg

) e

ot < ot
)

e
e

3 tacs (]

SESTe sTgEie = vy sy TOTALL

=
S

C et :
)

vttt 5 5 L s st et . e, . st 5207 0.6 ¢ Cimr arraptTIE_TOAL):

Ciner array (T _ToTAL) = i
)

et oo eyt tton, Meghor esior, Forc force)

4 o

[—)
|| s | s TR s | | s |

= ”’“Lm sl hmp csupprcpp 265)
H ‘ Sl

13/87

= v s

» Compile and run the code:

make
mpiexec —np 2 ./test_hpccg 150 150 150

» Debug any issues with ARM DDT:

> Set compiler flags to -00 -g (CPP_OPT_FLAGS in Makefile),
then recompile

» make clean; make

module load arm-ddt

> ddt -np 2 ./test_hpcg 150 150 150

v

Hardware Overview

15/87

Pitzer Cluster Specification

224 standard nodes

7 Intel Keon Gold 6148 (Skylake)
40 cores per node

192 GB memory

terminal 1 TB local disk space

access via

‘Pprogram
(pitzer.osc.edu)

100 Gb/sec Infiniband Network (eDR/EN)

32 GPU nodes

2% NVIDIA Volta V100 GPUS
40 cores per node

384 GB memory

18 local disk space

shared data storage

4 huge memory nodes

4x Intel Xeon Gold 6148 (Skylake)
80 cores per node

3TB memory

compute nodes 1 TB local disk space

16/87

Cache level | Size Latency | Max BW Sustained BW
(KB) | (cycles) | (bytes/cycle) | (bytes/cycle)

L1 DCU 32 4-6 192 133

L2 MLC 1024 14 64 52

L3 LLC 28160 | 50-70 16 15

Shared L3 Cache (Non inclusive): 1.375MB * 20

1MB L2 Cache 1MB L2 Cache 1MB L2 Cache

32KB L1 Cache 32KB L1 Cache 32KB L1 Cache

Core 0 Corel . . . Core 20

» L3 cache bandwidth is ~ 5x bandwidth of main memory
» L2 cache bandwidth is ~ 20x bandwidth of main memory
» L1 cache bandwidth is ~ 60x bandwidth of main memory

» 40 cores per node
» 20 cores per socket * 2 sockets per node
» Vector unit
» Supports AVX512
» Vector length 8 double or 16 single precision values
» Fused multiply-add
» Hyperthreading

» Hardware support for 4 threads per core
» Not currently enabled on OSC systems

» NEVER DO HEAVY I/0 IN YOUR HOME
DIRECTORY!
» Home directories are for long-term storage, not scratch files
» One user’s heavy 1/0O load can affect all users
» For |/O-intensive jobs
» Local disk on compute node (not shared)
» Stage files to and from home directory into $TMPDIR using
the pbsdcp command (i.e. pbsdcp filel file2 $TMPDIR)
» Execute program in $TMPDIR
» Scratch file system
» /fs/scratch/username or $PFSDIR
» Faster than other file systems
» Good for parallel jobs
> May be faster than local disk
» For more information about OSC's filesystem see
osc.edu/supercomputing/storage-environment-at-
osc/available-file-systems
» For example batch scripts showing use of $TMPDIR and
$PFSDIR see
osc.edu/supercomputing/batch-processing-at-osc/job-scripts

https://www.osc.edu/supercomputing/storage-environment-at-osc/available-file-systems
https://www.osc.edu/supercomputing/storage-environment-at-osc/available-file-systems
https://www.osc.edu/supercomputing/batch-processing-at-osc/job-scripts

Performance measurement and analysis

> FLOPS
» Floating Point OPerations per Second
» Peak performance
» Theoretical maximum (all cores fully utilized)
» Pitzer - 720 trillion FLOPS (720 teraflops)
» Sustained performance
» LINPACK benchmark
» Solves a dense system of linear equations
> Pitzer - 543 teraflops
» STREAM benchmark
> Measures sustainable memory bandwidth (in MB/s) and the
corresponding computation rate for vector kernels.
» Applications are often memory-bound, meaning performance is
limited by memory bandwidth of the system
> Pitzer - Copy: 299095.01 MB/s, scale: 298741.01 MB/s, add:
331719.18 MB/s, triad: 331712.19 MB/s

» Application performance is typically much less

> Wallclock time

» How long the program takes to run
» Performance reports

» Easy, brief summary
» Profiling

» Detailed information, more involved

v

Time a program
» /usr/bin/time command

/usr/bin/time j3

5415.03 user 13.75system 1:30:29elapsed 99%CPU \
(0Oavgtext+0Oavgdata Omaxresident)k \

Oinputs+Ooutputs (255major+509333minor)pagefaults 0 swaps

» Note: Hardcode the path - less information otherwise
/usr/bin/time gives results for

» user time (CPU time spent running your program)
> system time (CPU time spent by your program in system calls)
> elapsed time (wallclock)

% CPU = (user+system)/elapsed
memory, pagefault, and swap statistics
[/O statistics

» Time portions of your code
» C/C++
> Wallclock: time(2), difftime(3), getrusage(2)
> CPU: times(2)
» Fortran 77/90

> Wallclock: SYSTEM_CLOCK(3)
> CPU: DTIME(3), ETIME(3)

» MPI (C/C++/Fortran)
> Wallclock: MPI_-Wtime(3)

» Profiling tools

VVYyVVYYVYYVYY

ARM Performance Reports

ARM MAP

Intel VTune

Intel Trace Analyzer and Collector (ITAC)
Intel Advisor

TAU Commander

HPCToolkit

» Whether code is
» compute-bound
» memory-bound
» communication-bound

» How well the code uses available resources
» Multiple cores
» Vectorization

» How much time is spent in different parts of the code

» For profiling
> Use -g flag
» Explicitly specify optimization level -On
» Example: icc -g -03 -o mycode mycode.c
» Use the same level of optimization you normally do
» Bad example: icc -g -o mycode mycode.c
» Equivalent to -00

> Easy to use
> “-g” flag not needed - works on precompiled binaries
» Gives a summary of your code's performance
» view report with browser
» For a non-MPI program:
» module load arm-pr
» perf-report --no-mpi ./mycode [args]
» For an MPI program:
» perf-report -np num procs ./mycode [args]

Compute

/fs/project/PZS0720/skhuvis/SETSM/setsm
dataset/WV01_15MAY080613301-

arm P1BS-102001003C02A600.tif
PERFORMANCE dataset/WV01_15MAY080614188-~
REPORTS P1BS-102001003EASDA0O.if out -outres 8

-projection ps
1 node (40 physical, 40 logical cores per node)
1 process, OMP_NUM_THREADS was 28
pO165.ten.osc.edu

Fri Dec 28 2018 14:13:20 (UTC-05)

372 seconds (about 6 minutes)
/fs/project/PZS0720/skhuvis/SETSM

Summary: setsm is Compute-bound in this configuration

Time spent running application code. High values are usually good.
Compute 99.3% _ This is very high; check the CPU performance section for advice
0.0% ‘ Time spent in MPI calls. High values are usually bad.
MPI - This is very low; this code may benefit from a higher process count

Time spent in filesystem 1/0. High values are usually bad.
1/0 0.7% l This is very low; however single-process /0 may cause MPI wait times

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CPU
section below.

As very little time is spent in MP! calls, this code may also benefit from running at larger scales.

CPU MPI

A breakdown of the 99.3% CPU time: A breakdown of the 0.0% MPI time:

Single-core code 44.5% Wl Time in collective calls 0.0%
OpenMP regions 55.5% Time in point-to-point calls 0.0%

Scalar numericops 21.5% 1 Effective process collective rate 0.00 bytes/s

Vector numericops 4.4% | Effective process point-to-point rate ~ 0.00 bytes/s

Memory accesses 43.7% Bl No time is spent in MPI operations. There's nothing to optimize
here!

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache
performance.

Little time is spent in vectorized instructions. Check the
compiler's vectorization advice to see why key loops could not be
vectorized.

30/87

1/0

A breakdown of the 0.7% I/O time:

Time in reads 714% HEE
Time in writes 28.6% M
Effective process read rate 2.85 GB/s NN
Effective process write rate 3.23 GB/s I

Most of the time is spent in read operations with a high effective
transfer rate. It may be possible to achieve faster effective transfer
rates using asynchronous file operations.

Memory
Per-process memory usage may also affect scaling:
116Gis M
3.70Gi
8.0% 1

Mean process memory usage
Peak process memory usage
Peak node memory usage

The peak node memory usage is very low. Larger problem sets
can be run before scaling to multiple nodes.

OpenMP
A breakdown of the 55.5% time in OpenMP regions:
Computation
Synchronization
Physical core utilization

System load

OpenMP thread performance looks good. Check the CPU
breakdown for advice on improving code efficiency.

Energy

Abreakdown of how the 19.1 Wh was used:
o 100.0% N
System not supported % |

Mean node power not supported W |

Peak node power 0.00W |

The whole system energy has been calculated using the CPU
energy usage.

ystem power metrics: No Arm IPMI Energy Agent config file found
in /var/spool /ipmi-energy-agent. Did you start the Arm IPMI
Energy Agent?

31/87

v

Interpretation of profile requires some expertise

Gives details about your code’s performance

For a non-MPI program:

» module load arm-map

> map --profile --no-mpi ./mycode [args]
For an MPI program:

» map --profile -np num procs ./mycode [args]

View and explore resulting profile using ARM client

o St Lp1n 268 2016:12:28 1-23,map - A MAD = AFm Forgs 18.2:1Tiial Version] soax

Flo £t View Mbics Wndow Holp
process e s

Application activity

100%
Memoryusage %
12968 et »
142520:1420/44 (375 6125) Haintread compide 34.7 %, OperP 1.2 .l U0 0.5, Operk® overhesd 132 %, Sesping 0.0 % Zoom &1
e Tine spent o ne 1655 o5
e ¥ Tprainto.cheek_tates SR (D) cdown of the 54.0% time
1639 Chent onthis
e 5t (roiafo,check tiles 1 (T o e
e executng nstueions 007
100 0 i1 tproinfo.check_tiles 56 (I | cating otver untans 200 0
160
1044 i (proato.check tites) (L)
| U ——
165
st BriNE? (- Tiles rawicol - rou - A\ENLE; col - Kd\tid\esead Flag A", Ster_row_start, ter_rou_end, < col_start, _<al_end,proinfo.pre_DEHEF)
105 s P E——
e
@ 2085 FiaT teration = Ratching SETSHproinfo, pyramd step, Tema et ares Ster ou Start, ter rou end ¥ col tart, ¥ ol and
fred St s ama mmm\ e e, o, e,
1657 b devet. oo ever Ehparan, check Tl oy, lmsaphere, cile_ar
ios R ot e o tertima
165
Y
1068 & L Crargs.check orthe) (L)
153 PriNtS Tiles rouscol = row = VINE; col = WA\I\tsong flag =W\, ter_row_star, iter_rou_end, t_col_start, _cal_ond,proinfo.pre_DEMLif)
1531
103w 4 iter_rou_ens < 2 6 < col_end < 21 CTF)
193
193 char str DEMtstatsoo);
1535 Sprintt (Str DENTLLe, | vs/4s_den, 417", pronfo.save_filepath,proinfo. utputpath_narel: |
T i)
opiiOuput | Froject les | Open ek | Opert Regiors | Fnctons
pernr stacks CL]
ot cora tine Ovanesd fuction(s) onine souce roson -
o progran]
£/ man i semmcotecrys |
ottt < S i s ot e st e o). ses T
oo B LLLLULLERNN <01 rvetcalineLocstbol agcEess.. Ve calLinsacs prunfo.Check attag, recrente, sumqmgmmmgmm”na resouaon, Tnage Tl Uete s L e, s ez L LeveL .. st code cpp 2620
e i =T cont bl pre, Telerane_aps3 1 orou . e legach, selan <odecpp 2659
135 (O 0 DadaragD Dot s ol 5101 = Ol Sr o 50, <ot e ikascomt i e 13 i i, e 1 e e e odecop 2703
a3 L o e cot e AT o pre 1 Tomae. s ¢ ilepath, 3etam codecpp 2643
S il 51 oslor.Up . count bl i e e e, Lnan o e T ot S code chp 2873
e e e, bt e s seize bxte Sae 1 dvt ize . et cade cop 2278
S35l Ll 2 ahers E

AmForgs 1821 @ OpenPView

33/87

More information about ARM Tools

» www.osc.edu/resources/available_software /software_list/ARM

> www.arm.com

34/87

https://www.osc.edu/resources/available_software/software_list/ARM
https://www.arm.com

» Graphical tool for profiling MPI code (Intel MPI)

> To use:
» module load intelmpi # then compile (-g) code
> mpiexec -trace ./mycode
> View and explore existing results using GUI with
traceanalyzer:
» traceanalyzer <mycode>.stf

ITAC GUI

"2 Intels Trace Anahyzer -0

Sl e e

ot WP Wt

w—
[Parormarcs ssus Duraton) Ouraton
Show sovanced

=0 T ot Tl cal

8887318635

at
&

&

200 et i o e

T59e3: 920 83358786

36,87

» Hot spots - where most of the time is spent
» This is where we'll focus our optimization effort
» Excessive number of calls to short functions
» Use inlining! (compiler flags)
> Memory usage
» Swapping, thrashing - not allowed at OSC (job gets killed)
» CPU time vs wall time (% CPU)

» Low CPU utilization may mean excessive |/O delays

Help from the compiler

» HPC software traditionally written in Fortran or C/C+-+
» OSC supports several compiler families
> Intel (icc, icpc, ifort)
P Usually gives fastest code on Intel architecture
» Portland Group (PGI - pgcc, pgc++, pgfo0)
» Good for GPU programming, OpenACC
> GNU (gcc, g++, gfortran)

» Open source, universally available

» Why use compiler options?
» Processors have a high degree of internal concurrency
» Compilers do an amazing job at optimization
» Easy to use - Let the compiler do the work!
» Reasonably portable performance

» Optimization options
» Let you control aspects of the optimization
» Warning:
» Different compilers have different default values for options

Function inlining
» Eliminate function calls
Interprocedural optimization/analysis (ipo/ipa)
» Same file or multiple files
Loop transformations
» Unrolling, interchange, splitting, tiling
Vectorization
» Operate on arrays of operands
Automatic parallelization of loops
» Very conservative multithreading

vy

vy

General optimization flags (-02, -O3,
Fast math

Interprocedural optimization/analysis

Profile again, look for changes

Look for new problems/opportunities

-fast)

T
i
I:m:

> Faster operations are sometimes less accurate

» Some algorithms are okay, some quite sensititive
P Intel compilers

» Fast math by default with -O2 and -O3

» Use -fp-model precise if you have a problem (slower)
» GNU compilers

> Precise math by default with -O2 and -O3 (slower)
» Use -ffast-math for faster performance

» Inlining
» Replace a subroutine or function call with the actual body of
the subprogram
> Advantages

» Overhead of calling the subprogram is eliminated
» More loop optimizations are possible if calls are eliminated

» One source file
» Typically automatic with -O2 and -O3
» Multiple source files compiled separately
» Use compiler option for compile and link phases

-fast Common optimiza-
tions

-0On Set optimization level
(0,1,2,3)

-ipo Interprocedural op-
timization, multiple
files

-03 Loop transforms

-xHost Use highest instruc-
tion set available

-parallel | Loop auto-

parallelization

Don't use -fast for MPI
programs with Intel compilers

Use same compiler command to
link for -ipo with separate
compilation

Many other optimization
options are available

See man pages for details

Recommended options:
-03 -xHost

Example:
ifort -03 program.f90

-fast Common optimiza-
tions

-0On Set optimization
level (0,1,2,3,4)

-Mipa Interprocedural
analysis

-Mconcur Loop auto-

parallelization

Many other optimization
options are available

Use same compiler
command to link for -Mipa
with separate compilation
See man pages for details

Recommended options:
-fast

Example:

pgfo0 -fast
program.f90

-0On Set optimiza-
tion level
(0,1,2,3)

N/A for sepa- | Interprocedural

rate compilation

optimization

-03

Loop transforms

-ffast-math Potentially un-
safe float pt op-
timizations

-march=native | Use highest

instruction set
available

v

Many other optimization
options are available

See man pages for details

Recommended options:
-03 -ffast-math

Example:
gfortran -03
program.f90

» Compile and run with different compiler options.

time mpiexec —np 2 ./test_hpcg 150 150 150

» Which compiler options give the best performance?

> Let you understand
» how well the compiler is doing at optimizing your code
» what parts of code need work

» Generated at compile time

» Describe what optimizations were applied at various points in
the source code
> May tell you why optimizations could not be performed

» Intel compilers
» -gopt-report
» Qutput to a file
» Portland Group compilers
» -Minfo
» Output to stderr
» GNU compilers
» -fopt-info
» Qutput to stderr by default

LOOP BEGIN at laplace—good.f(10,7)
remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at laplace—good.f(11,10)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at laplace—good.f(11,10)
remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at laplace—good.f(11,10)
<Remainder loop for vectorization>

remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at laplace—good.f(11,10)
<Remainder loop for vectorization>
LOOP END

LOOP END

» Problem-dependent - can’t generalize
» Scalability is important
» How computational time increases with problem size

» Replace with an equivalent algorithm of lower complexity

» Replace home-grown algorithm with call to optimized library

Code tuning and optimization

» Memory optimizations

» Unit stride memory access
» Efficient cache usage

» Vectorization

» Vectorizable loops
» Vectorization inhibitors

Often the most important factor in your code’s performance!!!

Loops that work with arrays should use a stride of one
whenever possible

C, C++ are row-major, in a 2D array, they store elements
consecutively by row:

> First array index should be outermost loop
» Last array index should be innermost loop

Fortran is column-major, so the reverse is true:

» Last array index should be outermost loop

» First array index should be innermost loop
Avoid arrays of derived data types, structs, or classes (i.e. use
struct of arrays (SoA) instead of arrays of structures (AoS))

Arrays of objects may give poor performance on HPC systems
if used naively

» C structs
» C+4+ classes
» Fortran 90 user-defined types

Inefficient use of cache - not unit stride
> Can often get factor of 3 or 4 speedup just by fixing it
You can use them efficiently! Be aware of data layout

Data layout may be the only thing modern compilers can't
optimize

» Cache lines

> 8 words (64 bytes) of consecutive memory
» Entire cache line is loaded when a piece of data is fetched

» Good example - Entire cache line used

» 2 cache lines used for every 8 loop iterations

» Unit stride

real«8 a(N), b(N)
do i=1,N
a(i)=a(i)+b(i)

end do

2 cache lines:
a(l),a(2),a(3),...a(8)
b(1),b(2),b(3),...b(8)

» Bad example - Unneeded data loaded
» 1 cache line loaded for each loop iteration
» 8 words loaded, only 2 words used
> Not unit stride

TYPE :: node

real*x8 a, b, ¢, d, w, x, vy, z
END TYPE node
TYPE(node) :: s(N)

do i=1,N
s(i)%a = s(i)%a + s(i)%b
end do

cache line:

a(1),b(1),c(1).d(1),w(1),x(1),y(1),2z(1)

Use ARM MAP to identify the most expensive parts of the
code.

module load arm—map
map —np 2 ./test HPCCG 150 150 150

Look for any inefficient memory access patterns.

Modify the code to improve memory access patterns and
rerun the code. Do these changes improve performance?

»
>
>

Code is structured to operate on arrays of operands
» Single Instruction, Multiple Data (SIMD)

Vector instructions built into processor (AVX512, AVX, SSE,
etc.)

» Vector length 16 single or 8 double precision on Pitzer
Best performance with unit stride
Fortran 90, MATLAB have this idea built in

A vectorizable loop:

do

a(i)=b(i)+x(i)xc(i)

end do

i=1,N

o
i
I:m:

> Not unit stride
» Loops in wrong order (column-major vs. row-major)
» Usually fixed by the compiler
» Loops over derived types
» Function calls

» Sometimes fixed by inlining
» Can split loop into two loops

» Too many conditionals
> “if" statements

P Indexed array accesses

Look again at the most expensive parts of the code using
ARM MAP.

module load arm—map
map —np 2 ./test HPCCG 150 150 150

Check the optimization report generated by the compiler
(with —qopt-report=5) to see if any of the loops are not
being vectorized.

Modify the code to enable vectorization and rerun the code.
Do these changes improve performance?

v

vvyYyy

MKL (Intel Math Kernel Library)

> BLAS

> LAPACK

> FFT

> Vectorized transcendental functions (sin, cos, exp)

Al libraries

> Intel MKL-DNN
> Intel DAAL
> CuDNN

FFTW
ScalLAPACK
SuperLU

. and many others

T
i
I:m:

Parallel computing

64/87

» Multithreading

» Shared-memory model (single node)
» OpenMP support in compilers

» Message Passing Interface (MPI)

» Distributed-memory model (single or multiple nodes)
» Several available libraries

> GPUs

Shared-memory, threaded parallel programming model
Portable standard

A set of compiler directives

A library of support functions

Supported by vendors’ compilers

> Intel
» Portland Group
> GNU
» Cray

» Inner loop vectorizes

» Outer loop executes on multiple threads

PROGRAM omploop
INTEGER, PARAMETER :: N = 1000
INTEGER i, j
REAL, DIMENSION(N,N) :: a, b, c, x
... ! Initialize arrays
1$OMP PARALLEL DO
do j=1,N
do i=1,N
a(i))=b(i)+x(i j)xe(i.j)
end do
end do
I1$OMP END PARALLEL DO
END PROGRAM omploop

» Inner loop vectorizes
» Outer loop executes on multiple threads

int main()
{
int N = 1000
float =xa, *b, *xc, #*x
// Allocate and initialize arrays
#pragma omp parallel for
for (int i=0; i<N; i++) {
for (int j=0; j<N; j++) {
alixN+j]=b[isNHj]+x[i*«N+j]xc[ixN+j]
}

}
}

» Intel compilers
» Add the -qopenmp option

ifort —qopenmp ompex.f90 —o ompex

> gnu compilers
» Add the -fopenmp option

gcc —fopenmp ompex.c —o ompex

» Portland group compilers
» Add the -mp option

pgf90 —mp ompex.f90 —o ompex

» Request multiple processors through PBS
» Example: nodes=1:ppn=40
» Set the OMP_NUM_THREADS environment variable
» Default: Use all available cores
» For best performance run at most one thread per core

» Otherwise too much overhead
» Applies to typical HPC workload, exceptions exist

#PBS —N omploop

#PBS —j oe

#PBS — | nodes=1:ppn=40
#PBS — 1 walltime=1:00

cd $PBS_O_WORKDIR
export OMP_NUM_THREADS=40
/usr/bin/time ./omploop

www.openmp.org

OpenMP Application Program Interface

» Version 4.5, November 2015

> http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
OSC will host an XSEDE OpenMP workshop on November 5,
2019.

Self-paced tutorial materials available from
https://portal.xsede.org/online-training

T
i
I:m:

http://www.openmp.org
http://www.openmp.org/wp-content/uploads/openmp-4.5.pdf
https://portal.xsede.org/online-training

v

Message Passing Interface

» Multiple processes run on one or more
» Distributed-memory model

A message passing library

A run-time environment
> mpiexec

Compiler wrappers

Supported by all major parallel machine

nodes

manufacturers

» MPI has functions for point-to-point communication (i.e.
MPI_Send, MPI Recv)

> MPI also provides a number of functions for typical collective
communication patterns, including:

>

>

MPI_Bcast: broadcasts value from root process to all other
processes

MPI _Reduce: reduces values on all processes to a single value
on a root process

MPI_Allreduce: reduces value on all processes to a single
value and distributes the result back to all processes
MPI_Gather: gathers together values from a group of
processes to a root process

MPI_Alltoall: sends data from all processes to all processes

OpenMP vs. MPI
Node with 8 cores Node with 8 cores

il

/

\
<————>

TS Node with 8 cores

-7 ~
A

0
I
Node with 8 cores

75/87

#include <mpi.h>

#include <stdio.h>

int main(int argc, char xargv[])

{
int rank, size
MPI_Init(&argc,&argv)
MPI_Comm_rank (MPILCOMM_WORLD, & rank)
MPI_Comm_size (MPI.COMM_WORLD, & size)
printf("Hello_from.node %d_of %d\n" rank , size)
MPI_Finalize ()
return (0)

}

o
i
I:m:

MPI Implementations Available at OSC

> mvapich?
> default
> Intel MPI

» available only with Intel compilers

» OpenMPI

77/87

» Compile with the MPI compiler wrappers
» mpicc, mpicxx, and mpif90
» Accept the same arguments as the compilers they wrap

mpicc —o hello hello.c

» Compiler and MPI implementation depend on modules loaded

>

>

MPI programs must run in batch only

» Debugging runs may be done with interactive batch jobs
mpiexec

» Automatically determines execution nodes from PBS

» Starts the program running, 2x40=80 copies

#PBS —N mpi_hello

#PBS —j oe

#PBS — 1 nodes=2:ppn=40
#PBS —1 walltime=1:00

cd $PBS_O_WORKDIR
mpiexec ./ hello

» www.mpi-forum.org
» MPI: A Message-Passing Interface Standard
» Version 3.1, June 4, 2015
» http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
» OSC will host an XSEDE MPI workshop on September 3—4,
2019.

> Self-paced tutorial materials available from
https://portal.xsede.org/online-training

http://www.mpi-forum.org
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf
https://portal.xsede.org/online-training

Use ITAC to get a timeline of the run of the code.

module load intelmpi
mpiexec —trace —np 40 ./test_hpcg 150 150 150
traceanalyzer <stf_file >

Look at the Event Timeline (under Charts).

Do you see any communication patterns that could be
replaced by a single MPl command?

Do you see any performance improvement by using a single
MPIl command? Note: you may need to run on a larger
number of nodes to see the benefits (i.e., 8 nodes).

Hovgas. bresd o

5 e 0 e

90 Applcair Seplcston J— plcaten
o1 sppicstion sopication — = —— picstion
73 appicaior = z picatn
P4 pplcaion sepicaton - o plcaton
o5 appicstion spsicaton = z picstion

Proappicaion

El e - Late Drosdeast o o285

Sepicnicn

A= |

RSt B

VP Beast 1.0265¢ 5

e Aopleston 583 151253 &

% e
Vo fre
P o pank 22055

— 02554 s
Coris

B

Toiea:

023573603
0 "

39 10775605 1
210 49525800 ¢

[Fose—owmang o

82/87

v

GPU = Graphics Processing Unit
» Can be used to accelerate computation
OSC clusters have some nodes with NVIDIA GPUs
Many-core processors
» more cores than multi-core
Can be programmed with CUDA
> low level
PGl and GNU compilers support OpenACC

» easier than CUDA
» similar to OpenMP

o
i
I:m:

v

Experiment with compiler optimization flags
Profile it

Read optimization reports

Analyze data layout, memory access patterns
Examine algorithms

» Complexity
> Availability of optimized version

Look for potential parallelism and any inhibitors to parallelism
» Improve vectorization

FAQs: osc.edu/resources/getting_started/supercomputing_faq
HOW TOs: osc.edu/resources/getting_started/howto

Performance Collection Guide:
osc.edu/resources/getting_started/howto/howto_collect_
performance_data_for_your_program

Office Hours:
go.osu.edu/rc-osc Tuesdays 1-3 p.m. or Weekdays 4-5 at
Pomerene Hall

System updates:
» Read Message of the Day on login
» Follow @HPCNotices on Twitter

osc.edu/resources/getting_started/supercomputing_faq
osc.edu/resources/getting_started/howto
osc.edu/resources/getting_started/howto/howto_collect_performance_data_for_your_program
osc.edu/resources/getting_started/howto/howto_collect_performance_data_for_your_program
go.osu.edu/rc-osc

» Online manuals
» man ifort
> man pgc++
> man gcc
> Related workshop courses
> www.osc.edu/supercomputing/training

» Online tutorials from Cornell
» https://cvw.cac.cornell.edu/

» oschelp@osc.edu

https://www.osc.edu/supercomputing/training
https://cvw.cac.cornell.edu/
mailto:oschelp@osc.edu

e info@osc.edu @ osc.edu
OH ' TECH o twitter.comfosc oh-tech.ora/blog

LS echnoiody\Consonan) () facebook.com/ohiosuperco () linkedin.com/company/ahio-
mputercenter supercomputer-center

	Introduction
	Debugging
	Hardware Overview
	Performance measurement and analysis
	Help from the compiler
	Code tuning and optimization
	Parallel computing

