
Introduction to Performance
Tools

Samuel Khuvis

Scientific Applications Engineer, OSC

1/31

Goals of the Breakout Session

I Let you know what tools are available at OSC

I Suggest when you should use each of them
I Give an overview of usage for each

I Including a demo or sample output

I Show you where to find more information

2/31

For More Information

I Visit the software pages on our website
www.osc.edu
Resource → Available Software

I Contact the help desk (OSC Help)
oschelp@osc.edu
614-292-1800
1-800-686-6472

I Optimization and Performance Tuning Workshop on October
29, 2019 at 1-4 pm
osc.edu/calendar/events/2019_10_29-optimization_

performance_tuning_workshop

I Self-guided tutorial: https://www.osc.edu/resources/

getting_started/howto/howto_tune_performance

3/31

https://www.osc.edu
mailto:oschelp@osc.edu
https://www.osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
https://www.osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
https://www.osc.edu/resources/getting_started/howto/howto_tune_performance
https://www.osc.edu/resources/getting_started/howto/howto_tune_performance

Profiling/Debugging Tools Available at OSC

I Parallel debugging tools
I ARM DDT

I Profiling tools
I ARM Performance Reports
I ARM MAP
I Intel VTune
I Intel Trace Analyzer and Collector (ITAC)
I Intel Advisor
I TAU Commander
I HPCToolkit

4/31

What can a debugger do for you?

I Debuggers let you
I execute your program one line at a time (“step”)
I inspect variable values
I stop your program at a particular line (“breakpoint”)
I open a “core” file (after program crashes)

I HPC debuggers
I support multithreaded code
I support MPI code
I support GPU code
I provide a nice GUI

5/31

Compilation flags for debugging

For debugging:

I Use -g flag

I Remove optimization or set to -O0

I Examples:
I icc -g -o mycode mycode.c
I gcc -g -O0 -o mycode mycode.c

I Use icc -help diag to see what compiler warnings and
diagnostic options are available for the Intel compiler

I Diagnostic options can also be found by reading the man page
of gcc with man gcc

6/31

ARM DDT

I Available on all OSC clusters
I module load arm-ddt

I To run a non-MPI program from the command line:
I ddt --offline --no-mpi ./mycode [args]

I To run a MPI program from the command line:
I ddt --offline -np num procs ./mycode [args]

7/31

ARM DDT GUI
I To run ARM DDT as a GUI, login to OnDemand at

ondemand.osc.edu

I To get an interactive session on a compute node, select
“Pitzer Desktop” under “Interactive Apps”

I Enter information and click “Launch”
I Click “Launch noVNC in New Tab” to launch the desktop in

a new tab
I From there you can open a terminal and run DDT as a GUI
I For a non-MPI program:

I ddt --no-mpi ./mycode [args]

I For a MPI program:
I ddt -np num procs ./mycode [args]

I More information on using OnDemand is available at
osc.edu/resources/online_portals/ondemand

8/31

ondemand.osc.edu
osc.edu/resources/online_portals/ondemand

ARM DDT

9/31

What can a profiler show you?

I Whether code is
I compute-bound
I memory-bound
I communication-bound

I How well the code uses available resources
I Multiple cores
I Vectorization

I How much time is spent in different parts of the code

10/31

Compilation flags for profiling

I For profiling
I Use -g flag
I Explicitly specify optimization level -On
I Example: icc -g -O3 -o mycode mycode.c

I Use the same level optimization as you normally do
I Bad example: icc -g -o mycode mycode.c

I Equivalent to -O0

11/31

ARM Performance Reports

I Easy to use
I “-g” flag not needed - works on precompiled binaries

I Gives a summary of your code’s performance
I view report with browser

I For a non-MPI program:
I module load arm-pr
I perf-report --no-mpi ./mycode [args]

I For an MPI program:
I perf-report -np num procs ./mycode [args]

12/31

13/31

14/31

ARM MAP

I Interpretation of profile requires some expertise

I Gives details about your code’s performance
I For a non-MPI program:

I module load arm-map
I map --profile --no-mpi ./mycode [args]

I For an MPI program:
I map --profile -np num procs ./mycode [args]

I View and explore resulting profile using ARM client
I Download remote client to view profiles on local machine at

developer.arm.com/products/

software-development-tools/hpc/downloads/

download-arm-forge
I Information on transferring files to your local machine at

osc.edu/resources/online_portals/ondemand/file_

transfer_and_management

15/31

developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
developer.arm.com/products/software-development-tools/hpc/downloads/download-arm-forge
osc.edu/resources/online_portals/ondemand/file_transfer_and_management
osc.edu/resources/online_portals/ondemand/file_transfer_and_management

16/31

Intel VTune

I A profiler that can work with C, C++, Fortran programs

I Works best on a single node
I For using a GUI (use for small problems < 5 minutes):

I amplxe-gui

I For non-interactive usage:
I amplxe-cl -r my vtune -collect hotspots

-no-auto-finalize ./mycode
I amplxe-cl -report hotspots -r my vtune

I View and explore existing results with amplxe-gui

17/31

VTune GUI

18/31

Intel Trace Analyzer and Collector (ITAC)

I Graphical tool for profiling MPI code (Intel MPI)
I To use:

I module load intelmpi # then compile (-g) code
I mpiexec -trace ./mycode

I View and explore existing results using GUI with
traceanalyzer:
I traceanalyzer <mycode>.stf

19/31

ITAC GUI

20/31

TAU Commander

I Tool that can be used to profile, trace, or sample your
application

I Load with taucmdr module
I Requires moderate amount of setup:

I Create a project with information about the application
I For example, tau initialize --mpi --compilers Intel

I Select appropriate measurement:
I tau select sample

I To use:
I tau mpiexec ./mycode

I To view and explore profile data:
I tau trial show <trial number>

21/31

TAU Profile

22/31

HPCtoolkit

I Suite of tools that can be used to profile or trace your
application

I Load with hpctoolkit module

I To profile your application: mpiexec hpcrun ./mycode

I This will produce a directory with a name of the form
hpctoolkit-mycode-measurements-pid.nodeid containg
profile data

I To convert the output to a format than be viewed by the
hpcviewer tool, run
hpcprof hpctoolkit-mycode-measurements-pid.nodeid

I To view the profile data generated during the run in a GUI,
call hpcviewer
hpctoolkit-mycode-database-pid.nodeid

23/31

HPCToolkit Profile

24/31

Intel Advisor

I Graphical tool for optimizing vectorization and threading
I For using a GUI (use for small problems < 5 minutes):

I advixe-gui

I For non-MPI non-interactive usage:
I advixe-cl -collect survey -project-dir

./my advisor ./mycode

I For MPI non-interactive usage:
I mpirun -n <mpi tasks> advixe-cl -collect survey

-project-dir ./my advisor ./mycode

I View and explore existing results with advixe-gui

25/31

Intel Advisor GUI

26/31

Profiling Python with cProfile

27/31

Profiling R with profvis

> i n s t a l l . packages (’ p r o f v i s ’)
> l i b r a r y (’ p r o f v i s ’)
> p r o f v i s ({
s o u r c e (’ benchmark . R ’)
}

28/31

Resources to get your questions answered
FAQs: osc.edu/resources/getting_started/supercomputing_faq

HOW TOs: osc.edu/resources/getting_started/howto

Performance Collection Guide:
osc.edu/resources/getting_started/howto/howto_collect_

performance_data_for_your_program

Office Hours:
go.osu.edu/rc-osc Tuesdays 1-3 p.m. or Wednesdays and Fridays
1-2:30 p.m. at Pomerene Hall

System updates:

I Read Message of the Day on login

I Follow @HPCNotices on Twitter

29/31

osc.edu/resources/getting_started/supercomputing_faq
osc.edu/resources/getting_started/howto
osc.edu/resources/getting_started/howto/howto_collect_performance_data_for_your_program
osc.edu/resources/getting_started/howto/howto_collect_performance_data_for_your_program
go.osu.edu/rc-osc

Optimization and Performance Tuning Workshop
I October 29, 2019
I Present techniques for improving the performance of scientific

software on High Performance Computing (HPC) systems
such as those available at OSC.

I The focus will be on serial performance, including
vectorization and cache utilization, with a brief mention of
parallel computing.

I Topics covered:
I Hardware overview
I Important factors for good performance
I Compiler optimizations
I Profiling tools

I osc.edu/calendar/events/2019_10_29-optimization_

performance_tuning_workshop
I Self-guided tutorial: https://www.osc.edu/resources/

getting_started/howto/howto_tune_performance

30/31

https://www.osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
https://www.osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
osc.edu/calendar/events/2019_10_29-optimization_performance_tuning_workshop
https://www.osc.edu/resources/getting_started/howto/howto_tune_performance
https://www.osc.edu/resources/getting_started/howto/howto_tune_performance

31/31

	Overview

