

Ohio Supercomputer Center

An **OH**·**TECH** Consortium Member

OSC Spring 2017

Brian Guilfoos Doug Johnson

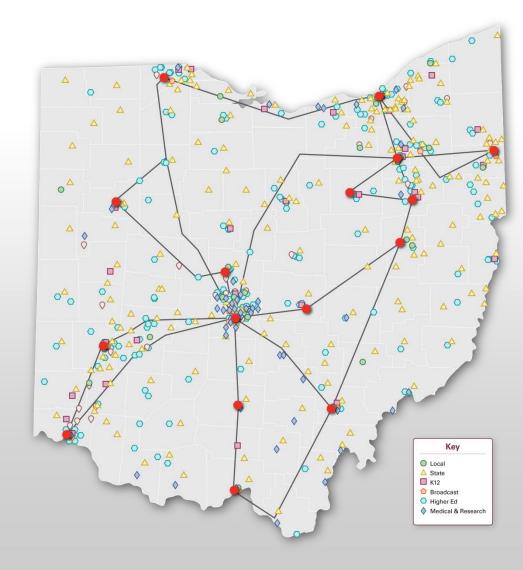
April 2017 SUG General Meeting

General Agenda

- Organizational Update
- New Services
- Hardware Futures
- Committee Reports

Client Services CY2016

supercomputers


Production Capacity CY2016

469 Active Projects CY2016

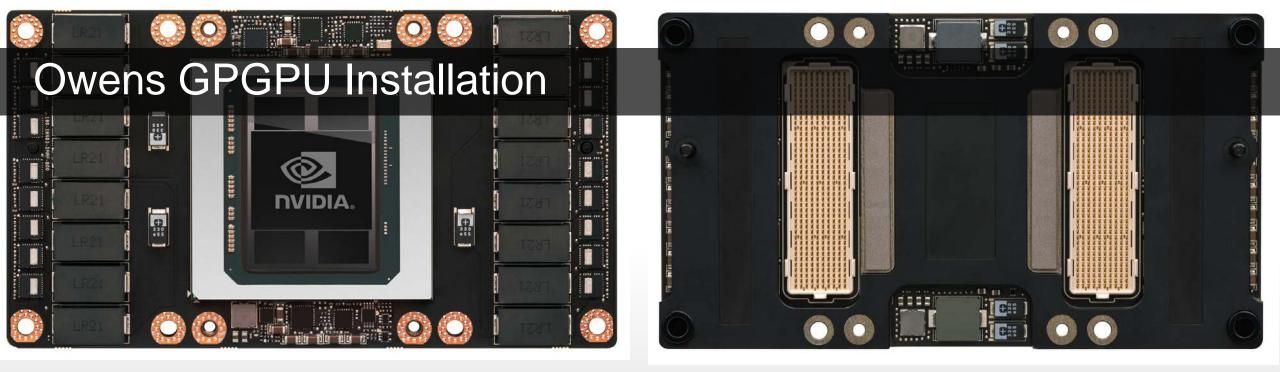
U. of Toledo 🔲		
Bowling Green State U.	Case Western Reserve U. Cleveland State U. Oberlin Coll. •	
	U. of Akron C Youngstown State U.	Key
Ohio Northern U.	 Coll. of Wooster 	
◯ Wittenberg U.	 Kenyon Coll. Nationwide Denison U. Children's 	 1-5 6-10 11-20 21+
U. of Dayton △ Wright State U. △ ○ Cedarville U. Central State U.	e U.	
∧ Miami U.		
U. of Cincinnati O Xavier U. Good Samaritan Coll.	Chio U.	

Ohio Academic Resource Network (OARnet) Update

OARnet 100 Gigabet/second network backbone with connected partners

- Owens in full production (Dedication ceremony last week!)
- Expansion of GPU services with new NVIDIA P100s
- Expansion of data analytics services
- Interactive applications via the web

- March 29th, 2017
- Well attended, with representatives from major partners, vendors, and R1 institutions in Ohio

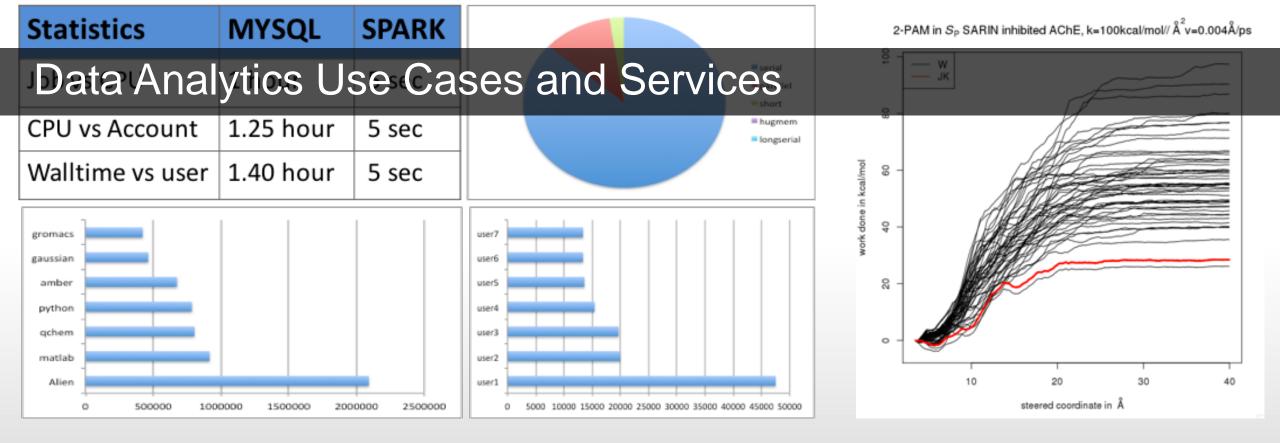

OSC Supercomputer and Storage Services

	USA					
#202 on the Top 500	Owens (2016)	Ruby (2014)	Oakley (2012)		Capacity (PB)	Bandwidth (GB/s)
Theoretical Performance (TF)	~860	~144	~154	Home Storage	0.8	10
# Nodes	824	240	692	Project Storage	3.4	40
# CPU Cores	23,392	4,800	8,304	Scratch	1.1	100
Total Memory (TB)	~120	~15.3	~33.4	Storage		
Memory per Core (GB)	4.5	3.2	4	Tape Library (backup &	5+	3.5
Interconnect Fabric (IB)	EDR	FDR/EN	QDR	archive)		

Owens Node Configurations "side-by-side" Comparison

Node Type	Compute	GPGPU	Data Analytics
Node Count	648	160	16
Core Count	28	28	48
Core Type	Broadwell	Broadwell	Haswell
Memory	128 GB	128 GB	1500 GB
Disk	1 TB	1 TB	20 TB
GPU	N/A	P100	None

- Tradeoffs: very large number of compute cores, high bandwidth memory
- Model: NVIDIA "Pascal" P100
- Purchase Price: \$770K
- Quantity: 160
- Expected Performance: ~750TF (will make Owens ~1.6PF)
- Customer availability now!



- Molecular Dynamics (MD) Simulations
 - 3X 7X faster than CPU
 - Materials Science, Biochemistry, Chemistry, Biophysics
 - Software: NAMD, LAMMPS, AMBER, GROMACS

- Machine Learning/Deep Learning
 - 4X 10x faster for "training" than CPU
 - Wide range of disciplines
 - Software : Caffe, TensorFlow, Torch

10 10 **Owens Data Analytics Nodes**

- Tradeoffs: very large memory, increased core count, large local storage
- Quantity: 16
- Cores: 48 / node (Intel Haswell)
- Memory: 1.5TB / node
- Local Disk: 24TB

Analytics on OSC Job data

•

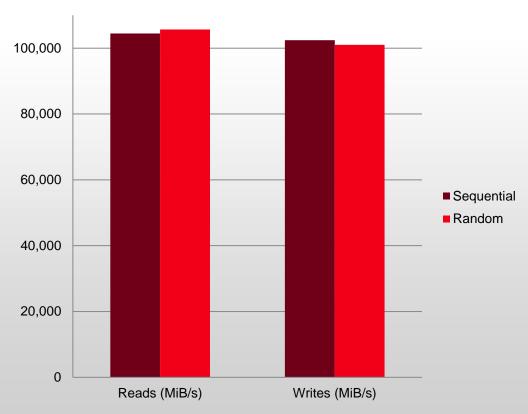
- Complex queries on historical job data
- More than 700x faster than MYSQL query of same data
- Software: Apache SPARK, PySpark

- Analysis of Simulation results
 - Large data sets from suite of simulation runs
 - Biochemistry/Bioinformatics
 - Software : VMD, R
- Other services: Hadoop, Statistical and mathematical software, high performance storage

https://ondemand3-dev.hpc.osc.edu/rnode/o0273.ten.osc

Interactive Applications via Web Browser

🗋 R demos 🗶 📑 R demos 🗶		Environment History		
		🚭 🕞 💷 Import Dataset 👻 🍕		📃 List 🕶 🞯
Demos in package 'base':		🌗 Global Environment 👻		Q,
		🕐 opar	List of 1	
error.catching	More examples on catching and handling errors	pie.sales	Named num [1:6] 0.12 0.3 0.26 0.16 0.04 0.12	
is.things recursion	Explore some properties of R objects and is.FOO() functions. Not for newbies! Using recursion for adaptive integration	pin	num [1:2] 7.72 4.38	
scoping	An illustration of lexical scoping.	scale	0.007297916666666667	
		Soft	Factor w/ 3 levels "Hard","Medium",: 1 1 1 1 1 1 1 2 2	
Demos in package 'graphics':		Temp	Factor w/ 2 levels "Low","High": 1 1 2 2 1 1 2 2 1 1	
Hershey	Tables of the characters in the Hershey vector fonts	usr	num [1:4] -131 1011 -14 634	
Japanese	Tables of the Japanese characters in the Hershey vector fonts	x	num [1:27] -12.57 -11.6 -10.63 -9.67 -8.7	
graphics image	A show of some of R's graphics capabilities The image-like graphics builtins of R	x.at	num [1:8] 100 200 300 400 500 600 700 800	
persp	Extended persp() examples	xadd	98.8038823865256	
plotmath	Examples of the use of mathematics annotation	xdelta	860	
Demos in package 'grDevices':		xscale	0.00897480620155039	
		xx	int [1:202] 0 1 2 3 4 5 6 7 8 9	
colors	A show of R's predefined colors()	у	num [1:27] -12.57 -11.6 -10.63 -9.67 -8.7	
hclColors	Exploration of hcl() space	y.at	num [1:6] 100 200 300 400 500 600	
Demos in package 'stats':		Files Plots Packages Help	Viewer	
glm.vr	Some glm() examples from V&R with several predictors	🖕 🇅 🔎 Zoom 🔎 Export 👻 🕻	n 🖌	🤹 Publish 👻 🎯
lm.glm	Some linear and generalized linear modelling examples from `An Introduction to Statistical Modelling' by Annette Dobson			
nlm	Nonlinear least-squares using nlm()			
smooth	`Visualize' steps in Tukey's smoothers			


- New capability not available at other supercomputer centers
- Accessible via a web browser with a few clicks through OSC OnDemand
- High performance computing live via a dedicated HPC node(s) (vs. local laptop)
- Currently in Beta testing: Rstudio, Jupyter Notebook for python, MATLAB

DDN Infinite Memory Engine (IME)

- "Burst Buffer" for /fs/scratch file system
- NVMe SSD based storage (same hardware as storage arrays, no spinning media)
- Logically sits between compute nodes, and file system
- Acts as write-back/read cache, or temporary storage
 - Additional tier in storage hierarchy
 - Can smooth peak demand on file system
 - Better suited for small, or unaligned writes than parallel file system

DDN IME Performance, and Status

DDN IME Bandwidth • Capac

- Capacity: ~40TB
 - Only $\frac{1}{2}$ disk slots populated
- Methods for access
 - POSIX interface, /ime/scratch instead of /fs/scratch
 - Native API
 - MPI-IO (NetCDF, HDF5, etc)
- Data location management not completely automatic
- Still in testing, friendly user availability soon

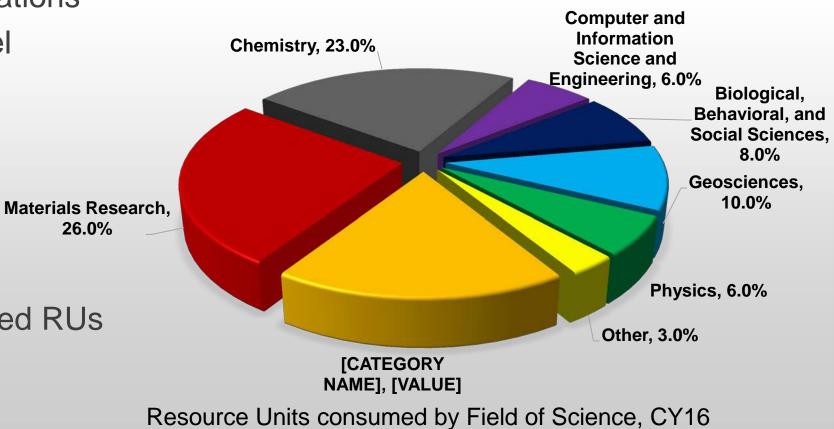
Hardware Futures

- Compute
 - Oakley decommissioning, and replacement
- Storage
 - Performance and capacity upgrades for backups
 - Infrastructure storage upgrade
 - Project storage expansion, additional tier(s) when needed
- Network
 - Upgrade to 40Gb uplink to OARnet

- OSC Workshop: Computing Services to Accelerate Research and Innovation: Thursday, April 13th @UC
- OSC Workshop: Big Data at OSC: Intro to Hadoop and Spark at OSC: Thursday, April 13th @ UC
- XSEDE Workshop: MPI: Tuesday April 18th & Thursday April 19th
- Scratch Policy public comment period closes: Friday, April 28th
- Client Survey currently open
- Office Hours at OSU's Research Commons (alternating Tuesdays) in person or remote
- OSC 30th Anniversary: TBD (Fall)

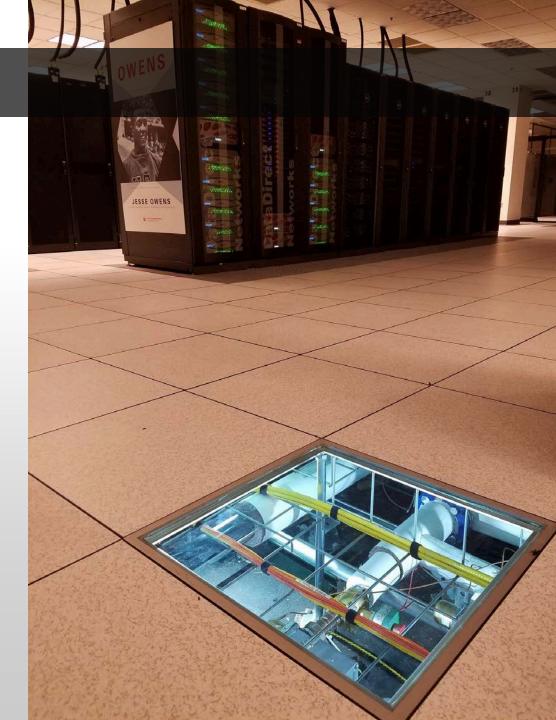
Committee Reports

www.osc.edu



Allocations Committee

- Allocations:
 - 7.7M+ RUs allocated
 - Reviewed 215 applications
 - 25 discovery-level
 - 14 major-level
 - 28 standard-level
 - 5 emerita
 - 25 classroom
 - 118 startup
 - 22 institutions allocated RUs


26.0%

- Annual Allocations (for CY16):
 - 4.9M+ RUs allocated
 - 7 institutions

Hardware Committee

John Heimaster, Committee Chair

Software Committee

New Purchase Discussion

- Comsol Server: provide non-OSU users
- Debugger: Totalview vs. DDT
- Third party hosting
 - Matlab
 - Any academic users in Ohio can use Matlab on OSC as part of our license.
- Renewal (Since Oct 2016 meeting)
 - Abaqus, pgi, CSD, Gaussian, Intel Cluster (Capital), MDCS, Turbomole
- Upcoming (during 2017 calendar year)
 - Discontinue?: CSD (Cambridge Structural Database)
 - Capital purchase: Totalview, Ansys
 - Regular renewal: Amber, Comsol, Q-chem, Star-CCM+, Schrodinger, Allinea, abaqus, pgi, Gaussian