

Ohio Supercomputer Center

An OH-TECH Consortium Member

Organizational Update: December 2015

David Hudak

Doug Johnson

Alan Chalker

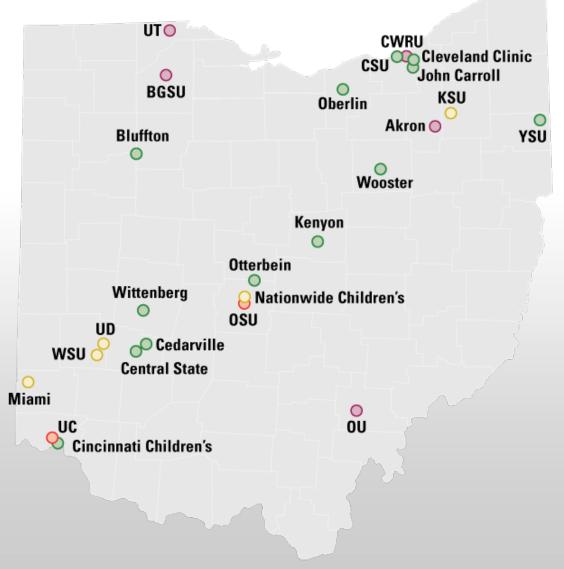
OSC Organizational Update

- Leadership changes
- State of OSC
- Roadmap
- Web app demonstration (if time)

State of OSC

Organizational Impact CY2014

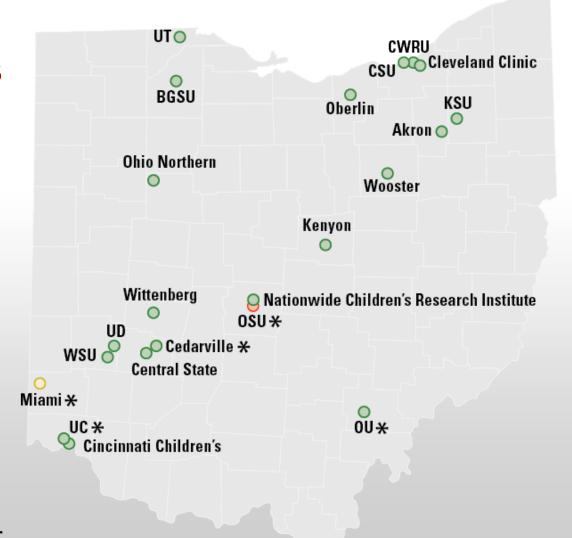
- Production Capacity
 - 87+ million CPU core-hours delivered
 - Over <u>2.2 million jobs</u>
 - 975 TB data storage space in use
 - 99.2% uptime (target: 96% cumulative uptime)*
- Client Service Summary
 - 25 universities served around the state**
 - 239 projects received allocations***
 - 1173 individuals ran a computing simulation or analysis
 - 155 individuals attended 10 training opportunities


446 Active Projects

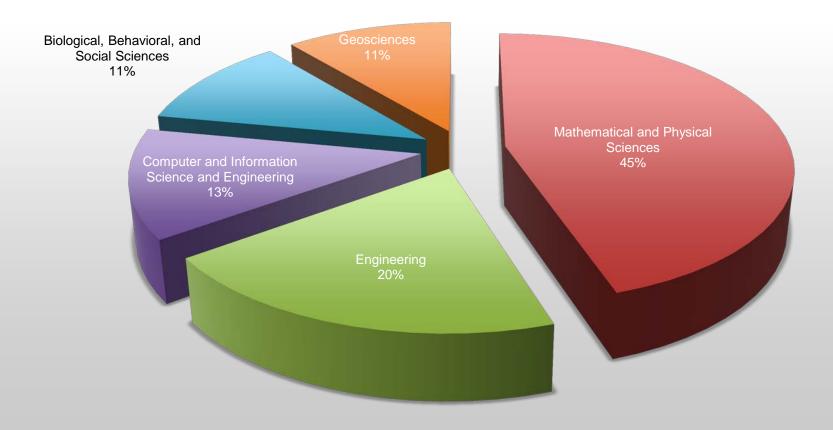
01-5

0 6 – 10

11 – 20

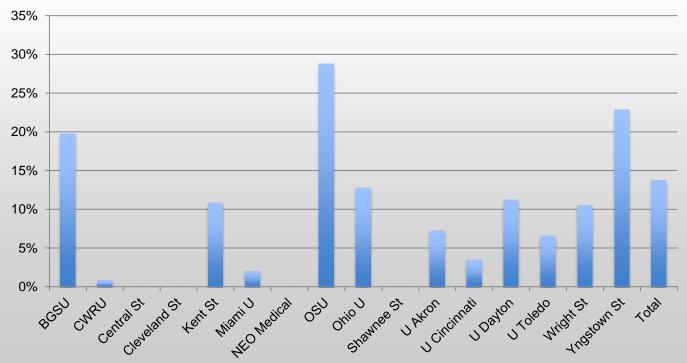

O 21+

124 New Projects


- 01-5
- 0 6 10
- 11 20
- O 21+
- * Classroom Project

Computing Resource Usage (by Field of Science)*

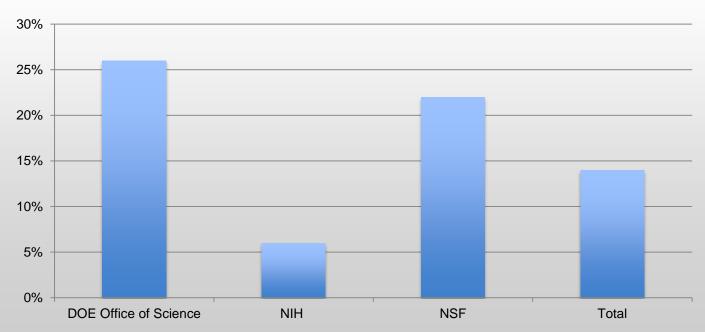
Aggregate Hours



Funded Research of OSC Clients

Of the \$1,090M in research funds (CY2014 active awards) from NIH, NSF and the DOE Office of Science, OSC clients accounted for \$150M or 14% of that funding.

OSC Client Funding per University



Funded Research of OSC Clients

Of the \$1,090M in research funds (CY2014 active awards) from NIH, NSF and the DOE Office of Science, OSC clients accounted for \$150M or 14% of that funding.

OSC Client Funding per Agency

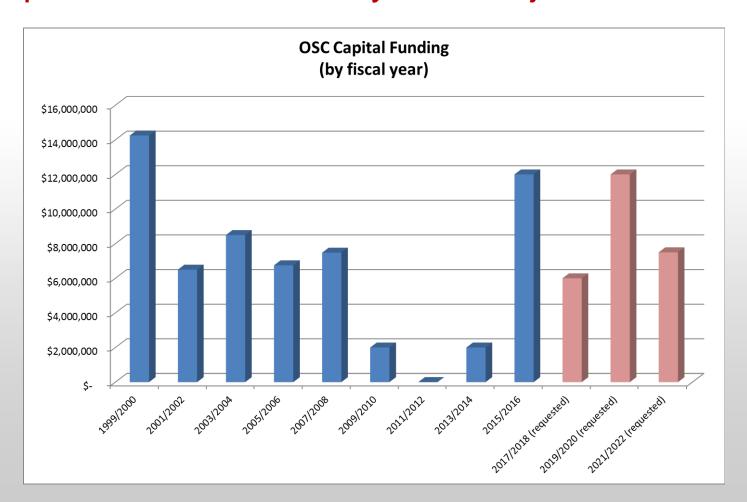
Personnel notes: Welcome new staff!

Troy Baer HPC Systems

Kate Cahill Training and Education

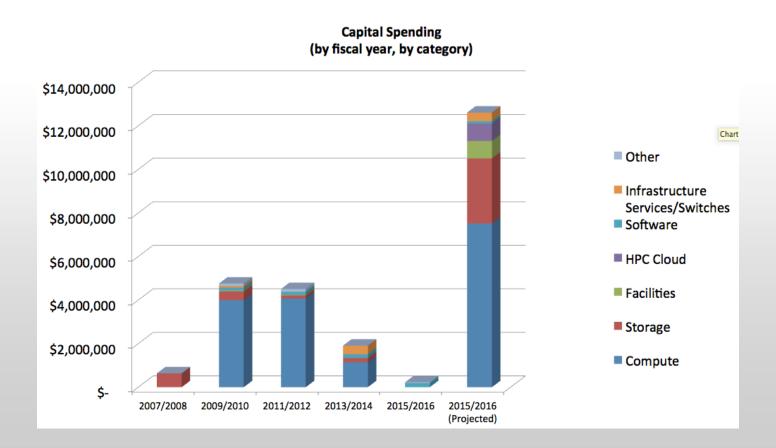
Kevin Manalo Scientific Applications

Heechang Na Scientific Applications


Shameema Oottikkal Data Applications

Personnel notes: Outstanding positions

- HPC Systems Engineer (Systems Administration)
- HPC Systems Engineer (Web &Security Infrastructure)
- AweSim Sales Representative


Capital Allocation History and Projections

Capital Spending Historical Trends

OSC Service Catalog

 Cluster Computing High Performance Computing High Throughput Computing Data-intensive Computing 	Research Data StorageProject StorageArchival Storage
Client Services24x7 Call CenterLevel 2 Engineering Support	 Client Facilitation Consultation (in-person and online) Training and Education Classroom accounts
Scientific Software DevelopmentSoftware DevelopmentSoftware Parallelization	Web Software DevelopmentSoftware DevelopmentSoftware Consulting
 Partner on Proposals Cyberinfrastructure solutions Modeling & simulation for industry 	Visualization & Virtual EnvironmentsVisualization ServicesVirtual environments (DSL)

Current Status on Condo/Hosting Agreements

- Pilot Condo Partnerships (Individual Researchers and Centers)
 - Center of Cosmology and Astro Particle Physics (CCAPP): 21 nodes
 - Datta Gaitonde, Mechanical and Aerospace Engineering: 96 nodes
 - Sameek Roychowdhury, Medical Oncology: 2 nodes
 - Honda SimCenter: integrated a rack of remote desktops into OSC systems
- In talks regarding institution level engagements
 - OSU Colleges
 - UC (UCIT)
 - Miami University

Roadmap

FY16 Supercomputer and Storage Acquisitions

Timeline	
Issue RFP	March 2015, after Red Team review
Vendor selection	October 2015
Storage delivery	February 2016
Cluster delivery	April 2016
Production operation	May/June 2016

The new resources will increase compute capacity by 4x and storage capacity by 3x.

C16, Ruby, & Oakley: System Configurations

	C16 System (2016)	Ruby System (2014)	Oakley System (2012)
Theoretical Peak Performance	~750 TF (CPU only, GPUs to be added later)	96 TF + 28.6 TF (GPU) + 20 TF (Xeon Phi) ~144 TF	88.6 TFs + 65.5 TFs (GPU) ~154 TF
# Nodes	~820	240	692
# CPU Sockets	~1640	480	1384
# CPU Cores	~23,500	4800	8304
# / Kind of Accelerators	Up to 320 PCIe cards	20 NVIDIA Tesla K40 20 Xeon Phi 5110p	128 NVIDIA M2070s
Total Memory	~120 TB	~15.3 TB	~33.4 TB
Memory per Node	128 GB, or 1.5TB	64 GB	48 GB
Memory per Core	>5 GB	3.2 GB	4 GB
Interconnect	EDR IB	FDR/EN IB	QDR IB

File System Proposed Path

- Home Directories
 - Scalable NAS appliances
 - ~900 TB usable space (~300 TB today)
- Project
 - 3.4 PB usable space (~1.1 PB today)
 - 40-50 GB/s peak performance (8-9 GB/s today)
- Scratch
 - 1 PB usable space (~570 GB today)
 - 40-50 GB/s peak performance (~10 GB/s today)

Proposed File System Path

- Advanced caching layer
 - ~45 TB raw SSD capacity
 - 100 GB/s peak performance
 - Can be scaled by 50 GB/s building blocks
 - Capacity can be grown to meet storage working set size
 - Sits between file system clients and file servers
 - Significant performance advantage for small or unaligned writes
 - Evens out performance to slower tiers of the file system
 - New software, not risk/problem free

FY16: GPU additions and HPC Cloud

- GPU additions to C16 cluster
- HPC Cloud Project
 - Some existing capital earmarked for a "cloud compute" service
 - Early design phase, collecting requirements
 - Expect to deploy in FY17

Proposed 2017/2018 Biennium Request: Next Gen Transitional Cluster, storage expansion/upgrades

- Next Gen Cluster
 - Introduce transitional cluster with new technologies
 - Expect to deploy in mid to late FY17
- Storage expansion/upgrades
 - Increase file system performance by growing advanced caching layer
 - Introduce tier of storage with large capacity, but lower performance
 - Upgrades to capacity and performance of tape library

Proposed 2019/2020 Biennium Request : New Production Resources

- Substantial new system with latest technologies
 - High-speed network integrated with CPU
 - High bandwidth memory
 - More tiers of memory
 - Non-volatile memory
 - Faster than SSD
 - More tiers of storage
 - Heterogeneous architecture