
Hands-On Exercises for Performance Tuning

Workshop

February 18, 2021

These exercises go along with the Performance Tuning workshop. The
code is based on the HPCCG miniapp from Mantevo. These exercises
assume the use of the Intel 19.0.5 compiler and MVAPICH2 2.3.3, but
you are welcome to use other compilers.

1. Open a Pitzer desktop session through OnDemand (1 node for 3 hours)
and open a terminal.

2. Download the source code:

wget go.osu.edu/perftuning21
tar xf perftuning21

3. Begin by compiling and running the code:

module load intel/19.0.5 mvapich2/2.3.3
make
srun −n 2 ./test HPCCG 150 150 150

4. Your run in the previous step should have exited early with a segmentation
fault. So, use the ARM DDT debugger to determine where the code failed
and fix the error. Make sure to set the optimization level to -O0 and add
debug symbols with -g by changing the value of CPP OPT FLAGS in the
Makefile, then recompile.

make clean; make
module load arm−ddt
ddt −np 2 ./test HPCCG 150 150 150

1



5. Now that you have a working code, test different compiler options for
optimization levels to see how it affects performance.

time srun −n 2 ./test HPCCG 150 150 150

Compiler flag Runtime (seconds)
-O0

-O1

-O2

-O3

6. Next, let’s get an overview of the bottlenecks in the code with the ARM
performance report:

module load arm−pr
perf−report −np 2 ./test HPCCG 150 150 150

Open the HTML file in your browser to view the report. What are the
bottlenecks in the code?

7. Next, add the -qopt-report=5 compiler flag and recompile to generate an
optimization report. Use ARM MAP to see which functions/lines of the
code are most expensive. Make sure that you are compiling with -xHost

to ensure optimal vectorization.

module load arm−map
map −np 2 ./test HPCCG 150 150 150

Look for any opportunities to improve vectorization among the most ex-
pensive functions.

Hints:

• You should see a recommendation in the optimization report to add
the -qopt-zmm-usage=high command-line option for your function.
Make sure to add it to the Makefile.

• Try replacing an assignment to an array element with a temporary
variable to enable vectorization.

8. Profile ns.py in the python directory. What are the most expensive parts
of the code? Rerun and profile with the array command-line option. Why
does this run faster?

python −m cProfile −s time ns.py
python −m cProfile −s time ns.py array

2



9. Profile lu.R in the R directory. What are the most expensive parts of
the code? Rerun and profile with the matrix option. Why does this run
faster?

module load R/3.6.0−gnu7.3
R
> library(profvis)
> profvis({source(”lu.R”)})
> profvis({frmt=”matrix”; source(”lu.R”)})

3


