Preparing Applications for Next-Generation HPC Architectures

Andrew Siegel

Argonne National Laboratory

Exascale Computing Project (ECP) is part of a larger US DOE strategy

ECP: application, software, and hardware technology development and integration

The U.S. Exascale Computing Initiative

HPC Facility site preparations

Exascale system build contracts (including NRE investments)

2

Exascale Computing Project

- Department of Energy project to develop usable exascale ecosystem
- Exascale Computing Initiative (ECI)
 - 2 Exascale platforms (2021) 1.
 - 2. Hardware R&D
 - 3. System software/middleware

Exascale Computing Project (ECP)

Co-Design

25 Mission critical application projects 4.

Earth and **Data Analytics** Chemistry National Security Energy Space Science and Optimization and Materials **Applications** 3

	Pre-Exascale Systems			Pre-Exascale Systems Exascale Systems			Exascale Systems
2013	2016	2018	2020	2021-2023			
Miration Argonne BM BG/Q Open Visition ORNL OROR	Image: Cray/Intel Xeon/KNI	Summit ORNL BM/NVidia P9/Volta Open	NERSC-9 LBNL TBD Open	Argonne Intel/Cray TBD Open Frontier ORNL TBD			
Open	Cray/Intel Xeon/KNL			Open			
Sequoia LLNL IBM BG/Q Secure	LANL/SNL Cray/Intel Xeon/KNL Secure	Sierra LLNL IBM/NVidia P9/Volta Secure	Crossroads LANL/SNL TBD Secure	El Capitan LLNL TBD Secure			

Building an Exascale Machine

- Why is it difficult?
 - Dramatically improve power efficiency to keep overall power 20-40MW
 - Provide useful FLOPs: algorithms with efficient (local) data movement

- What are the risks?
 - End up with Petscale performance on real applications
 - Exascale on carefully chosen benchmark problems only

Microprocessor Transistors / Clock (1970-2015)

Fastest Computers: HPL Benchmark

Rank	Site	System	Cores	Rmax (TFlop/s)	Rpeak (TFlop/s)	Power (kW)
1	National Supercomputing Center in Wuxi China	Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93,014.6	125,435.9	15,371
2	National Super Computer Center in Guangzhou China	Tianhe-2 (MilkyWay-2) - TH-IVB-FEP Cluster, Intel Xeon E5-2692 12C 2.200GHz, TH Express-2, Intel Xeon Phi 31S1P NUDT	3,120,000	33,862.7	54,902.4	17,808
3	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect , NVIDIA Tesla P100 Cray Inc.	361,760	19,590.0	25,326.3	2,272
4	Japan Agency for Marine-Earth Science and Technology Japan	Gyoukou - ZettaScaler-2.2 HPC system, Xeon D-1571 16C 1.3GHz, Infiniband EDR, PEZY-SC2 700Mhz ExaScaler	19,860,000	19,135.8	28,192.0	1,350
5	DOE/SC/Oak Ridge National Laboratory United States	Titan - Cray XK7, Opteron 6274 16C 2.200GHz, Cray Gemini interconnect, NVIDIA K20x Cray Inc.	560,640	17,590.0	27,112.5	8,209

EXASCALE

ING

Fastest Computers: HPCG Benchmark

Rank	Site	Computer	Cores	HPL Rmax (Pflop/s)	TOP500 Rank	HPCG (Pflop/s)	Fraction of Peak
1	RIKEN Advanced Institute for Computational Science Japan	K computer – , SPARC64 VIIIfx 2.0GHz, Tofu interconnect Fujitsu	705,024	10.510	10	0.603	5.3%
2	NSCC / Guangzhou China	Tianhe-2 (MilkyWay-2) – TH-IVB-FEP Cluster, Intel Xeon 12C 2.2GHz, TH Express 2, Intel Xeon Phi 31S1P 57-core NUDT	3,120,000	33.863	2	0.580	1.1%
3	DOE/NNSA/LANL/SNL USA	Trinity – Cray XC40, Intel Xeon E5-2698 v3 300160C 2.3GHz, Aries Cray	979,072	14.137	7	0.546	1.8%
4	Swiss National Supercomputing Centre (CSCS) Switzerland	Piz Daint – Cray XC50, Intel Xeon E5- 2690v3 12C 2.6GHz, Cray Aries, NVIDIA Tesla P100 16GB Cray	361,760	19.590	3	0.486	1.9%
5	National Supercomputing Center in Wuxi China	Sunway TaihuLight – Sunway MPP, SW26010 260C 1.45GHz, Sunway NRCPC	10,649,600	93.015	1	0.481	0.4%

Preparing Applications for Exascale

1. What are challenges?

1. What are we doing about it?

Harnessing FLOPS at Exascale

- Will an exascale machine require too much from applications?
 - Extreme parallelism
 - High computational intensity (not getting worse)
 - Sufficient work in presence of low aggregate RAM (5%)
 - Focus on weak scaling only: High machine value of $N_{1/2}$
 - Localized high bandwidth memory
 - Vectorizable with wider vectors
 - Specialized instruction mixes (FMA)
 - Sufficient instruction level parallelism (multiple issue)
 - Amdahl headroom

ECP Approach to ensure useful exascale system for science

 25 applications projects: each project begins with a mission critical science or engineering challenge problem

 The challenge problem represents a capability currently beyond the reach of existing platforms.

- Must demonstrate
 - Ability to execute problem on exascale machine
 - Ability to achieve a specified Figure of Merit

The software cost of Exascale

- What changes are needed
 - To build/run code? readiness
 - To make efficient use of hardware? Figure of Merit
- Can these be expressed with current programming models?

Node\Internode	Explicit MPI	MPI via Library	PGAS, CHARM++, etc.
MPI	High	High	N/A
OpenMP	High	High	Low
CUDA	Medium	Low	Low
Something else	Low	Low	Low

ECP Applications – Distribution of Programming Models

Bottom Line: All MPI and MPI+OpenMP ubiquitous ¹² Heavy dependence on MPI built into middleware (PetsC, Trilinos, etc)

Will we need new programming models?

- Potentially large software cost + <u>risk</u> to adopting new PM
- However, abstract machine model underlying both MPI and OpenMP have shortcomings, e.g.
 - <u>Locality</u> for OpenMP
 - Cost of <u>synchronization</u> for typical MPI bulk synchronous
- Good news: Standards are evolving aggressively to meet exascale needs
- Concerns remain, though
 - Can we reduce software cost with hierarchical task-based models?
 - Can we retain performance portability?
 - What role do non-traditional accelerators play?

How accelerators affect programmability

- Given performance per watt, specialized accelerators (LOC/TOC combinations) lie clearly on path to exascale
- Accelerators are heavier lift for directive-based language like OpenMP or OpenACC
- Integrating MPI with accelerators (e.g. GPUDirect on Summit)
- Low apparent software cost might be fool's gold
- What we have seen: Current situation favors applications that follow 90/10 type rule

Programming Model Approaches

- Power void of MPI and OpenMP leading to zoo of new developments in programming models.
 - This is natural and not a bad thing, will likely coalesce at some point

- Plans include MPI+OpenMP but ...
 - <u>On node</u>: Many project are experimenting with new approaches that aim at device portability: OCCA, KOKKOS, RAJA, OpenACC, OpenCL, Swift
 - <u>Internode</u>: Some projects are looking beyond MPI+X and adopting new or non-traditional approaches: Legion, UPC++, Global Arrays

Middleware/Solvers

- Many applications depend on MPI implicitly via middleware, eg.
 - Solvers: PetsC, Trilinos, Hypre
 - Frameworks: Chombo (AMR), Meshlib

• Major focus is to ensure project-wide that these developments lead the applications!

Rethinking algorithmic implementations

- Reduced communication/data movement
 - Sparse linear algebra, Linpack, etc.
- Much greater locality awareness
 - Likely must be exposed by programming model
- Much higher cost of global synchronization
 - Favor maxim asynchrony where physics allows
- Value to mixed precision where possible
 - Huge role in AI, harder to pin down for PDEs
- Fault resilience?
 - Likely handled outside of applications

Beyond implementations

- For applications we see hardware realities forcing new thinking beyond implementation of known algorithms
 - Adopting Monte Carlo vs. Deterministic approaches
 - Exchanging on-the-fly recomputation vs. data table lookup (e.g. neutron cross sections)
 - Moving to higher-order methods (e.g. CFD)
 - The use of ensembles vs. time-equilibrated ergodic averaging

Co-design with hardware vendors

- HPC vendors need deep engagement with applications prior to final hardware design
- Proxy Applications are a critical vehicle for co-design
 - ECP includes Proxy Apps Project
 - Focus on motif coverage
 - Early work with performance analysis tools and simulators
- Interest (in theory) in more complete applications.

First HACC Tests on the OLCF Early-Access System

1.2.1.01 ExaSky PI: Salman Habib, ANL Members: ANL, LANL, LBNL

Scope & Objectives

- <u>Computational Cosmology</u>: Modeling, simulation, and prediction for new multi-wavelength sky observations to investigate dark energy, dark matter, neutrino masses, and primordial fluctuations
- Challenge Problem: Meld capabilities of Lagrangian particlebased approaches with Eulerian AMR methods for a unified exascale approach to: 1) characterize dark energy, test general relativity, 2) determine neutrino masses, 3) test theory of inflation, 4) investigate dark matter
- Main drivers: Establish 1) scientific capability for the challenge problem, and 2) full readiness of codes for preexascale systems in Years 2 and 3

Impact

- Well prepared for the arrival of Summit in 2018 to carry out impactful HACC simulations
- With CRK-HACC we have developed the first cosmological hydrodynamics code that can run at scale on a GPU-accelerated system
- The development of these new capabilities will have a major impact for upcoming cosmological surveys

Speed up of major HACC components on 8 Summitdev nodes vs. 32 Titan nodes (first three points: long range solver, last point: short-range solver).

Project Accomplishment

- HACC was successfully ported to Summitdev
- The HACC port included migration of the HACC short-range solver from OpenCL to CUDA
- We demonstrated expected performance comparing to Titan and validated the new CUDA version
- We implemented CRK-HACC on Summitdev and carried out a first set of tests

Monte Carlo performance optimization for full core problems

Scope and objectives

- <u>Small Modular Reactor</u> (SMR) Challenge Problems require simulation of very large number of Monte Carlo particle histories to achieve sufficient statistical accuracy
- Current goal is to enhance computational performance based on previous profiling studies
- Additional goal is to improve generation of data libraries for windowed multipole method (WMP)
 - WMP was previously limited to select number of isotopes in nuclear data libraries

2.2.2.03: ExaSMR ECP WBS Steven Hamilton, ORNL ORNL, ANL, MIT, INL Members

FOM projection for MC transport on Summit.

Machine	Device Type	Device Rate (n/s)	# Devices	Full Machine Rate (n/s)	FOM
Titan	16 core CPU	$7.1 imes 10^2$	$18,\!688$	1.32×10^7	1.0
Summit	$1 \times$ P100 GPU	$9.7 imes10^3$	$27,\!600^*$	2.68×10^8	20.3

Based on latest data from olcf.ornl.gov with ~ 4600 nodes, 6 GPUs per node

of windowed multipole method relative to reference data

GPU MC performance on depleted fuel benchmark

Impact

- Improved Monte Carlo particle tracking rate allows reduction in statistical errors
- WMP is now a viable route forward for production Monte Carlo solvers
- Optimization approaches provide insight into optimization strategies for other latency-bound application areas

Project accomplishment

- · Realized substantial performance gains on CPU, Intel Xeon Phi, and Nvidia **GPU** architectures
 - 2-3x speedup across all architectures
- Developed new vector-fitting approach for generation of WMP data libraries
 - Allows processing of data for all nuclides
- Demonstrated KPP figure-of-merit projection of 20 for Summit supercomputer relative to Titan
 - Approximated using previous generation P100 GPU, actual value expected to be larger

FY18-Q1: Deploy production sliding mesh capability with linear solver benchmarking

Scope & Objectives

- ExaWind Objective: Create a computational fluid and structural dynamics platform for exascale predictive simulations of wind farms
- Challenge Problem: <u>Predictive simulation of a wind</u> <u>plant</u> composed of O(100) wind turbines sited over O(100) km² with complex terrain
- This milestone is a necessary and critical step in moving towards MW-scale-turbine simulations
 - Establishes baseline performance for a fully resolved sub-MW-scale turbine in an operating configuration

veiceth - Magnitude 0.0+00 20 4.0+01

ECP WBS: 2.2.2.01 ExaWind PI: Michael Sprague, NREL Members: NREL, SNL, ORNL, UT

> Simulation results for a fullyresolved sub-MW-scale turbine for which the rotor resides in an embedded, rotating "disk" of fluid that is coupled to the surrounding fluid via a sliding-mesh interface. Shown are velocity shadings from the upwind (left) and downwind (right) perspectives.

Impact

- The new sliding mesh capability provides a pathway for efficient simulation of rotating meshes in wind turbine simulations
- Simulating a 1.3B element mesh is a milepost on the pathway to the extreme mesh sizes required for MW-scale-turbine simulations
- Coupling of Nalu with Hypre and MueLu provides insight into, and a comparison platform for, two fundamentally different AMG approaches (classic and smoothed aggregation); highlighted areas for future work

Project Accomplishment

- Deployed and verified a design-order hybrid CVFEM/DG sliding-mesh interface for wind turbine simulations
- Completed transition to Kokkos for interior topology matrix contributions for wind applications
- Coupled the Nalu solver with the Hypre AMG preconditioner and the TIOGA overset library
- Under the ECP ALCC ExaWind allocation on Cori, established baseline timing results for a fully resolved sub-MW-scale turbine
 - Detailed timing breakdown for MueLu/Belos and Hypre solvers
- Successfully simulated sub-MW-scale fully resolved turbine with 1.3B elements

Exascale Computing Project

PeleC Embedded Boundary Capability

Scope & Objectives

• The goal of this project is to provide a simulation capability for first-principles (DNS) and near-first principles (DNS/LES hybrids) <u>simulations of turbulence-chemistry interactions in conditions relevant to practical combustion devices</u>, including turbulence, mixing, spray vaporization, low-temperature ignition, and flame propagation.

Z-momentum on cutting plane through center of combustor geometry (body cells not blanked, inlet velocity through central pipe in inset). 1.2.1.14 Pele PI: Jackie Chen, SNL Ray Grout, NREL; Jon Rood, NREL; John Bell, Marc Day, Dan Graves LBNL

Volume rendering of density field matching image at left

Impact

- Accurate simulation of combustion at high pressure such as conditions in a diesel engine requires modeling non-ideal fluid behavior, particularly for large hydrocarbons
- Four year demonstration problem is a single sector of a gas turbine combustion; the geometry of the flame holder is needs to be captured to generate recirculation zones that anchor the flame.

Project Accomplishment and Next Steps

- Cartesian cut cell implementation in PeleC allows simulation of complex geometry using explicit diffusion treatment and method of lines approach to hyperbolic treatment
- Capability demonstration is ~30x faster than start of project baseline and 5x slower than proof of concept created by AMReX and tailored for gamma-law gas dynamics
- Calculation of diffusive and advective fluxes needs to be coordinated to improve computational throughput and reduce memory usage
- Performance engineering of initial code for more general cases (multivalued, vector potential) is next major step

Summary

 Major challenge for mission-critical HPC applications to get proportional performance moving toward exascale

- From application perspective high risk in being passive
 - Engage now with HPC vendors
 - Be aware of emerging technologies, particularly new ideas for programmability
 - Drive new science/engineering opportunities and numerical approaches by key features of hardware

