
Allinea Performance
Reports

User Guide
Version 6.0.1

Allinea Performance Reports 6.0.1

Contents

Contents 1

1 Introduction 4
1.1 Online Resources . 4

2 Installation 5
2.1 Linux/Unix Installation . 5

2.1.1 Graphical Install . 5
2.1.2 Text-mode Install . 7

2.2 Licence Files . 7
2.3 Workstation and Evaluation Licences . 7
2.4 Supercomputing and Other Floating Licences . 7

3 Running with an Example Program 8
3.1 Overview of the Example Source Code . 8
3.2 Compiling . 8

3.2.1 Cray X-series . 8
3.3 Running . 9
3.4 Generating a Performance Report . 10

4 Running with Real Programs 11
4.1 Preparing a Program for Profiling . 11

4.1.1 .eh-frame-hdr section . 11
4.1.2 Linking . 11
4.1.3 Dynamic Linking on Cray X-Series Systems 12
4.1.4 Static Linking . 13
4.1.5 Static Linking on Cray X-Series Systems . 15

4.2 Express Launch Mode . 16
4.2.1 Compatible MPIs . 16

4.3 Compatibility Launch Mode . 17
4.4 Generating a Performance Report . 17
4.5 Specifying Output Locations . 18

5 Summarizing an Existing MAP File 19

6 Interpreting Performance Reports 20
6.1 HTML Performance Reports . 20
6.2 Report Summary . 22

6.2.1 Compute . 22
6.2.2 MPI . 22
6.2.3 I/O . 22

6.3 CPU Breakdown . 22
6.3.1 Single-core code . 23
6.3.2 OpenMP code . 23
6.3.3 Scalar numeric ops . 23
6.3.4 Vector numeric ops . 23
6.3.5 Memory accesses . 23
6.3.6 Waiting for accelerators . 23

6.4 OpenMP Breakdown . 24
6.4.1 Computation . 24

c⃝ 2016 Allinea Software Ltd. 1

Allinea Performance Reports 6.0.1

6.4.2 Synchronization . 24
6.4.3 Physical core utilisation . 24
6.4.4 System load . 24

6.5 Threads Breakdown . 24
6.5.1 Computation . 25
6.5.2 Synchronization . 25
6.5.3 Physical core utilisation . 25
6.5.4 System load . 25

6.6 MPI Breakdown . 25
6.6.1 Time in collective calls . 25
6.6.2 Time in point-to-point calls . 25
6.6.3 Estimated collective rate . 26
6.6.4 Estimated point-to-point rate . 26

6.7 I/O Breakdown . 26
6.7.1 Time in reads . 26
6.7.2 Time in writes . 26
6.7.3 Estimated read rate . 26
6.7.4 Estimated write rate . 27

6.8 Memory Breakdown . 27
6.8.1 Mean process memory usage . 27
6.8.2 Peak process memory usage . 27
6.8.3 Peak node memory usage . 27

6.9 Accelerator Breakdown . 28
6.9.1 GPU utilization . 28
6.9.2 Global memory accesses . 28
6.9.3 Mean GPU memory usage . 28
6.9.4 Peak GPU memory usage . 28

6.10 Energy Breakdown . 29
6.10.1 CPU . 29
6.10.2 Accelerator . 29
6.10.3 System . 29
6.10.4 Mean node power . 29
6.10.5 Peak node power . 29
6.10.6 Requirements . 30

6.11 Textual Performance Reports . 30
6.12 CSV Performance Reports . 30
6.13 Worked Examples . 31

6.13.1 Code characterization and run size comparison 31
6.13.2 Deeper CPU metric analysis . 31
6.13.3 I/O performance bottlenecks . 31

7 Configuration 32
7.1 Compute node access . 32

A Getting Support 33

B Supported Platforms 34
B.1 Performance Reports . 34

C MPI Distribution Notes 35
C.1 Bull MPI . 35
C.2 Cray MPT . 35

c⃝ 2016 Allinea Software Ltd. 2

Allinea Performance Reports 6.0.1

C.3 Intel MPI . 35
C.4 MPICH 2 . 35
C.5 MPICH 3 . 35
C.6 Open MPI . 35
C.7 Platform MPI . 36
C.8 SGI MPT / SGI Altix . 36
C.9 SLURM . 36

D Compiler Notes 37
D.1 AMD OpenCL compiler . 37
D.2 Berkeley UPC Compiler . 37
D.3 Cray Compiler Environment . 37
D.4 GNU . 37

D.4.1 GNU UPC . 37
D.5 Intel Compilers . 37
D.6 Portland Group Compilers . 37

E Platform Notes 38
E.1 Intel Xeon . 38

E.1.1 Enabling RAPL energy and power counters when profiling 38
E.2 Intel Xeon Phi . 38
E.3 NVIDIA CUDA . 38

F General Troubleshooting 39
F.1 Starting a Program . 39

F.1.1 Problems Starting Scalar Programs . 39
F.1.2 Problems Starting Multi-Process Programs . 39
F.1.3 No Shared Home Directory . 40

F.2 Performance Reports specific issues . 40
F.2.1 My compiler is inlining functions . 40
F.2.2 Tail Recursion Optimization . 40
F.2.3 MPI Wrapper Libraries . 41
F.2.4 Thread support restrictions . 41
F.2.5 No thread activity whilst blocking on an MPI call 41
F.2.6 I’m not getting enough samples . 41
F.2.7 Performance Reports is reporting time spent in a function definition 42
F.2.8 Performance Reports is not correctly identifying vectorized instructions 42
F.2.9 MAP harmless linker warnings on Xeon Phi . 42
F.2.10 Performance Reports harmless error messages on Xeon Phi 43
F.2.11 Performance Reports takes an extremely long time to gather and analyze my

OpenBLAS-linked application . 43
F.2.12 MAP over-reports MPI, I/O, accelerator or synchronisation time 43

F.3 Obtaining Support . 44
F.4 Allinea IPMI Energy Agent . 45

F.4.1 Requirements . 45

c⃝ 2016 Allinea Software Ltd. 3

Allinea Performance Reports 6.0.1

1 Introduction

Allinea Performance Reports is a low-overhead tool that produces one-page text and HTML reports sum-
marizing and characterizing both scalar and MPI application performance.

Allinea Performance Reports provides the most effective way to characterize and understand the per-
formance of HPC application runs. One single-page HTML report elegantly answers a range of vital
questions for any HPC site:

• Is this application well-optimized for the system it is running on?

• Does it benefit from running at this scale?

• Are there I/O or networking bottlenecks affecting performance?

• Which hardware, software or configuration changes can we make to improve performance further?

It is based on Allinea MAP’s low-overhead adaptive sampling technology that keeps data volumes col-
lected and application overhead low:

• Runs transparently on optimized production-ready codes by adding a single command to your
scripts.

• Just 5% application slowdown even with thousands of MPI processes.

Chapters 3 to 6 of this manual describe Performance Reports in more detail.

1.1 Online Resources

You can find links to tutorials, training material, webinars and white papers in our online knowledge
center:

Knowledge Center http://www.allinea.com/knowledge-center/training

Known issues and the latest version of this user guide may be found on the support web pages:

Support http://www.allinea.com/knowledge-center/get-support

c⃝ 2016 Allinea Software Ltd. 4

http://www.allinea.com/knowledge-center/training
http://www.allinea.com/knowledge-center/get-support

Allinea Performance Reports 6.0.1

2 Installation

A release of Allinea Performance Reports may be downloaded from the Allinea website: http://www.
allinea.com.

Both a graphical and text-based installer are provided—see the sections below for details.

2.1 Linux/Unix Installation

2.1.1 Graphical Install

Untar the package and run the installer executable using the commands below.

tar xf allinea-reports-6.0.1-ARCH.tar
cd allinea-reports-6.0.1-ARCH
./installer

The installer consists of a number of pages where you can choose install options. Use the Next and Back
buttons to move between pages or Cancel to cancel the installation.

The Install Type page lets you choose which user(s) to install Allinea Performance Reports for. If you
are an administrator (root) you may install Allinea Performance Reports for All Users in a common
directory such as /opt or /usr/local, otherwise only the Just For Me option is enabled.

Figure 1: Allinea Performance Reports Installer—Installation type

Once you have selected the installation type, you will be asked which directory you would like to install
Allinea Performance Reports in. If you are installing on a cluster, make sure you choose a directory that
is shared between the cluster login node / frontend and the cluster nodes. Otherwise you must install or
copy it to the same location on each node.

c⃝ 2016 Allinea Software Ltd. 5

http://www.allinea.com
http://www.allinea.com

Allinea Performance Reports 6.0.1

Figure 2: Allinea Performance Reports Installer—Installation directory

You will be shown the progress of the installation on the Install page.

Figure 3: Install in progress

Performance Reports does not have a GUI and will not add any desktop icons.

It is important to follow the instructions in the README file that is contained in the tar file. In particular,
you will need a valid licence file. You can obtain an evaluation licence by completing the form at http:
//www.allinea.com/products/performance-reports/free-trial.

Due to the vast number of different site configurations and MPI distributions that are supported by Allinea
Performance Reports, it is inevitable that sometimes you may need to take further steps to get the every-
thing fully integrated into your environment. For example, it may be necessary to ensure that environment
variables are propagated to remote nodes, and ensure that the tool libraries and executables are available
on the remote nodes.

c⃝ 2016 Allinea Software Ltd. 6

http://www.allinea.com/products/performance-reports/free-trial
http://www.allinea.com/products/performance-reports/free-trial

Allinea Performance Reports 6.0.1

2.1.2 Text-mode Install

The text-mode install script textinstall.sh is useful if you are installing remotely.

tar xf allinea-reports-<unknown>-ARCH.tar
cd allinea-reports-<unknown>-ARCH
./text-install.sh

PressReturn to read the licence when prompted and then enter the directory where you would like to install
Allinea Performance Reports. The directory must be accessible on all the nodes in your cluster.

2.2 Licence Files

Allinea Performance Reports requires a licence file for its operation.

Time-limited evaluation licences are available from the Allinea website: http://www.allinea.com.

2.3 Workstation and Evaluation Licences

Workstation and Evaluation licence files for Allinea Performance Reports do not need a licence server and
should be copied directly to {installation-directory}/licences (e.g./home/user/allinea/
reports/licences/Licence.ddt). Do not edit the files as this will prevent them working.

You may specify an alternative location of the licence directory using an environment variable: ALLINEA_
LICENCE_DIR. For example:

export ALLINEA_LICENCE_DIR=${HOME}/SomeOtherLicenceDir

ALLINEA_LICENSE_DIR is an alias for ALLINEA_LICENCE_DIR.

2.4 Supercomputing and Other Floating Licences

For users with Supercomputing and other floating licences, the Allinea Licence Server must be running
on the designated licence server machine prior to running Allinea Performance Reports.

The Allinea Licence Server and instructions for its installation and usage may be downloaded from http:
//www.allinea.com/downloads.

A floating licence consists of two files: the server licence (a file name Licence.xxxx) and a client li-
cence fileLicence. The client file should be copied to {installation-directory}/licences
(e.g. /home/user/allinea/reports/licences/Licence). You will need to edit the host-
name line to contain the host name or IP address of the machine running the Licence Server. See the
Licence Server user guide for instructions on how to install the server licence.

c⃝ 2016 Allinea Software Ltd. 7

http://www.allinea.com
http://www.allinea.com/downloads
http://www.allinea.com/downloads

Allinea Performance Reports 6.0.1

3 Running with an Example Program

This section will take you through compiling and running one of the the provided example programs.

3.1 Overview of the Example Source Code

3.2 Compiling

Allinea provides a simple 1-D wave equation solver that’s useful as a profiling example program. Both
C and Fortran variants are provided:

• examples/wave.c

• examples/wave.f90.

Both are built using the same makefile:

cd <INSTALL_DIR>/examples/
make -f wave.makefile

There is also a mixed-mode MPI+OpenMP variant in examples/wave_openmp.c, which is built
with the openmp.makefile Makefile.

Depending on the default compiler on your system you may see some errors when running this, for
example:

pgf90-Error-Unknown switch: -fno-inline

Our example makefile is set up for the GNU compilers by default. There are lines in examples/wave.
makefile that you can uncomment to enable support for other compilers. In the above case, to enable
PGI compiler support you can simply switch the commented lines:

gnu
${MPICC} -g -O3 -fno-inline wave.c -o wave_c -lm -lrt
${MPIF90} -g -O3 -fno-inline wave.f90 -o wave_f -lm -lrt
intel
${MPICC} -g -fno-inline-functions -O3 wave.c -o wave_c -lm

-lrt
${MPIF90} -g -fno-inline-functions -O3 wave.f90 -o wave_f

-lm -lrt
pgi

${MPICC} -g -O3 wave.c -o wave_c -lm -lrt -Meh_frame
${MPIF90} -g -O3 wave.f90 -o wave_f -lm -lrt -Meh_frame

Note that although these example Makefiles include the -g flag, Performance Reports does not need this
and you should not use them in your own Makefiles. In most cases Performance Reports can run on an
unmodified binary with no recompilation or linking required.

3.2.1 Cray X-series

On Cray X-series systems Performance Reports the example program must be explicitly linked with the
Allinea profiling libraries.

First create the libraries using the command make-profiler-libraries --platform=cray
--lib-type=static:

c⃝ 2016 Allinea Software Ltd. 8

Allinea Performance Reports 6.0.1

Created the libraries in /home/user/examples:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or -G2 for native Cray fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/examplesm/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Allinea sampler and MPI wrapper

libraries in
the link line. There's a comprehensive description of the link

ordering
requirements in the `Preparing a Program for Profiling' section

of either
userguide-forge.pdf or userguide-reports.pdf, located in
/opt/allinea/forge/doc/.

Then follow the instructions in the output to link the example program with the Allinea profiling li-
braries:

cc -g -O3 wave.c -o wave -g -Wl,@allinea-profiler.ld -lm -lrt

ftn -G2 -O3 wave.f90 -o wave -G2 -Wl,@allinea-profiler.ld -lm -lrt

3.3 Running

As this example uses MPI you will need run on a compute node on your cluster. Your site’s help pages
and support staff can tell you exactly how to do this on your machine; The simplest way when running
small programs is often to request an interactive session, like this:

$ qsub -I
qsub: waiting for job 31337 to start
qsub: job 31337 ready
$ cd allinea/reports/examples
$ mpiexec -n 4 ./wave_c
Wave solution running with 4 processes

0: points = 1000000, running for 30 seconds
points / second: 63.9M (16.0M per process)
compute / communicate efficiency: 94% | 97% | 100%

Points for validation:
0:0.00 200000:0.95 400000:0.59 600000:-0.59 800000:-0.95

999999:0.00
wave finished

If you see output similar to this then the example program is compiled and working correctly.

c⃝ 2016 Allinea Software Ltd. 9

Allinea Performance Reports 6.0.1

3.4 Generating a Performance Report

Make sure the Allinea Performance Reports module for your system has been loaded:

$ perf-report --version
Allinea Performance Reports
Part of Allinea Performance Reports.
(c) Allinea Software Ltd 2002-2015
...

If this command cannot be found consult the site documentation to find the name of the correct mod-
ule.

Once the module is loaded, you can simply add the perf-report command in front of your existing
mpiexec command-line:

perf-report mpiexec -n 4 examples/wave_c

If your program is submitted through a batch queuing system, then modify your submission script to load
the Allinea module and add the ‘perf-report’ line in front of the mpiexec command you want to generate
a report for.

The program runs as usual, although startup and shutdown may take a few minutes longer while Perfor-
mance Reports generates and links the appropriate wrapper libraries before running and collects the data
at the end of the run. The runtime of your code (between MPI Init and MPI Finalize should not
be affected by more than a few percent at most.

After the run finishes a performance report is saved to the current working directory, using a name based
on the application executable:

$ ls -lrt wave_c*
-rwx------ 1 mark mark 403037 Nov 14 03:21 wave_c
-rw------- 1 mark mark 1911 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.txt
-rw------- 1 mark mark 174308 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.html

Note that both .txt and .html versions are automatically generated.

c⃝ 2016 Allinea Software Ltd. 10

Allinea Performance Reports 6.0.1

4 Running with Real Programs

This section will take you through compiling and running your own programs.

Performance Reports is designed to run on unmodified production executables, so in general no prepara-
tion step is necessary. However, there are a few important exceptions:

1. Statically-linked applications require additional libraries at the linking step.

2. Dynamically-linked applications running on Cray systems also require additional libraries at the
linking step.

4.1 Preparing a Program for Profiling

In most cases you do not need to recompile your program to use it with Performance Reports, although
in some cases it may need to be re-linked—this is explained in section 4.1.2 Linking below.

4.1.1 .eh-frame-hdr section

For statically-linked programs, you may need to compile with extra flags to ensure that the executable
still has all the information Performance Reports needs to record the call path and gather the data needed
for the Parallel Stack View. For the GNU linker this means adding --Wl,--eh-frame-hdr to the
compile line, or just --eh-frame-hdr to the link line:

mpicc hello.c -o hello -g -Wl,--eh-frame-hdr

4.1.2 Linking

To collect data from your program, Performance Reports use two small profiler libraries—map-sampler
and map-sampler-pmpi. These must be linked with your program. On most systems Performance
Reports can do this automatically without any action by you. This is done via the system’s LD_PRELOAD
mechanism, which allows us to place an extra library into your program when starting it.

Note: Although these libraries contain the word ‘map’ they are used for both Performance Reports and
MAP.

This automatic linking when starting your program only works if your program is dynamically-linked.
Programs may be dynamically-linked or statically-linked, and for MPI programs this is normally deter-
mined by your MPI library. Most MPI libraries are configured with --enable-dynamic by default,
and mpicc/mpif90 produce dynamically-linked executables that Performance Reports can automati-
cally collect data from.

Themap-sampler-pmpi library is a temporary file compiled at runtime in the directory~/.allinea/
wrapper. If your home directory will not be accessible by all nodes in your cluster you can change where
the map-sampler-pmpi library will be created by altering the shared directory as described in
F.1.3 No Shared Home Directory. The temporary library will be created in the .allinea/wrapper
subdirectory to this shared directory.

If Performance Reports warns you that it could not pre-load the sampler libraries, this often means that
your MPI library was not configured with --enable-dynamic, or that the LD_PRELOADmechanism
is not supported on your platform. You now have three options:

c⃝ 2016 Allinea Software Ltd. 11

Allinea Performance Reports 6.0.1

1. Try compiling and linking your code dynamically. On most platforms this allows Performance Re-
ports to use the LD_PRELOADmechanism to automatically insert its libraries into your application
at runtime. This is not currently supported on Cray systems; you will need to use the following
option instead.

2. Link MAP’s map-sampler and map-sampler-pmpi libraries with your program at link time
manually. See 4.1.3 Dynamic Linking on Cray X-Series Systems, or 4.1.4 Static Linking and 4.1.5
Static Linking on Cray X-Series Systems. This is currently the only supported option on Cray
systems.

3. Finally, it may be that your system supports dynamic linking but you have a statically-linked
MPI. You can try to recompile the MPI implementation with --enable-dynamic, or find a
dynamically-linked version on your system and recompile your program using that version. This
will produce a dynamically-linked program that Performance Reports can automatically collect
data from.

4.1.3 Dynamic Linking on Cray X-Series Systems

The LD_PRELOAD mechanism is not supported on Cray systems, but dynamic linking can still be used
provided that the Performance Reports sampling libraries are explicitly linked into your program.

Compiling the Allinea MPI Wrapper Library

First you must compile the Allinea MPI wrapper library for your system using the make-profiler-
libraries --platform=cray --lib-type=shared command. Note that Performance Re-
ports also uses this library.

user@login:∼/myprogram$ make-profiler-libraries --platform=cray
--lib-type=shared

Created the libraries in /home/user/myprogram:
libmap-sampler.so (and .so.1, .so.1.0, .so.1.0.0)
libmap-sampler-pmpi.so (and .so.1, .so.1.0, .so.1.0.0)

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or '-G2' for native Cray Fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-dynamic -L/home/user/myprogram -lmap-sampler-pmpi -lmap-

sampler -Wl,--eh-frame-hdr

Note: These libraries must be on the same NFS/Lustre/GPFS
filesystem as your

program.

Before running your program (interactively or from a queue), set
LD_LIBRARY_PATH:
export LD_LIBRARY_PATH=/home/user/myprogram:$LD_LIBRARY_PATH
map ...
or add -Wl,-rpath=/home/user/myprogram when linking your program.

Linking with the Allinea MPI Wrapper Library

c⃝ 2016 Allinea Software Ltd. 12

Allinea Performance Reports 6.0.1

mpicc -G2 -o hello hello.c -dynamic -L/home/user/myprogram \
-lmap-sampler-pmpi -lmap-sampler -Wl,--eh-frame-hdr

PGI Compiler

When linking OpenMP programs you must pass the-Bdynamic command line argument to the compiler
when linking dynamically.

When linking C++ programs you must pass the -pgc++libs command line argument to the compiler
when linking.

4.1.4 Static Linking

If you compile your program statically (i.e. your MPI uses a static library or you pass the -static
option to the compiler) then you must explicitly link your program with the Allinea sampler and MPI
wrapper libraries.

Compiling the Allinea MPI Wrapper Library

First you must compile the Allinea MPI wrapper library for your system using the make-profiler-
libraries --lib-type=static command. Note that Performance Reports also uses this li-
brary.

user@login:∼/myprogram$ make-profiler-libraries --lib-type=static

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/myprogram/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Allinea sampler and MPI wrapper

libraries in
the link line. There's a comprehensive description of the link

ordering
requirements in the 'Preparing a Program for Profiling' section

of either
userguide-forge.pdf or userguide-reports.pdf, located in
/opt/allinea/forge/doc/.

Linking with the Allinea MPI Wrapper Library

The -Wl,@/home/user/myprogram/allinea-profiler.ld syntax tells the compiler to look
in /home/user/myprogram/allinea-profiler.ld for instructions on how to link with the
Allinea sampler. Usually this is sufficient, but not in all cases. The rest of this section explains how to
manually add the Allinea sampler to your link line.

PGI Compiler

c⃝ 2016 Allinea Software Ltd. 13

Allinea Performance Reports 6.0.1

When linking C++ programs you must pass the -pgc++libs command line argument to the compiler
when linking.

The PGI compiler must be 14.9 or later. Using an earlier versions of the PGI compiler will fail with an
error such as “Error: symbol 'MPI F MPI IN PLACE' can not be both weak and
common” due to a bug in the PGI compiler’s weak object support. If you do not have access to PGI
compiler 14.9 or later try compiling and the linking Allinea MPI wrapper as a shared library as described
in 4.1.3 Dynamic Linking on Cray X-Series Systems (ommitting the --platform=cray if you are
not on a Cray).

Cray

When linking C++ programs you may encounter a conflict between the Cray C++ runtime and the GNU
C++ runtime used by the Performance Reports libraries with an error similar to the one below:

/opt/cray/cce/8.2.5/CC/x86-64/lib/x86-64/libcray-c++-rts.a(rtti.o)
: In function `__cxa_bad_typeid':

/ptmp/ulib/buildslaves/cfe-82-edition-build/tbs/cfe/lib_src/rtti.c
:1062: multiple definition of `__cxa_bad_typeid'

/opt/gcc/4.4.4/snos/lib64/libstdc++.a(eh_aux_runtime.o):/tmp/peint
/gcc/repackage/4.4.4c/BUILD/snos_objdir/x86_64-suse-linux/
libstdc++-v3/libsupc++/../../../../xt-gcc-4.4.4/libstdc++-v3/
libsupc++/eh_aux_runtime.cc:46: first defined here

You can resolve this conflict by removing-lstdc++ and-lgcc eh fromallinea-profiler.ld.

-lpthread

When linking -Wl,@allinea-profiler.ld must go before the -lpthread command line argu-
ment if present.

Manual Linking

When linking your program you must add the path to the profiler libraries (-L/path/to/profiler-
libraries), and the libraries themselves (-lmap-sampler-pmpi, -lmap-sampler).

The MPI wrapper library (-lmap-sampler-pmpi) must go:

1. After your program’s object (.o) files.

2. After your program’s own static libraries (e.g. -lmylibrary).

3. After the path to the profiler libraries (-L/path/to/profiler-libraries).

4. Before the MPI’s Fortran wrapper library, if any (e.g. -lmpichf).

5. Before the MPI’s implementation library (usually -lmpi).

6. Before the Allinea sampler library (-lmap-sampler).

The sampler library (-lmap-sampler) must go:

1. After the Allinea MPI wrapper library.

2. After your program’s object (.o) files.

3. After your program’s own static libraries (e.g. -lmylibrary).

4. After -Wl,--undefined,allinea init sampler now.

5. After the path to the profiler libraries (-L/path/to/profiler-libraries).

6. Before -lstdc++, -lgcc eh, -lrt, -lpthread, -ldl, -lm and -lc.

c⃝ 2016 Allinea Software Ltd. 14

Allinea Performance Reports 6.0.1

For example:

mpicc hello.c -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-Wl,--undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -lgcc_eh -lrt \
-Wl,--whole-archive -lpthread \
-Wl,--no-whole-archive \
-Wl,--eh-frame-hdr \
-ldl \
-lm

mpif90 hello.f90 -o hello -g -L/users/ddt/allinea \
-lmap-sampler-pmpi \
-Wl,--undefined,allinea_init_sampler_now \
-lmap-sampler -lstdc++ -lgcc_eh -lrt \
-Wl,--whole-archive -lpthread \
-Wl,--no-whole-archive \
-Wl,--eh-frame-hdr \
-ldl \
-lm

MVAPICH 1

You must add -lfmpich after -lmap-sampler-pmpi (MVAPICH must be compiled with Fortran
support).

If you get a linker error about multiple definitions of mpi init , you need to specify additional linker
flags:

-Wl,--allow-multiple-definition

4.1.5 Static Linking on Cray X-Series Systems

Compiling the MPI Wrapper Library

On Cray X-Series systems usemake-profiler-libraries --platform=cray --lib-type=static
instead:

Created the libraries in /home/user/myprogram:
libmap-sampler.a
libmap-sampler-pmpi.a

To instrument a program, add these compiler options:
compilation for use with MAP - not required for Performance

Reports:
-g (or -G2 for native Cray Fortran) (and -O3 etc.)

linking (both MAP and Performance Reports):
-Wl,@/home/user/myprogram/allinea-profiler.ld ...

EXISTING_MPI_LIBRARIES
If your link line specifies EXISTING_MPI_LIBRARIES (e.g. -lmpi)

, then
these must appear *after* the Allinea sampler and MPI wrapper

libraries in

c⃝ 2016 Allinea Software Ltd. 15

Allinea Performance Reports 6.0.1

the link line. There's a comprehensive description of the link
ordering

requirements in the 'Preparing a Program for Profiling' section
of either

userguide-forge.pdf or userguide-reports.pdf, located in
/opt/allinea/forge/doc/.

Linking with the MPI Wrapper Library

cc hello.c -o hello -g -Wl,@allinea-profiler.ld

ftn hello.f90 -o hello -g -Wl,@allinea-profiler.ld

4.2 Express Launch Mode

Performance Reports can be launched by typing its command name in front of an existing mpiexec
command:

$ perf-report mpiexec -n 256 examples/wave_c 30

This startup method is called Express Launch and is the simplest way to get started. If your MPI is not
yet supported in this mode, you will see a error message like this:

$ 'MPICH 1 standard' programs cannot be started using Express
Launch syntax (launching with an mpirun command).

Try this instead:
perf-report --np=256 ./wave_c 20

Type perf-report --help for more information.

This is referred to as Compatibility Mode, in which the mpiexec command is not included and the
arguments to mpiexec are passed via a --mpiargs="args here" parameter.

One advantage of Express Launch mode is that it is easy to modify existing queue submission scripts to
run your program under one of the Allinea Performance Reports products.

Normal redirection syntax may be used to redirect standard input and standard output.

4.2.1 Compatible MPIs

The following lists the MPI implementations supported by Express Launch:

• BlueGene/Q

• bullx MPI

• Cray X-Series (MPI/SHMEM/CAF)

• Intel MPI

• MPICH 2

• MPICH 3

• Open MPI (MPI/SHMEM)

c⃝ 2016 Allinea Software Ltd. 16

Allinea Performance Reports 6.0.1

• Oracle MPT

• Open MPI (Cray XT/XE/XK)

• Cray XT/XE/XK (UPC)

4.3 Compatibility Launch Mode

Compatibility Mode must be used if Performance Reports does not support Express Launch mode for your
MPI, or, for some MPIs, if it is not able to access the compute nodes directly (e.g. using ssh).

To use Compatibility Mode replace the mpiexec command with the perf-report command. For
example:

mpiexec --np=256 ./wave_c 20

would become:

perf-report --np=256 ./wave_c 20

Only a small number of mpiexec arguments are supported by perf-report (e.g. -n and -np). Other
arguments must be passed using the --mpiargs="args here" parameter.

For example:

mpiexec --np=256 --nooversubscribe ./wave_c 20

becomes:

perf-report --mpiargs="--nooversubscribe" --np=256 ./wave_c 20

Normal redirection syntax may be used to redirect standard input and standard output.

4.4 Generating a Performance Report

Make sure the Allinea Performance Reports module for your system has been loaded:

$ perf-report --version
Allinea Performance Reports
Part of Allinea Performance Reports.
(c) Allinea Software Ltd 2002-2015
...

If this command cannot be found consult the site documentation to find the name of the correct mod-
ule.

Once the module is loaded, you can simply add the perf-report command in front of your existing
mpiexec command-line:

perf-report mpiexec -n 4 examples/wave_c

If your program is submitted through a batch queuing system, then modify your submission script to load
the Allinea module and add the ‘perf-report’ line in front of the mpiexec command you want to generate
a report for.

The program runs as usual, although startup and shutdown may take a few minutes longer while Perfor-
mance Reports generates and links the appropriate wrapper libraries before running and collects the data

c⃝ 2016 Allinea Software Ltd. 17

Allinea Performance Reports 6.0.1

at the end of the run. The runtime of your code (between MPI Init and MPI Finalize should not
be affected by more than a few percent at most.

After the run finishes a performance report is saved to the current working directory, using a name based
on the application executable:

$ ls -lrt wave_c*
-rwx------ 1 mark mark 403037 Nov 14 03:21 wave_c
-rw------- 1 mark mark 1911 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.txt
-rw------- 1 mark mark 174308 Nov 14 03:28 wave_c_4p_2013-11-14_03

-27.html

Note that both .txt and .html versions are automatically generated.

You can include a short description of the run or other notes on configuration and compilation settings
by setting the environment variable ALLINEA_NOTES before running perf-report:

$ ALLINEA_NOTES="Run with inp421.dat and mc=1" perf-report mpiexec
-n 512 ./parEval.bin --use-mc=1 inp421.dat

The string in the ALLINEA_NOTES environment variable is included in all report files produced.

4.5 Specifying Output Locations

By default, Performance Reports are placed in the current working directory using an auto-generated
name based on the application executable name, for example.

wave_f_16p_2013-11-18_23-30.html
wave_f_2p_8t_2013-11-18_23-30.html

This is formed by the name, the size of the job, the date, and the time. If using OpenMP, the value of
OMP NUM THREADS is also included in the name after the size of the job. The name will be made unique
if necessary by adding a 1/ 2/. . . suffix.

You can specify a different location for output files using the --output argument:

• --output=my-report.txt will create a text-format report in the file my-report.txt in
the current directory

• --output=/home/mark/public/my-report.htmlwill create a HTML report in the file
/home/mark/public/my-report.html

• --output=my-report will create a text-format report in the file my-report.txt and a
HTML report in the file my-report.html, both in the current directory

• --output=/tmp will create automatically-named reports based on the application executable
name in /tmp/, e.g. /tmp/wave f 16p 2013-11-18 2330.txt and /tmp/wave f 16p -
2013-11-18 2330.html.

c⃝ 2016 Allinea Software Ltd. 18

Allinea Performance Reports 6.0.1

5 Summarizing an Existing MAP File

Performance Reports can be used to summarize an application profile generated by Allinea MAP. To pro-
duce a performance report from an exisiting MAP output file called profile.map, simply run:

$ perf-report profile.map

Command-line options which would alter the execution of a program being profiled, such as specifying
the number of MPI ranks, have no effect. Options affecting how Performance Reports produces its report,
such as --output, work as expected.

For best results the Performance Reports and MAP versions should match (e.g. Performance Reports 6.0.1
with MAP 6.0.1). Performance Reports can use MAP files from versions of MAP as old as 5.0.

c⃝ 2016 Allinea Software Ltd. 19

Allinea Performance Reports 6.0.1

6 Interpreting Performance Reports

This section will take you interpreting the reports produced by Performance Reports.

Reports are generated in both HTML and textual formats for each run of your application by default. The
same information is presented in both; the HTML version is easier to read and visually compare while the
textual version is better suited to quick checks from the terminal. If you wish to combine Performance
Reports with other tools, consider using the CSV output format—see 6.12 for more details.

6.1 HTML Performance Reports

Viewing HTML files is best done on your local machine. Many sites have places you can put HTML
files to be viewed from within the intranet—these directories are a good place to automatically send your
Performance Reports to. Alternatively, you can use scp or even the excellent sshfs to make the reports
available to your laptop or desktop:

$ scp login1:allinea/reports/examples/wave_c_4p*.html .
$ firefox wave_c_4p*.html

The following report was generated by a 8 MPI processes and 2 OpenMP threads per process run of the
wave openmp.c example program on a typical HPC cluster:

c⃝ 2016 Allinea Software Ltd. 20

Allinea Performance Reports 6.0.1

Figure 4: A performance report for the wave openmp.c example

c⃝ 2016 Allinea Software Ltd. 21

Allinea Performance Reports 6.0.1

Your report may differ from this one depending on the performance and network architecture of the
machine it is run on but the basic structure of these reports is always the same. This makes comparisons
between reports simple, direct and intuitive. Each section of the report is described in turn below.

6.2 Report Summary

This characterizes how the application’s wallclock time was spent, broken down into compute, MPI and
I/O.

In this example file we see that Performance Reports has identified the program as being compute-bound,
which simply means that most of its time is spent inside application code rather than communicating or
using the filesystem.

The snippets of advice, such as “this code may benefit from running at larger scales” are generally good
starting points for guiding future investigations and are designed to be meaningful to scientific users with
no previous MPI tuning experience.

The triangular radar chart in the top-right corner of the report reflects the values of these three key mea-
surements—compute, MPI and I/O. We’ve found it helpful to recognize and compare these triangular
shapes when flicking between multiple reports.

6.2.1 Compute

Time spent computing. This is the percentage of wall-clock time spent in application and in library code,
excluding time spent in MPI calls and I/O calls.

6.2.2 MPI

Time spent communicating. This is the percentage of wall-clock time spent in MPI calls such as MPI -
Send, MPI Reduce and MPI Barrier.

6.2.3 I/O

Time spent reading from and writing to the filesystem. This is the percentage of wall-clock time spent in
system library calls such as read, write and close.

Note: All time spent in MPI-IO calls is included here, even though some communication between pro-
cesses may also be done under the covers by the MPI library. MPI File close is treated as time spent
writing, which is often but not always correct.

6.3 CPU Breakdown

All of the metrics described in this section are only available on x86 64 systems.

This section breaks down the time spent in application and library code further by analyzing the kinds
of instructions that this time was spent on. Note that all percentages here are relative to the compute
time, not to the entire application run. Time spent in MPI and I/O calls is not represented inside this
section.

c⃝ 2016 Allinea Software Ltd. 22

Allinea Performance Reports 6.0.1

6.3.1 Single-core code

The percentage of wall-clock in which the application executed using only one core per process, as op-
posed to multithreaded/OpenMP code. If you have a multithreaded or OpenMP application, a high value
here indicates that your application is bound by Amdahl’s law and that scaling to larger numbers of threads
will not meaningfully improve performance.

6.3.2 OpenMP code

The percentage of wall-clock time spent in OpenMP regions. The higher this is, the better. This metric is
only shown if the program spent a measurable amount of time inside at least one OpenMP region.

6.3.3 Scalar numeric ops

The percentage of time spent executing arithmetic operations such as add, mull, div. This does not include
time spent using the more efficient vectorized versions of these operations.

6.3.4 Vector numeric ops

The percentage of time spent executing vectorized arithmetic operations such as Intel’s SSE2 / AVX
extensions.

Generally it is good if a scientific code spends most of its time in these operations, as that’s the only way
to achieve anything close to the peak performance of modern processors. If this value is low it is worth
checking the compiler’s vectorization report to understand why the most time-consuming loops are not
using these operations. Compilers need a good deal of help to efficiently vectorize non-trivial loops and
the investment in time is often rewarded with 2x–4x performance improvements.

6.3.5 Memory accesses

The percentage of time spent in memory access operations, such as mov, load, store. A portion of the
time spent in instructions using indirect addressing is also included here. A high figure here shows the
application is memory-bound and is not able to make full use of the CPU resources. Often it is possible
to reduce this figure by analyzing loops for poor cache performance and problematic memory access
patterns, boosting performance significantly.

A high percentage of time spent in memory accesses in an OpenMP program is often a scalability problem.
If each core is spending most of its time waiting for memory, even the L3 cache, then adding further cores
rarely improves matters. Equally, false sharing in which cores block attempt to access the same cache lines
and the over-use of the atomic pragma will show up as increased time spent in memory accesses.

6.3.6 Waiting for accelerators

The percentage of time that the CPU is waiting for the accelerator.

c⃝ 2016 Allinea Software Ltd. 23

Allinea Performance Reports 6.0.1

6.4 OpenMP Breakdown

This section breaks down the time spent in OpenMP regions into computation and synchronization and
includes additional metrics that help to diagnose OpenMP performance problems. It is only shown if a
measurable amount of time was spent inside OpenMP regions.

6.4.1 Computation

The percentage of time threads in OpenMP regions spent computing as opposed to waiting or sleeping.
Keeping this high is one important way to ensure OpenMP codes scale well. If this is high then look
at the CPU breakdown to see whether that time is being well spent on e.g. floating-point operations or
whether the cores are mostly waiting for memory accesses.

6.4.2 Synchronization

The percentage of time threads in OpenMP regions spent waiting or sleeping. By default each OpenMP
region ends with an implicit barrier; if the workload is imbalanced and some threads are finishing sooner
and waiting then this value will increase. Equally, there is some overhead associated with entering and
leaving OpenMP regions and a high synchronization time may suggest that the threading is too fine-
grained. In general, OpenMP performance is better when outer loops are parallelized rather than inner
loops.

6.4.3 Physical core utilisation

Modern CPUs often have multiple logical cores for each physical cores; this is often referred to as hy-
perthreading. These logical cores may share logic and arithmetic units. Some programs perform better
when using additional logical cores, but most HPC codes do not. If the value here is greater than 100 then
OMP_NUM_THREADS is set to a larger number of threads than physical cores are available and perfor-
mance may be impacted, usually showing up as a larger percentage of time in OpenMP synchronization
or memory accesses.

6.4.4 System load

The number of active (running or runnable) threads as a percentage of the number of physical CPU cores
present in the compute node. This value may exceed 100% if you are using hyperthreading, if the cores
are oversubscribed, or if other system processes and daemons start running and take CPU resources away
from your program. A value consistently less than 100% may indicate your program is not taking full
advantage of the CPU resources available on a compute node.

6.5 Threads Breakdown

This section breaks down the time spent by worker threads (non-main threads) into computation and
synchronization and includes additional metrics that help to diagnose multicore performance problems.
This section is replaced by the OpenMP Breakdown if a measurable amount of application time was spent
in OpenMP regions.

c⃝ 2016 Allinea Software Ltd. 24

Allinea Performance Reports 6.0.1

6.5.1 Computation

The percentage of time worker threads spent computing as opposed to waiting in locks and synchroniza-
tion primitives. If this is high then look at the CPU breakdown to see whether that time is being well spent
on e.g. floating-point operations or whether the cores are mostly waiting for memory accesses.

6.5.2 Synchronization

The percentage of time worker threads spend waiting in locks and synchronization primitives. This only
includes time in which those threads were active on a core and does not include time spent sleeping while
other useful work is being done. A large value here indicates a performance and scalability problem that
should be tracked down with a multicore profiler such as Allinea MAP.

6.5.3 Physical core utilisation

Modern CPUs often have multiple logical cores for each physical cores; this is often referred to as hy-
perthreading. These logical cores may share logic and arithmetic units. Some programs perform better
when using additional logical cores, but most HPC codes do not. The value here shows the percentage
utilisation of physical cores - a value over 100% indicates that more threads are executing than there are
physical cores, e.g. that hyperthreading is in use. A program may have dozens of helper threads that
do little except sleeping and these will not be shown here. Only threads actively and simultaneously
consuming CPU time are included in this metric.

6.5.4 System load

The number of active (running or runnable) threads as a percentage of the number of physical CPU cores
present in the compute node. This value may exceed 100% if you are using hyperthreading, if the cores
are oversubscribed, or if other system processes and daemons start running and take CPU resources away
from your program. A value consistently less than 100% may indicate your program is not taking full
advantage of the CPU resources available on a compute node.

6.6 MPI Breakdown

This section breaks down the time spent in MPI calls reported in the summary. It’s only of interest if the
program is spending a significant amount of its time in MPI calls in the first place.

All the rates quoted here are inbound + outbound rates—we are measuring the rate of communication from
the process to the MPI API and not of the underlying hardware directly. This application-perspective is
found throughout Performance Reports and in this case allows the results to capture effects such as faster
intra-node performance, zero-copy transfers and so on.

6.6.1 Time in collective calls

The percentage of time spent in collective MPI operations such as MPI Scatter, MPI Reduce and
MPI Barrier.

6.6.2 Time in point-to-point calls

The percentage of time spent in point-to-point MPI operations such as MPI Send and MPI Recv.

c⃝ 2016 Allinea Software Ltd. 25

Allinea Performance Reports 6.0.1

6.6.3 Estimated collective rate

The average transfer per-process rate during collective operations, from the perspective of the applica-
tion code and not the transfer layer. That is, an MPI Alltoall that takes 1 second to send 10 Mb
to 50 processes and receive 10 Mb from 50 processes has an effective transfer rate of 10x50x2 = 1000
Mb/s.

Collective rates can often be higher than the peak point-to-point rate if the network topology matches the
application’s communication patterns well.

6.6.4 Estimated point-to-point rate

The average per-process transfer rate during point-to-point operations, from the perspective of the appli-
cation code and not the transfer layer. Asynchronous calls that allow the application to overlap commu-
nication and computation such as MPI ISend are able to achieve much higher effective transfer rates
than synchronous calls.

Overlapping communicaton and computation is often a good strategy to improve application performance
and scalability.

6.7 I/O Breakdown

This section breaks down the amount of time spent in library and system calls relating to I/O, such as
read, write and close. I/O due to MPI network traffic is not included; in most cases this should be a
direct measure of the amount of time spent reading and writing to the filesystem, whether local or net-
worked.

6.7.1 Time in reads

The percentage of time spent on average in read operations from the application’s perspective, not the
filesystem’s perspective.

6.7.2 Time in writes

The percentage of time spent on average in write and sync operations from the application’s perspective,
not the filesystem’s perspective. Opening and closing files is also included here, as our measurements
have shown that current-generation networked filesystems can spend significant amounts of time opening
files with create or write permissions.

6.7.3 Estimated read rate

The average transfer rate during read operations from the application’s perspective. A cached read will
have a much higher read rate than one that has to hit a physical disk. This is particularly important to opti-
mize for as current clusters often have complex storage hierarchies with multiple levels of caching.

c⃝ 2016 Allinea Software Ltd. 26

Allinea Performance Reports 6.0.1

6.7.4 Estimated write rate

The average transfer rate during write and sync operations from the application’s perspective. A buffered
write will have a much higher write rate than one that has to hit a physical disk, but unless there is
significant time between writing and closing the file the penalty will be paid during the synchronous
close operation instead. All these complexities are captured in this measurement.

6.8 Memory Breakdown

Unlike the other sections, the memory section does not refer to one particular portion of the job. Rather,
it summarizes memory usage across all processes and nodes over the entire duration. All of these metrics
refer to RSS, i.e. physical RAM usage and not virtual memory usage. Most HPC jobs try very hard to
stay within the physical RAM of their node for performance reasons.

6.8.1 Mean process memory usage

The average amount of memory used per-process across the entire length of the job.

6.8.2 Peak process memory usage

The peak memory usage seen by one process at any moment during the job. If this varies greatly from
the mean process memory usage then it may be a sign of either imbalanced workloads between processes
or a memory leak within a process.

Note: this is not a true high-watermark, but rather the peak memory seen during statistical sampling.
For most scientific codes this is not a meaningful difference as rapid allocation and deallocation of large
amounts of memory is universally avoided for performance reasons.

6.8.3 Peak node memory usage

The peak percentage of memory seen used on any single node during the entire run. If this is close to
100% then swapping may be occuring, or the job may be likely to hit hard system-imposed limits. If this
is low then it may be more efficient in CPU hours to run with a smaller number of nodes and a larger
workload per node.

c⃝ 2016 Allinea Software Ltd. 27

Allinea Performance Reports 6.0.1

6.9 Accelerator Breakdown

Figure 5: Accelerator metrics report

This section shows the utilisation of NVIDIA CUDA accelerators by the job.

6.9.1 GPU utilization

The average percentage of the GPU cards working when at least one CUDA kernel is running.

6.9.2 Global memory accesses

The average percentage of time that the GPU cards were reading or writing to global (device) mem-
ory.

6.9.3 Mean GPU memory usage

The average amount of memory in use on the GPU cards.

6.9.4 Peak GPU memory usage

The maximum amount of memory in use on the GPU cards.

c⃝ 2016 Allinea Software Ltd. 28

Allinea Performance Reports 6.0.1

6.10 Energy Breakdown

Figure 6: Energy metrics report

This section shows the energy used by the job, broken down by component (e.g. CPU and accelera-
tors).

6.10.1 CPU

The percentage of the total energy used by the CPUs.

CPU power measurement requires an Intel CPU with RAPL support, e.g. Sandy Bridge or newer and the
intel rapl powercap kernel module to be loaded.

6.10.2 Accelerator

The percentage of energy used by the accelerators. This metric is only shown when a CUDA card is
present.

6.10.3 System

The percentage of energy used by other components not shown above. If CPU and accelerator metrics
are not available the system energy will be 100%.

6.10.4 Mean node power

The average of the mean power consumption of all the nodes in Watts.

6.10.5 Peak node power

The node with the highest peak of power consumption in Watts.

c⃝ 2016 Allinea Software Ltd. 29

Allinea Performance Reports 6.0.1

6.10.6 Requirements

CPU power measurement requires an Intel CPU with RAPL support, e.g. Sandy Bridge or newer and the
intel rapl powercap kernel module to be loaded.

Node power monitoring is implemented via one of two methods: the Allinea IPMI energy agent which
can read IPMI power sensors; or the Cray HSS energy counters. For more information on how to install
the Allinea IPMI energy agent please see F.4 Allinea IPMI Energy Agent. The Cray HSS energy counters
are known to be available on Cray XK6 and XC30 machines.

Accelerator power measurement requires a NVIDIA GPU that supports power monitoring. This can be
checked on the command-line with nvidia-smi -q -d power. If the reported power values are
reported as “N/A”, power monitoring is not supported.

6.11 Textual Performance Reports

The same information is presented as in 6.1 HTML Performance Reports, but in a format better suited to
automatic data extraction and reading from a terminal:

Command: mpiexec -n 16 examples/wave_c 60
Resources: 1 node (12 physical, 24 logical cores per node, 2

GPUs per node available)
Memory: 15 GB per node, 11 GB per GPU
Tasks: 16 processes
Machine: node042
Started on: Tue Feb 25 12:14:06 2014
Total time: 60 seconds (1 minute)
Full path: /global/users/mark/allinea/reports/examples
Notes:

Summary: wave_c is compute-bound in this configuration
Compute: 82.4% |=======|
MPI: 17.6% |=|
I/O: 0.0% |
This application run was compute-bound. A breakdown of this time

and advice for investigating further is found in the compute
section below.

As little time is spent in MPI calls, this code may also benefit
from running at larger scales.

...

A combination of grep and sed can be very useful for quickly extracting and comparing values between
multiple runs, or for automatically placing such data into a centralized database.

6.12 CSV Performance Reports

A CSV (comma-separated values) output file can be generated using the --output argument and spec-
ifying a filename with the .csv extension:

perf-report --output=myFile.csv ...

c⃝ 2016 Allinea Software Ltd. 30

Allinea Performance Reports 6.0.1

The CSV file will contain lines in a NAME, VALUE format for each of the reported fields. This is well
suited for feeding to an automated analysis tool, such as a plotting program. Also can be imported into a
spreadsheet for analysing values among executions.

6.13 Worked Examples

The best way to understand how to use and interpret performance reports is by example. You can down-
load several sets of real-world reports with analysis and commentary from our website.

At the time of writing there are three collections available:

6.13.1 Code characterization and run size comparison

A set of runs from well-known HPC codes at different scales showing different problems:

http://allinea.com/products/performance/characterization-of-hpc-codes-and-problems/

6.13.2 Deeper CPU metric analysis

A look at the impact of hyperthreading on the performance of a code as seen through the CPU instructions
breakdown:

http://allinea.com/products/performance/exploring-hyperthreading/

6.13.3 I/O performance bottlenecks

The open source MAD-bench I/O benchmark is run in several different configurations including on a
laptop and the performance implications analyzed:

http://allinea.com/products/performance/understanding-i-o-behavior/

c⃝ 2016 Allinea Software Ltd. 31

http://allinea.com/products/performance/characterization-of-hpc-codes-and-problems/
http://allinea.com/products/performance/exploring-hyperthreading/
http://allinea.com/products/performance/understanding-i-o-behavior/

Allinea Performance Reports 6.0.1

7 Configuration

Allinea Performance Reports generally requires no configuration before use. If you only intend to use
Performance Reports and have checked that it works on your system without extra setup then you can
safely ignore the rest of this section.

7.1 Compute node access

When Allinea Performance Reports needs to access another machine as part of starting one of MPICH
1–3, Intel MPI, and SGI MPT, it will attempt to use the secure shell, ssh, by default.

However, this may not always be appropriate, ssh may be disabled or be running on a different port to
the normal port 22. In this case, you can create a file called remote-exec which is placed in your
~/.allinea directory and Allinea Performance Reports will use this instead.

Allinea Performance Reports will use look for the script at ~/.allinea/remote-exec, and it will
be executed as follows:

remote-exec HOSTNAME APPNAME [ARG1] [ARG2] ...

The script should start APPNAME on HOSTNAME with the arguments ARG1 ARG2 without further in-
put (no password prompts). Standard output from APPNAME should appear on the standard output of
remote-exec. An example is shown below:

SSH based remote-exec

A remote-exec script using ssh running on a non-standard port could look as follows:

#!/bin/sh
ssh -P {port-number} $*

In order for this to work without prompting for a password, you should generate a public and private
SSH key, and ensure that the public key has been added to the ~/.ssh/authorized_keys file on
machines you wish to use. See the ssh-keygen manual page for more information.

Testing

Once you have set up your remote-exec script, it is recommended that you test it from the command
line. For example:

∼/.allinea/remote-exec TESTHOST uname -n

Should return the output of uname -n on TESTHOST, without prompting for a password.

If you are having trouble setting up remote-exec, please contact support@allinea.com for assis-
tance.

Windows The functionality described above is also provided by the Windows remote client. There are
however two differences:

• The script is named remote-exec.cmd rather than remote-exec.

• The default implementation uses the plink.exe executable supplied with Allinea Performance
Reports.

c⃝ 2016 Allinea Software Ltd. 32

mailto:support@allinea.com

Allinea Performance Reports 6.0.1

A Getting Support

Whilst this document attempts to cover as many parts of the installation, features and uses of our tool as
possible, there will be scenarios or configurations that are not covered, or are only briefly mentioned, or
you may on occasion experience a problem using the product. In any event, the support team at Allinea
will be able to help and will look forward to assist in ensuring that you can get the most out of the Allinea
Performance Reports products.

You can contact the team by sending an email directly to support@allinea.com .

Please provide as much detail as you can about the scenario in hand, such as:

• Version number of Allinea Performance Reports (e.g. perf-report --version) and your
operating system and the distribution (example: Red Hat Enterprise Linux 6.4). This information
is all available by using the --version option on the command line of any Allinea tool:

bash$ perf-report --version

Allinea Performance Reports
Part of Allinea Performance Reports.
(c) Allinea Software 2002-2015

Version: 5.0
Build: Ubuntu 12.04 x86_64
Build Date: Jan 5 2015

Licence Serial Number: see About window

Frontend OS: Ubuntu 14.04 x86_64
Nodes' OS: unknown
Last connected ddt-debugger: unknown

• The compiler used and its version number

• The MPI library and version if appropriate

• A description of the issue : what you expected to happen and what actually happened

• An exact copy of any warning or error messages that you may have encountered

c⃝ 2016 Allinea Software Ltd. 33

mailto:support@allinea.com

Allinea Performance Reports 6.0.1

B Supported Platforms

A full list of supported platforms and configurations is maintained on the Allinea website. It is likely that
MPI distributions supported on one platform will work immediately on other platforms.

B.1 Performance Reports

See http://www.allinea.com/products/performance/platforms/

Platform Operating Systems MPI Compilers
x86 64 Red Hat Enterprise

Linux and derivatives
5, 6 and 7, SUSE Linux
Enterprise 11 and 12,
Ubuntu 12.04 and
14.04

Bullx MPI 1.2.7 and
1.2.8, Cray MPT
(MPI/SHMEM), Intel
MPI 4.1.x and 5.0.x,
MPICH 2.x.x and
3.x.x, MVAPICH
2.0 and 2.1, Open
MPI 1.6.x and 1.8.x
(MPI/SHMEM), Plat-
form MPI 9.x, SGI
MPT 2.10 and 2.11

Cray, GNU 4.3.2+, In-
tel 13+, PGI 14+

The Allinea profiling libraries must be explicitly linked with a program when using the following MPIs
/ batch schedulers:

• Cray X-series

• SLURM 2.6.x (automatic preloading is supported with 14.11+)

Batch schedulers: SLURM 2.6.3+ and 14.03+ (srun only)

c⃝ 2016 Allinea Software Ltd. 34

http://www.allinea.com/products/performance/platforms/

Allinea Performance Reports 6.0.1

C MPI Distribution Notes

This appendix has brief notes on many of the MPI distributions supported by Allinea Performance Re-
ports. Advice on settings and problems particular to a distribution are given here.

C.1 Bull MPI

Bull X-MPI is supported.

C.2 Cray MPT

Performance Reports users may wish to read 4.1.4 Static Linking on Cray X-Series Systems.

Performance Reports has been tested with Cray XK7 and XC30 systems.

Performance Reports requires Allinea’s sampling libraries to be linked with the application before running
on this platform. See 4.1.2 Linking for a set-by-step guide.

Known Issues:

• By default scripts wrapping Cray MPT will not be detected, but you can force the detection by
setting the ALLINEA_DETECT_APRUN_VERSION environment variable to “yes” before starting
Performance Reports.

C.3 Intel MPI

Allinea Performance Reports has been tested with Intel MPI 4.1.x, 5.0.x and onwards.

C.4 MPICH 2

If you see the error undefined reference to MPI Status c2f during initialization or if
manually building the sampling libraries (4.1.2 Linking) then you need to rebuild MPICH 2 with Fortran
support.

C.5 MPICH 3

MPICH 3.0.3 and 3.0.4 do not work with Allinea Performance Reports due to an MPICH bug. MPICH
3.1 addresses this and is supported.

C.6 Open MPI

Allinea Performance Reports products have been tested with Open MPI 1.4.x, 1.6.x and 1.8.x. Select
Open MPI from the list of MPI implementations.

Known issue: If you are using the 1.6.x series of Open MPI configured with the --enable-orterun-
prefix-by-default flag then Allinea Performance Reports requires patch release 1.6.3 or later due
to a defect in earlier versions of the 1.6.x series.

c⃝ 2016 Allinea Software Ltd. 35

Allinea Performance Reports 6.0.1

C.7 Platform MPI

Platform MPI 9.x is supported, but only with the mpirun command. Currently mpiexec is not sup-
ported.

C.8 SGI MPT / SGI Altix

SGI MPT 2.10+ is supported.

Note that support for SGI MPT scalable start-up was removed in version 4.2.1-38188 and will be re-added
in a future release.

Some SGI systems can not compile programs on the batch nodes (e.g. because the gcc package is not
installed). If this applies to your system you must explicitly compile the Allinea MPI wrapper library
using the make-profiler-libraries command and then explicitly link your programs against
the Allinea profiler and sampler libraries.

The mpio.h header file shipped with SGI MPT 2.10 contains a mismatch between the declaration of
MPI File set view and some other similar functions and their PMPI equivalents, e.g.PMPI File -
set view. This prevents Performance Reports from generating the MPI wrapper library. Please contact
SGI for a fix.

C.9 SLURM

The use of the --export argument to srun is not supported.

c⃝ 2016 Allinea Software Ltd. 36

Allinea Performance Reports 6.0.1

D Compiler Notes

D.1 AMD OpenCL compiler

Not supported by Performance Reports.

D.2 Berkeley UPC Compiler

Not supported by Performance Reports.

D.3 Cray Compiler Environment

The Cray UPC compiler is not supported by Performance Reports.

D.4 GNU

The -foptimize-sibling-calls optimization (used in -O2, -O3 and -Os) interfere with the
detection of some OpenMP regions. If your code is affected with this issue add -fno-optimize-
sibling-calls to disable it and allow Performance Reports to detect all the OpenMP regions in your
code.

D.4.1 GNU UPC

Performance Reports do not support this.

D.5 Intel Compilers

Allinea Performance Reports has been tested with versions 13 and 14.

D.6 Portland Group Compilers

Allinea Performance Reports has been tested with Portland Tools 14 onwards.

c⃝ 2016 Allinea Software Ltd. 37

Allinea Performance Reports 6.0.1

E Platform Notes

This page notes any particular issues affecting platforms. If a supported machine is not listed on this
page, it is because there is no known issue.

E.1 Intel Xeon

Intel Xeon processors starting with Sandy Bridge include Running Average Power Limit (RAPL) coun-
ters. Performance Reports can use the RAPL counters to provide energy and power consumption infor-
mation for your programs.

E.1.1 Enabling RAPL energy and power counters when profiling

To enable the RAPL counters to be read by Performance Reports you must load the intel rapl kernel
module.

The intel rapl module is included in Linux kernel releases 3.13 and later. For testing purposes
Allinea have backported the powercap and intel rapl modules for older kernel releases. You may
download the backported modules from:

http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2

Please note: these backported modules are unsupported and should be used for testing purposes only.
No support is provided by Allinea, your system vendor or the Linux kernel team for the backported
modules.

E.2 Intel Xeon Phi

Performance Reports does not presently support Intel Xeon Phi. However, the host side of applications
that use offload mode can still use Performance Reports.

E.3 NVIDIA CUDA

• CUDA metrics are not available for statically-linked programs.

• CUDA metrics are measured at the node level, not the card level.

c⃝ 2016 Allinea Software Ltd. 38

http://content.allinea.com/downloads/allinea-powercap-backport-20150601.tar.bz2

Allinea Performance Reports 6.0.1

F General Troubleshooting

If you have problems with any of the Allinea Performance Reports products, please take a look at the
topics in this section—you might just find the answer you’re looking for. Equally, it’s worth checking
the support pages on http://www.allinea.com and making sure you have the latest version.

F.1 Starting a Program

F.1.1 Problems Starting Scalar Programs

There are a number of possible sources for problems. The most common is—for users with a multi-
process licence—that the Run Without MPI Support check box has not been checked. If the software
reports a problem with MPI and you know your program is not using MPI, then this is usually the cause.
If you have checked this box and the software still mentions MPI then we would very much like to hear
from you!

Other potential problems are:

• A previous Allinea session is still running, or has not released resources required for the new ses-
sion. Usually this can be resolved by killing stale processes. The most obvious symptom of this is
a delay of approximately 60 seconds and a message stating that not all processes connected. You
may also see, in the terminal, a QServerSocket message

• The target program does not exist or is not executable

• Allinea Performance Reports products’ backend daemon—ddt-debugger—is missing from the
bin directory—in this case you should check your installation, and contact Allinea for further
assistance.

F.1.2 Problems Starting Multi-Process Programs

If you encounter problems whilst starting an MPI program, the first step is to establish that it is possible to
run a single-process (non-MPI) program such as a trivial “Hello, World!”—and resolve such issues that
may arise. After this, attempt to run a multi-process job—and the symptoms will often allow a reasonable
diagnosis to be made.

In the first instance verify that MPI is working correctly by running a job, without Allinea Performance
Reports products applied, such as the example in the examples directory.

mpirun -np 8 ./a.out

Verify that mpirun is in the PATH, or the environment variable ALLINEA_MPIRUN is set to the full
pathname of mpirun.

Sometimes problems are caused by environment variables not propagating to the remote nodes whilst
starting a job. To a large extent, the solution to these problems depend on the MPI implementation that
is being used. In the simplest case, for rsh based systems such as a default MPICH 1 installation, correct
configuration can be verified by rsh-ing to a node and examining the environment. It is worthwhile rsh-
ing with the env command to the node as this will not see any environment variables set inside the .profile
command. For example if your nodes use a .profile instead of a .bashrc for each user then you
may well see a different output when running rsh node env than when you run rsh node and then
run env inside the new shell.

c⃝ 2016 Allinea Software Ltd. 39

http://www.allinea.com

Allinea Performance Reports 6.0.1

If only one, or very few, processes connect, it may be because you have not chosen the correct MPI
implementation. Please examine the list and look carefully at the options. Should no other suitable MPI
be found, please contact Allinea for advice.

If a large number of processes are reported by the status bar to have connected, then it is possible that
some have failed to start due to resource exhaustion, timing out, or, unusually, an unexplained crash. You
should verify again that MPI is still working, as some MPI distributions do not release all semaphore
resources correctly (for example MPICH 1 on Redhat with SMP support built in).

To check for time-out problems, set the ALLINEA_NO_TIMEOUT environment variable to 1 before
launching the GUI and see if further progress is made. This is not a solution, but aids the diagnosis. If
all processes now start, please contact Allinea for further long-term advice.

F.1.3 No Shared Home Directory

If your home directory is not accessible by all the nodes in your cluster then your jobs may fail to start.
To resolve the problem open the file ~/.allinea/config.system in a text editor. Change the
shared directory option in the [startup] section so it points to a directory that is available and
shared by all the nodes. If no such directory exists, change the use session cookies option to no
instead.

F.2 Performance Reports specific issues

F.2.1 My compiler is inlining functions

Yes, they do that. Unfortunately their abilities to include sufficient information to reconstruct the original
call tree vary between vendors. We’ve found that the following flags work best:

• Intel: -g -O3 -fno-inline-functions

• PGI: -g -O3 -Meh frame

• GNU: -g -O3 -fno-inline

Be aware that some compilers may still inline functions even when explicitly asked not to.

There is typically some small performance penalty for disabling function inlining or enabling profiling
information.

Alternatively, you can let the compiler inline the functions and just compile with -g -O3. Or -g -O5
or whatever your preferred performance flags are. Performance Reports will work just fine, but you will
often see time inside an inlined function being attributed to its parent in the Stacks view. The Source
Code view should be largely unaffected.

Performance Reports should not be affected by function inlining.

F.2.2 Tail Recursion Optimization

If a function returns the result of calling another function, for example:

int someFunction()
{

...
return otherFunction();

}

c⃝ 2016 Allinea Software Ltd. 40

Allinea Performance Reports 6.0.1

the compiler may change the call to otherFunction into a jump. This means that, when inside oth-
erFunction, the calling function, someFunction, no longer appears on the stack.

This optimization is called tail recursion optimization. It may be disabled for the GNU C compiler by
pasing the -fno-optimize-sibling-calls argument to gcc.

F.2.3 MPI Wrapper Libraries

Performance Reports wrap MPI calls in a custom shared library. We build one, just for your system, each
time you run Performance Reports. Sometimes it won’t work. If it doesn’t, please tell us. It should work
on every system we’ve ever seen, first time, every time. In the meantime, you can also try setting MPICC
directly:

$ MPICC=my-mpicc-command bin/perf-report --np=16 ./wave_c

F.2.4 Thread support restrictions

Performance Reports requires that all MPI calls in the program being profiled are made on the same thread
as the one that called MPI_Init or MPI_Init_thread. To enforce this restriction, Performance
Reports will abort if MPI_Init_thread is called with either MPI_THREAD_SERIALIZED or MPI_
THREAD_MULTIPLE specified as the required thread support. The error displayed is:

The Allinea Sampler does not support the use of MPI with thread
support set to MPI_THREAD_SERIALIZED or MPI_THREAD_MULTIPLE (as
specified in the call to MPI_Init_thread). All MPI communication
must take place on the main thread for profiling to be successful.

The supported arguments to MPI_Init_thread are MPI_THREAD_SINGLE
(only one thread will execute) and MPI_THREAD_FUNNELED (if the
process is multithreaded, only the main thread will make MPI
calls). If in doubt use MPI_THREAD_FUNNELED.

Performance Reports does support calling MPI_Init_thread with either MPI_THREAD_SINGLE
or MPI_THREAD_FUNNELED specified as the required thread support. It should be noted that the re-
quirements that the MPI specification make on programs using MPI_THREAD_FUNNELED are the same
as made by Performance Reports: all MPI calls must be made on the thread that called MPI_Init_
thread. In many cases, multi-threaded MPI programs can be refactored such that they comply with
this restriction.

F.2.5 No thread activity whilst blocking on an MPI call

Unfortunately Performance Reports is currently unable to record thread activity on a process where a
long-duration MPI call is in progress. If you have an MPI call that takes a significant amount of time
(multiple samples) to complete then Preformance Reports will record no thread activity for the process
executing that call for most of that MPI call’s duration.

F.2.6 I’m not getting enough samples

By default we start sampling every 20ms, but if you get warnings about too few samples on a fast run,
or want more detail in the results, you can change that. To increase the frequency to every 10ms set

c⃝ 2016 Allinea Software Ltd. 41

Allinea Performance Reports 6.0.1

environment variable ALLINEA_SAMPLER_INTERVAL=10. Note that the sampling frequency is au-
tomatically decreased over time to ensure a manageable amount of data is collected whatever the length
of the run. Increasing the sampling frequency is not recommended if there are lots of threads and/or very
deep stacks in the target program as this may not leave sufficient time to complete one sample before the
next sample is started.

F.2.7 Performance Reports is reporting time spent in a function defini-
tion

Any overheads involved in setting up a function call (pushing arguments to the stack etc) are usually
assigned to the function definition. Some compilers may assign them to the opening brace ‘{’ and clos-
ing brace ‘}’ instead. If this function has been inlined, the situation becomes further complicated and
any setup time (e.g. allocating space for arrays) is often assigned to the definition line of the enclosing
function.

We’re looking for ways to unravel this and present a more intuitive picture; any ideas or suggestions are
much appreciated!

F.2.8 Performance Reports is not correctly identifying vectorized instruc-
tions

The instructions identified as vectorized (packed) are enumerated below. We also identify the AVX-2
variants of these instructions (with a “v” prefix). Contact support@allinea.com if you believe your
code contains vectorized instructions that have not been listed and are not being identified in the CPU
floating-point/integer vector metrics.

Packed floating-point instructions: addpd addps addsubpd addsubps andnpd and-
nps andpd andps divpd divps dppd dpps haddpd haddps hsubpd hsubps
maxpd maxps minpd minps mulpd mulps rcpps rsqrtps sqrtpd sqrtps subpd
subps

Packed integer instructions: mpsadbw pabsb pabsd pabsw paddb paddd paddq paddsb
paddsw paddusb paddusw paddw palignr pavgb pavgw phaddd phaddsw phaddw
phminposuw phsubd phsubsw phsubw pmaddubsw pmaddwd pmaxsb pmaxsd pmaxsw
pmaxub pmaxud pmaxuw pminsb pminsd pminsw pminub pminud pminuw pmuldq
pmulhrsw pmulhuw pmulhw pmulld pmullw pmuludq pshufb pshufw psignb
psignd psignw pslld psllq psllw psrad psraw psrld psrlq psrlw psubb
psubd psubq psubsb psubsw psubusb psubusw psubw

F.2.9 MAP harmless linker warnings on Xeon Phi

When explicitly linking withlibmap-sampler-pmpi.so generated usingmake-profiler-libraries
--platform=xeon-phi you may see the following compiler warnings:

x86_64-k1om-linux-ld: warning: libimf.so, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-link)

x86_64-k1om-linux-ld: warning: libsvml.so, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-link)

x86_64-k1om-linux-ld: warning: libirng.so, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-link)

x86_64-k1om-linux-ld: warning: libintlc.so.5, needed by ./libmap-
sampler-pmpi.so, not found (try using -rpath or -rpath-link)

c⃝ 2016 Allinea Software Ltd. 42

mailto:support@allinea.com

Allinea Performance Reports 6.0.1

These warnings are harmless and may be ignored but you must ensure that the Xeon Phi Intel runtime
libraries are in your LD LIBRARY PATH when running your program.

F.2.10 Performance Reports harmless error messages on Xeon Phi

When running Performance Reports on a Xeon Phi host, where the Performance Reports installation has
been configured for E.2 Intel Xeon Phi heterogeneous support, but your MPI program was compiled
without MIC options, you may see harmless ‘ERROR’ messages similar to the following:

Other: ERROR: ld.so: object '/home/user/.allinea/wrapper/libmap-sampler-
pmpi-mic3-mic-115427.so' from LD_PRELOAD cannot be preloaded: ig-
nored.

These may be safely ignored.

F.2.11 Performance Reports takes an extremely long time to gather and
analyze my OpenBLAS-linked application

OpenBLAS versions 0.2.8 and earlier incorrectly stripped symbols from the .symtab section of the library,
causing binary analysis tools such as Allinea Performance Reports and objdump to see invalid function
lengths and addresses.

This causes Performance Reports to take an extremely long time disassembling and analyzing apparently
overlapping functions containing millions of instructions.

A fix for this was accepted into the OpenBLAS codebase on October 8th 2013 and versions 0.2.9 and
above should not be affected.

To work around this problem without updating OpenBLAS, simply run “strip libopenblas*.so”—this
removes the incomplete .symtab section without affecting the operation or linkage of the library.

F.2.12 MAPover-reportsMPI, I/O, accelerator or synchronisation time

Performance Reports employs a heuristic to determine which function calls should be considered as MPI
operations. If your code defines any function that starts with MPI (case insensitive) those functions
will be treated as part of the MPI library resulting in the time spent in MPI calls to be over-reported.
Starting your functions names with the prefix MPI should be avoided and is in fact explicitly forbidden
by the MPI specification (page 19 sections 2.6.2 and 2.6.3 of the MPI 3 specification document http:
//www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49):

All MPI names have an MPI prefix, and all characters are capitals. Programs must not
declare names, e.g., for variables, subroutines, functions, parameters, derived types, abstract
interfaces, or modules, beginning with the prefix MPI .

Similarly Performance Reports categorises I/O functions and accelerator functions by name. Other pre-
fixes to avoid starting your function names with include PMPI , PMI , OMPI , omp , GOMP , shmem ,
cuda , cuda, cu[A-Z][a-z] and allinea . All of these prefixes are case-insensitive. Also
avoid naming a function start pes or any name also used by a standard I/O or synchronisation func-
tion (write, open, pthread join, sem wait etc).

c⃝ 2016 Allinea Software Ltd. 43

http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf#page=49

Allinea Performance Reports 6.0.1

F.3 Obtaining Support

If this guide hasn’t helped you, then the most effective way to get support is to email us with a detailed
report. If possible, you should obtain a log file for the problem and email this to support@allinea.com
.

You can generate a log file by starting Performance Reports with the--debug and--log arguments:

$ perf-report --debug --log=<log>

where <log> is the name of the log file to generate.

Then simply reproduce the problem using as few processors as possible. On some systems this log file
might be quite large; if this is the case, please compress it using a program such as gzip or bzip2
before attaching it to your email.

If your problem can only be replicated on large process counts, then please omit the --debug argument
as this will generate very large log files.

c⃝ 2016 Allinea Software Ltd. 44

mailto:support@allinea.com

Allinea Performance Reports 6.0.1

F.4 Allinea IPMI Energy Agent

The Allinea IPMI Energy Agent allows Allinea MAP and Allinea Performance Reports to measure the
total energy consumed by the compute nodes in a job in conjunction with the Allinea Energy Pack
add-on. The IPMI Energy Agent is a separate download from our website: http://www.allinea.com/
ipmi-energy-agent.

F.4.1 Requirements

• The compute nodes must support IPMI.

• The compute nodes must have an IPMI exposed power sensor.

• The compute nodes must have an OpenIPMI compatible kernel module installed (i.e. ipmi -
devintf).

• The compute nodes must have the corresponding device node in /dev (e.g. /dev/ipmi0).

• The compute nodes must run a supported operating system.

• The IPMI Energy Agent must be run as root.

To quickly list the names of possible IPMI power sensors on a compute node use the following com-
mand:

ipmitool sdr | grep 'Watts'

c⃝ 2016 Allinea Software Ltd. 45

http://www.allinea.com/ipmi-energy-agent
http://www.allinea.com/ipmi-energy-agent

Index
AMD

OpenCL, 37

Bull MPI, 35

Compatibility Launch, 17
Cray MPT, 35
Cray Native SLURM, 36
Cray X, 35

Example, 8
Express Launch, 16

Compatibility, 16

Generating a Report, 17
Getting Support, 33

Installation, 5
Linux, 5
Text-mode Install, 7

Intel Compiler, 37
Intel MPI, 35
Introduction, 4
IPMI, 45

Licensing
Licence Files, 7
Supercomputing and Other Floating Licences,

7
Workstation and Evaluation Licences, 7

Log file, 44

MAP, 19
MPI

Troubleshooting, 39
MPICH 3, 35

Online Resources, 4
Open MPI, 35
Output Locations, 18

Portland Group, 37

Running, 11

SGI, 36
SLURM, 36

46

	Contents
	1 Introduction
	1.1 Online Resources

	2 Installation
	2.1 Linux/Unix Installation
	2.1.1 Graphical Install
	2.1.2 Text-mode Install

	2.2 Licence Files
	2.3 Workstation and Evaluation Licences
	2.4 Supercomputing and Other Floating Licences

	3 Running with an Example Program
	3.1 Overview of the Example Source Code
	3.2 Compiling
	3.2.1 Cray X-series

	3.3 Running
	3.4 Generating a Performance Report

	4 Running with Real Programs
	4.1 Preparing a Program for Profiling
	4.1.1 .eh-frame-hdr section
	4.1.2 Linking
	4.1.3 Dynamic Linking on Cray X-Series Systems
	4.1.4 Static Linking
	4.1.5 Static Linking on Cray X-Series Systems

	4.2 Express Launch Mode
	4.2.1 Compatible MPIs

	4.3 Compatibility Launch Mode
	4.4 Generating a Performance Report
	4.5 Specifying Output Locations

	5 Summarizing an Existing MAP File
	6 Interpreting Performance Reports
	6.1 HTML Performance Reports
	6.2 Report Summary
	6.2.1 Compute
	6.2.2 MPI
	6.2.3 I/O

	6.3 CPU Breakdown
	6.3.1 Single-core code
	6.3.2 OpenMP code
	6.3.3 Scalar numeric ops
	6.3.4 Vector numeric ops
	6.3.5 Memory accesses
	6.3.6 Waiting for accelerators

	6.4 OpenMP Breakdown
	6.4.1 Computation
	6.4.2 Synchronization
	6.4.3 Physical core utilisation
	6.4.4 System load

	6.5 Threads Breakdown
	6.5.1 Computation
	6.5.2 Synchronization
	6.5.3 Physical core utilisation
	6.5.4 System load

	6.6 MPI Breakdown
	6.6.1 Time in collective calls
	6.6.2 Time in point-to-point calls
	6.6.3 Estimated collective rate
	6.6.4 Estimated point-to-point rate

	6.7 I/O Breakdown
	6.7.1 Time in reads
	6.7.2 Time in writes
	6.7.3 Estimated read rate
	6.7.4 Estimated write rate

	6.8 Memory Breakdown
	6.8.1 Mean process memory usage
	6.8.2 Peak process memory usage
	6.8.3 Peak node memory usage

	6.9 Accelerator Breakdown
	6.9.1 GPU utilization
	6.9.2 Global memory accesses
	6.9.3 Mean GPU memory usage
	6.9.4 Peak GPU memory usage

	6.10 Energy Breakdown
	6.10.1 CPU
	6.10.2 Accelerator
	6.10.3 System
	6.10.4 Mean node power
	6.10.5 Peak node power
	6.10.6 Requirements

	6.11 Textual Performance Reports
	6.12 CSV Performance Reports
	6.13 Worked Examples
	6.13.1 Code characterization and run size comparison
	6.13.2 Deeper CPU metric analysis
	6.13.3 I/O performance bottlenecks

	7 Configuration
	7.1 Compute node access

	A Getting Support
	B Supported Platforms
	B.1 Performance Reports

	C MPI Distribution Notes
	C.1 Bull MPI
	C.2 Cray MPT
	C.3 Intel MPI
	C.4 MPICH 2
	C.5 MPICH 3
	C.6 Open MPI
	C.7 Platform MPI
	C.8 SGI MPT / SGI Altix
	C.9 SLURM

	D Compiler Notes
	D.1 AMD OpenCL compiler
	D.2 Berkeley UPC Compiler
	D.3 Cray Compiler Environment
	D.4 GNU
	D.4.1 GNU UPC

	D.5 Intel Compilers
	D.6 Portland Group Compilers

	E Platform Notes
	E.1 Intel Xeon
	E.1.1 Enabling RAPL energy and power counters when profiling

	E.2 Intel Xeon Phi
	E.3 NVIDIA CUDA

	F General Troubleshooting
	F.1 Starting a Program
	F.1.1 Problems Starting Scalar Programs
	F.1.2 Problems Starting Multi-Process Programs
	F.1.3 No Shared Home Directory

	F.2 Performance Reports specific issues
	F.2.1 My compiler is inlining functions
	F.2.2 Tail Recursion Optimization
	F.2.3 MPI Wrapper Libraries
	F.2.4 Thread support restrictions
	F.2.5 No thread activity whilst blocking on an MPI call
	F.2.6 I'm not getting enough samples
	F.2.7 Performance Reports is reporting time spent in a function definition
	F.2.8 Performance Reports is not correctly identifying vectorized instructions
	F.2.9 MAP harmless linker warnings on Xeon Phi
	F.2.10 Performance Reports harmless error messages on Xeon Phi
	F.2.11 Performance Reports takes an extremely long time to gather and analyze my OpenBLAS-linked application
	F.2.12 MAP over-reports MPI, I/O, accelerator or synchronisation time

	F.3 Obtaining Support
	F.4 Allinea IPMI Energy Agent
	F.4.1 Requirements

