

Ohio Supercomputer Center

An **OH**·**TECH** Consortium Member

OSC Perspective

December 4, 2014

Pankaj Shah, Executive Director, OSC and OARnet OSC Vision and Strategy

OSC Vision - Draft

"A sustainable, regional supercomputer center providing innovative, best-of-class research solutions, technologies and experts to academia, industry and government, giving Ohio a global competitive and economic advantage."

Ohio Supercomputer Center

OSC Strategy for 2014-15

Emphasis on....

- Clients
- Services
- Partners / Collaborators
- Organization

OSC Priorities...

- HPC system procurement
- Sustainability and Growth
- Research
- National Partners

Ohio Supercomputer Center

OSC Leadership Team: New / Updated Roles

Strategy: Condo Models (for Comparison)

- There is a proven business case for consolidation
 - Cost avoidance (eliminating duplication)
 - Value add (higher-quality services)
 - Policy compliance (data centers with high security, D/R)
 - Scalability
- For example, research computing...
 - Initially operates at the laboratory level
 - Then consolidates at university level
- Existing "Condo" models recover costs from researchers
 - Widely adopted e.g., Purdue, Clemson, Cornell, Utah ...
 - Centrally provided core infrastructure and general resources
 - Faculty pay at cost, or marginal cost, for "owner" hardware resources
 - Startup packages, proposals, overhead
 - Extended staff support through inclusion of partial FTE on grants.

OSC Sustainability

- OSC's support is not keeping up with its demands
 - OSC's support comes predominantly from the state
 - But OSC's demand comes from universities and industry
 - When demand outstrips support, services suffer
- We are working on a model where
 - Institutions and researchers can partner with OSC
 - Condo leasing for compute and storage
 - Contributions for software licenses
 - Including OSC extended support in proposals
 - Industry can partner with OSC
 - Condo ownership and/or fee for service

Proposed Condo Model for New Cluster (2015-16)

Ohio Supercomputer Center

Ruby Condo Pilot Augments Capacity

Ohio Supercomputer Center

David Hudak, Director of Supercomputer Services
OSC Updates

www.osc.edu

Research Impact 2013-14

- Production Capacity
 - 82+ million CPU core-hours delivered
 - Over <u>3.3 million jobs</u>
 - 835 TB data storage space in use
 - 98% uptime (target: 96% cumulative uptime)
- Client Service Facts
 - **<u>24 universities</u>** served around the state
 - <u>194 new projects</u> awarded to Ohio faculty
 - 948 individuals ran a computing simulation or analysis
 - <u>330+ individuals</u> attended <u>18 training opportunities</u>

2013-14 Active **Projects by** Institution

 \bigcirc

0

0 1 - 5

0 6 - 10

10 - 20

2013-14 Computing Usage by Field of Science (FoS)

Ohio Supercomputer Center

Priorities for 2014-15

HPC and Storage Acquisitions

- Goal: \$12M HPC acquisition to put Ohio in • top 10 academic systems nationally
- Actively seeking partners to co-invest
- Proposed timeline:
 - RFP Release January 2015
 - RFP Responses March 2014
 - Vendor Selection Late March
 - Complete Procurement Spring/Summer
 - Delivery Late Summer
 - Production Operation Fall

Research Support

- Increase research impact through targeted collaborations
- Using reserves up to \$250K over 3 years to explore joint appointments with OSU, UC and CWRU
- Research and Innovation Center on hold ongoing efforts for research portal. However more communication needs to be done with UC and CWRU

Sustainability and Growth

- Improve client portfolio
- Strengthen connections with largest clients
- Extend connections to new markets (by academic discipline, institution or research group)
- **Diversify funding**
- Continued organizational restructuring
- Process improvements (NOC, ServiceNow)

National Partnerships

- Academic HPC community (e.g., XSEDE, ACI-REF, individual centers)
- Industrial modeling and simulation market (AweSim and it's related ventures)
- Collaborate on national grants with other centers - e.g. Buffalo, NY, Clemson, SC and Utah
- Provide HPC cycles and storage as Net+ ٠ services through Internet2

OSC Projects for FY15

HPC	Growth	National
Ruby deployment	Password reset	AweSim
Cluster RFP	Service Desk	Service Catalog
Cluster defaults	ServiceNow	OpenFoam/Kepler
Ethernet upgrade	Auto-Build evaluation	HP Helion Cloud
Storage upgrade	MyOSC	
Infrastructure upgrades		
New cluster deployment		

Ohio Supercomputer Center

OSC Internal Restructuring

- SCS provides production services to OSC clients
 - Bring technical teams under common leadership (Dave, Doug, Brian, Karen and Basil)
- Comprised of four groups:

<u>HPC Systems</u>	<u>HPC Client Services</u>
"Large-scale HPC production	"Outreach, engagement,
environment – infrastructure, compute	administrative services and technical
and storage"	services"
<u>Scientific Applications</u>	Web and Interface Applications
"Application-level software on OSC	"OSC OnDemand, AweSim apps and
clusters, HPC programming and	HPC apps for web and mobile
domain science expertise"	platforms"

OSC System Naming Contest

- Contest to name 2015 system
 - Contest launched at SC14
 - Inviting user community today: www.osc.edu/hpc_name
 - Concludes at Ohio Educational Tech Conference (Feb)
- Contest to provide leadership with Top 10 suggestions
- Name submissions should:
 - Reflect a strong connection to the State of Ohio
 - Communicate a positive, innovative and pioneering spirit
 - Be easily pronounced and understood
 - Be one-of-a-kind

Doug Johnson, Chief Systems Architect and HPC Systems Manager OSC Services

www.osc.edu

Ruby* Cluster

- In Early User testing now
- Small size: 240 nodes (about 1/3 size of Oakley)
- Big impact: 144 TF (Oakley is 154 TF, Glenn 60TF)
- Expanded accelerator development (GPU, Xeon Phi)
- \$1.6M purchase; 1/3 funded by condo owners

*Ruby Dee was an actress, poet, playwright, screenwriter, journalist and activist. She was born in Cleveland.

Ohio Supercomputer Center

Ruby, Oakley & Glenn: System Configurations

	Ruby System (2014)	Oakley System (2012)	Glenn System (Phase II, 2009)
Theoretical Peak Performance	96 TF + 28.6 TF (GPU) <u>+ 20 TF (Xeon Phi)</u> ~144 TF	88.6 TFs <u>+ 65.5 TFs (GPU)</u> ~154 TF	53TFs <u>+ 6 TFs (GPU)</u> ~60 TF
Number of Nodes	240	692	400
Number of CPU Sockets	480	1384	800
Number of CPU Cores	4800	8304	3200
Number / Kind of Accelerators	20 nVidia Tesla K40 20 Xeon Phi 5110p	128 nVidia M2070s	18 nVidia Quadro Plex 2000 S4's
Total Memory	~15.3 TB	~33.4 TB	~9.4 TB
Memory per Node	64 GB	48 GB	24 GB
Memory per Core	3.2 GB	4 GB	3 GB
Interconnect	FDR/EN IB	QDR IB	DDR IB

C15, Ruby, & Oakley: System Configurations

	C15 System (2015)	Ruby System (2014)	Oakley System (2012)
Theoretical Peak Performance	~1000 TF	96 TF + 28.6 TF (GPU) <u>+ 20 TF (Xeon Phi)</u> ~144 TF	88.6 TFs <u>+ 65.5 TFs (GPU)</u> ~154 TF
# Nodes	~1000	240	692
# CPU Sockets	~2000	480	1384
# CPU Cores	~24000	4800	8304
# / Kind of Accelerators	TBD	20 nVidia Tesla K40 20 Xeon Phi 5110p	128 nVidia M2070s
Total Memory	>100 TB	~15.3 TB	~33.4 TB
Memory per Node	128 GB	64 GB	48 GB
Memory per Core	~4 GB	3.2 GB	4 GB
Interconnect	EDR IB	FDR/EN IB	QDR IB

FY15 Machine Acquisition

- Timeline
 - Issue RFP, 2 month response time
 - Select vendor, 2-3 weeks
 - Complete procurement, 3 months
 - Vendor delivery, 1-2 months
 - Deployment, 2 months

Ohio Supercomputer Center

FY15 Machine Acquisition

	Current	Upgrade description
Ethernet network	10Gb connections to OARnet and OSU	40Gb connections to OARnet and OSU, 10Gb redundant circuit
Tape library	~3 PB, ~1 GB/s throughput	~6 PB, ~2 GB/s throughput, user accessible archive
GPFS "project" storage	1.1 PB, ~5 GB/s throughput	~5 PB, 30-60 GB/s throughput
Home directories	~300 TB, ~2-3 GB/s	~0.5 PB, ~10 GB/s

- Related projects
 - Facility preparations (power, cooling, space)
 - Infrastructure servers (VM servers, monitoring, DNS, etc)

Ohio Supercomputer Center

Questions

Brian Guilfoos HPC Client Services Manager Ohio Supercomputer Center guilfoos@osc.edu

1224 Kinnear Road Columbus, OH 43212 Phone: (614) 292-2846

ohiosupercomputerctr

