

Ohio Supercomputer Center

An OH-TECH Consortium Member

Introduction to High Performance Computing at the Ohio Supercomputer Center

Dr. Judy Gardiner Autumn 2014

Outline

- Overview
 - What is OSC?
 - HPC Concepts
 - Hardware Overview
 - Resource Grants and Accounts at OSC
- How to use our systems
 - User Environment
 - Batch Processing
 - Storage
 - Third-Party Software Applications
 - Policies

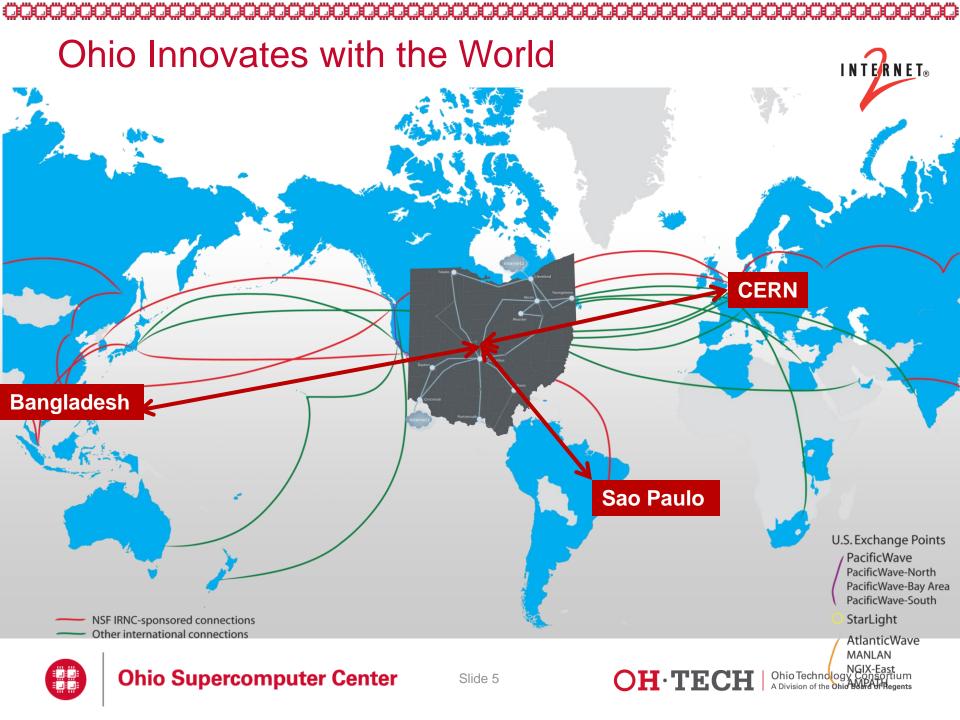
What is the Ohio Supercomputer Center?

The OH-TECH Consortium

Ohio Supercomputer Center provides high performance computing, software, storage and support services for Ohio's scientists, faculty, students, businesses and their research partners.

OARnet connects Ohio's universities, colleges, K-12, health care and state and local governments to its high-speed fiber optic network backbone. OARnet services include co-location, support desk, federated identity and virtualization.

OhioLINK serves nearly 600,000 higher education students and faculty by providing a statewide system for sharing 50 million books and library materials, while aggregating costs among its 90 member institutions.



eStudent Services provides students increased access to higher education through e-learning and technology-enhanced educational opportunities, including virtual tutoring.

Research & Innovation Center will operate, when opened, as the proving grounds for next-generation technology infrastructure innovations and a catalyst for cutting-edge research and collaboration.

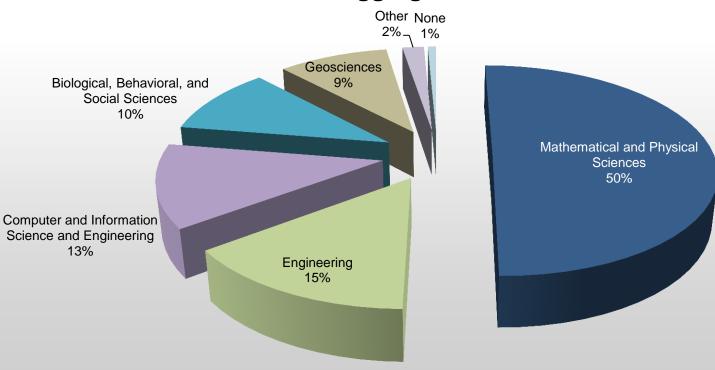
About OSC

- Founded in 1987
- Statewide resource for all universities in Ohio
 - high performance computing services
 - computational science expertise
 - " ... propel Ohio's research universities and private industry to the forefront of computational based research."
- Funded through the Ohio Board of Regents
- Reports to the Chancellor
- Located on OSU's west campus
- Fiscal agent is OSU

Research Impact FY2014

- Production Capacity
 - 82+ million CPU core-hours delivered
 - Over <u>3.3 million jobs</u>
 - 835 TB data storage space in use
 - 98% uptime (target: 96% cumulative uptime)
- Client Service Facts
 - 24 universities served around the state
 - 194 projects received allocations
 - 948 individuals ran a computing simulation or analysis
 - 330+ individuals attended 18 training opportunities

Active Projects


- 01-5
- 6 10
- 10 20
- 21+ (UC 35 & OSU 246)

Computing Resource Usage by Field of Science (FoS)

Aggregate Hours

HPC Client Services

- OSC Help
 - Help desk and basic consulting
 - Contact by phone or email (<u>oschelp@osc.edu</u>)
- Training
 - Usually three workshops per semester on a variety of topics
- Website
 - www.osc.edu/supercomputing
- Advanced consulting
 - Code parallelization & optimization
 - Software development, algorithm research

What can OSC provide you?

- "Capability computing"
 - Computation too large to run on laptop/desktop
- "Capacity computing"
 - Takes too long on laptop, need to make many runs
- Access to licensed software
 - Have academic licenses for many commercial packages
- Expertise, collaboration
 - Parallel computing, algorithms, web portals, etc.

Statewide Licensed Software

- Use the software in your lab or office
 - Connect to license server at OSC
- Software available
 - Altair Hyperworks
 - Totalview Debugger
 - Intel Compilers, Tools, Libraries
 - Portland Group Compilers
- Contact OSC Help
 - Provide your IP address

Ohio Supercomputer Center

An OH-TECH Consortium Member

HPC Concepts

Big Numbers

Prefix

- K
 - kilo, 10³, thousand
- M
 - mega, 10⁶, million
- G
 - giga, 10⁹, million
- T
 - tera, 10¹², trillion
- P
 - peta, 10¹⁵, quadrillion
- E
 - exa, 10¹⁸, quintillion

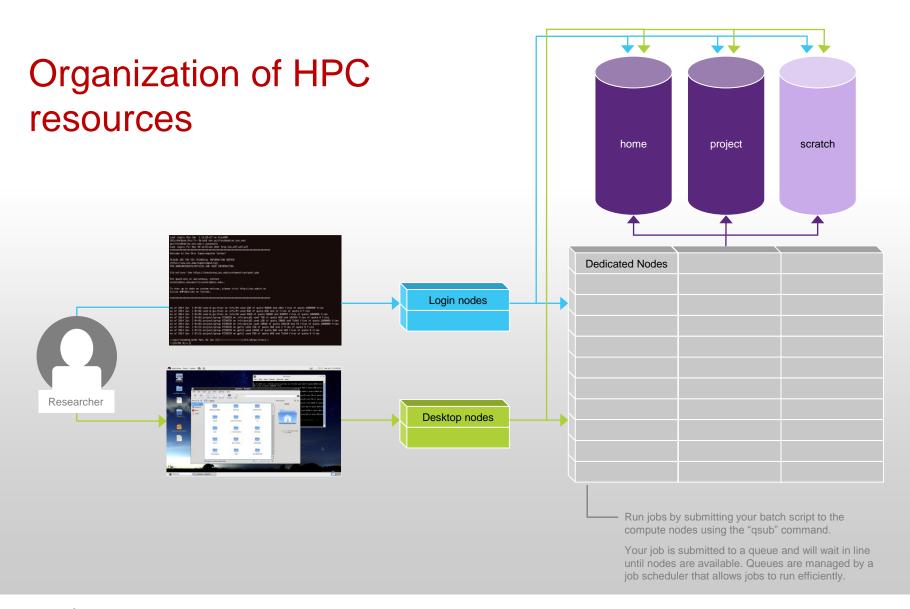
Example: bytes

- 1KB very small
- 12MB L2 cache per core
- 48GB memory per node
- .5 TB disk space per user
- 4 PB aggregate storage
- Exascale systems current research area

HPC Terminology

- Cluster
 - A group of computers (nodes) connected by a high-speed network, forming a supercomputer
- Node
 - Equivalent to a high-end workstation, part of a cluster
- Core
 - A processor (CPU), multiple cores per processor chip
- FLOPS
 - "FLoating-point Operations (calculations) Per Second"

Hardware Overview



Supercomputers at OSC

- Ruby cluster
 - Online late 2014
 - Named for Ruby Dee, actress, poet, playwright, screenwriter, journalist and activist. She was born in Cleveland
 - HP system, Intel Xeon processors, 4800 cores
- Oakley cluster
 - Online March 2012
 - Named for Annie Oakley, famous Ohio sharpshooter
 - HP system, Intel Xeon processors, 8280 cores
- Glenn cluster
 - "Glenn phase II" online July 2009
 - Named for John Glenn, Ohio astronaut and senator
 - IBM 1350, AMD Opteron processors, 3500 cores

Oakley Cluster

Login Nodes – Configuration

- Oakley 2 general-purpose login nodes
 - 12 cores, 124 GB memory each
 - Connect to oakley.osc.edu
- Glenn 2 general-purpose login nodes
 - 16 cores, 64 GB memory each
 - Connect to glenn.osc.edu
- Ruby 2 general-purpose login nodes
 - 16 cores, 124 GB memory each
 - Connect to ruby.osc.edu (limited access)

Login Nodes – Usage

- Purpose
 - Submit jobs to batch system
 - Edit files
 - Manage your files
 - Interactive work small scale
- Limits
 - 20 minutes CPU time
 - 1GB memory
- Use the batch system for serious computing!

Compute Nodes - Oakley

- 684 standard nodes
 - 12 cores per node
 - 48 GB memory (4GB/core)
 - 812 GB local disk space
- 8 large memory nodes
 - 12 cores per node
 - 192 GB memory (16GB/core)
 - 812 GB local disk space
- Network
 - Nodes connected by 40Gbit/sec Infiniband network (QDR)

Special Resources - Oakley

- GPU computing
 - 128 NVIDIA Tesla M2070 GPUs
 - 64 of the standard nodes have 2 GPUs each
- 1 huge memory node
 - 32 cores
 - 1 TB memory

Compute Nodes – Glenn

- 436 compute nodes
 - 8 cores per node
 - 24 GB memory (3GB/core)
 - 393 GB local disk space
- Network
 - Nodes connected by 20Gbit/sec Infiniband network (DDR)

Special Resources - Glenn

- GPU computing
 - 18 NVIDIA Quadro Plex S4 systems
 - Each Quadro Plex S4 has 4 Quadro FX GPUs
 - 36 of the standard nodes have 2 GPUs each

Compute Nodes – Ruby

- 240 compute nodes
 - 20 cores per node
 - 64 GB memory (3.2 GB/core)
 - 1 TB local disk space
- Intel Xeon Phi accelerators
 - 20 nodes, each with one Phi card
- Network
 - Nodes connected by 56Gbit/sec Infiniband network (FDR)
- Transitional cluster Limited access

Special Resources – Ruby

- Intel Xeon Phi accelerators
 - 20 nodes have one Phi card each
- GPU computing
 - NVIDIA Tesla K40
 - 20 nodes have 1 GPU each
- 1 huge memory node
 - 32 cores
 - 1 TB memory

Hardware Performance – Oakley

- CPU performance
 - 88 trillion floating point operations per second (TFLOPS) peak performance
 - 79 TFLOPS sustained performance
- GPU acceleration
 - 66 TFLOPS peak performance
- Total peak performance
 - 154 TFLOPS

Specs: Oakley Cluster vs. Top 500 Systems in the World

Metric	June 2012	June 2012	November 2012	November 2012	June 2013
	Performance Ranking	Efficiency Ranking	Performance Ranking	Efficiency Ranking	Ranking
Overall Ranking in the World	180 th	37 th	460 th	30 th	Not Listed
Overall Ranking in US	89 th	8 th	235 th	8 th	Not Listed
Overall Academic Ranking in the World	40 th	9 th	91 st	13 th	Not Listed
Overall Academic Ranking in US	11 th	2 nd	23 rd	2 nd	Not Listed

OSC File Space Information

- Lustre Parallel File System (Temporary Space)
 - ~570 TBs (all disk)
- GPFS
 - ~1.1PB total usable (Disk)
 - Hierarchical storage capable to tape subsystem
 - Allocated to projects in TBs, for limited time periods

- Home Directory Space / NFS
 - ~295 TBs usable (Disk)
 - Allocated to each user, 500
 GB quota limit

Mass Storage Overview

- 2 Petabytes (PBs) of usable disk
- 1100 TBs GPFS storage
- 570 TBs Lustre storage
- 1.8 PBs tape

Ohio Supercomputer Center

An OH-TECH Consortium Member

Resource Grants and Accounts at OSC

Who can get an account?

- Academic accounts
 - Principal investigator (PI) must be a full-time faculty member or research scientist at an Ohio academic institution
 - PI may authorize accounts for students, post-docs, collaborators, etc.
 - Classroom accounts are also available
 - No cost to Ohio academic users
- Commercial accounts
 - Commercial organizations may purchase time on OSC systems

Accounts and Projects at OSC

- Project
 - Headed by a PI
 - May include other users
 - Basis for accounting at OSC
 - Submit proposal for computing resources for a project
- Account
 - Username and password to access HPC systems
 - Each account associated with one project
 - Each account used by one person (please!)
 - If you work on multiple projects, you will have multiple accounts.

Allocations and Charges

- Charges are in terms of resource units
- Resource units
 - 1 resource unit (RU) = 10 CPU hours
 - CPU hour = walltime x (total # of cores requested)
- Project receives an allocation of RUs
- Jobs are charged to a project

Getting an Account

- Startup grant
 - One per PI per lifetime
 - Provide contact info, institution, department
 - 5000 RUs
- Additional allocations for a project
 - Submit a proposal for more RUs
 - Standard: 10,000
 - Major: 30,000
 - Discovery: >30,000
 - Peer-reviewed
 - Grants awarded by Statewide Users Group (SUG)

Acknowledging OSC

- Please acknowledge OSC in your publications:
 - "This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center."
- These publications should be reported to OSC through the ARMSTRONG portal.

ARMSTRONG Researcher Portal

- https://armstrong.osc.edu
- Manage your project and accounts
 - Monitor resource utilization on all your projects
 - Add authorized users (request accounts) Pls only
- View current information
 - OSC system notices
 - Research opportunities
- Post publications

ARMSTRONG Researcher Portal

https://armstrong.osc.edu

MyOSC

- Site for managing your identity at OSC
- Will be expanded to replace ARMSTRONG functionality
 - And add more!
- Update your email
- Change your password
- Recover access to your account
- Change your shell

Your Contact Info

- Keep your contact information current
 - Use my.osc.edu to manage your account details.
- If you're at OSU, monitor your <u>name.#@osu.edu</u>
- If your student continues to use OSC after graduation, make sure email address is updated
 - Acceptable if still collaborating with you
- May need to contact you about problems
- You can opt out of routine notifications

Statewide Users Group (SUG)

- · The Statewide Users Group (SUG) is made up of OSC users
 - Provides program and policy advice to OSC
 - Meets every four months
 - Headed by a chairperson elected yearly
- Standing committees
 - Allocations
 - Software and Activities
 - Hardware and Operations
- Get involved!
 - Next meeting is December 4th in Columbus
 - Expect to have an NSF program manager as the keynote

System Status

- Check system status on:
 - https://www.osc.edu/supercomputing (bottom of page)
 - https://armstrong.osc.edu/systemnotices/index.php
 - Message of the day (/etc/motd) displayed at login
 - Twitter: @HPCnotices
 - Email for major outages or problems
- Scheduled downtimes
 - Quarterly maintenance one day outage
 - Jobs held for up to two weeks prior

Demo

- Website tour: www.osc.edu
- ARMSTRONG: https://armstrong.osc.edu
- MyOSC: https://my.osc.edu/

User Environment

Linux Operating System

- "UNIX-like"
- Widely used in HPC
- Mostly command-line
- Choice of shells (bash is default)
- Freely distributable, open-source software
- Tutorials available
- www.linux.org

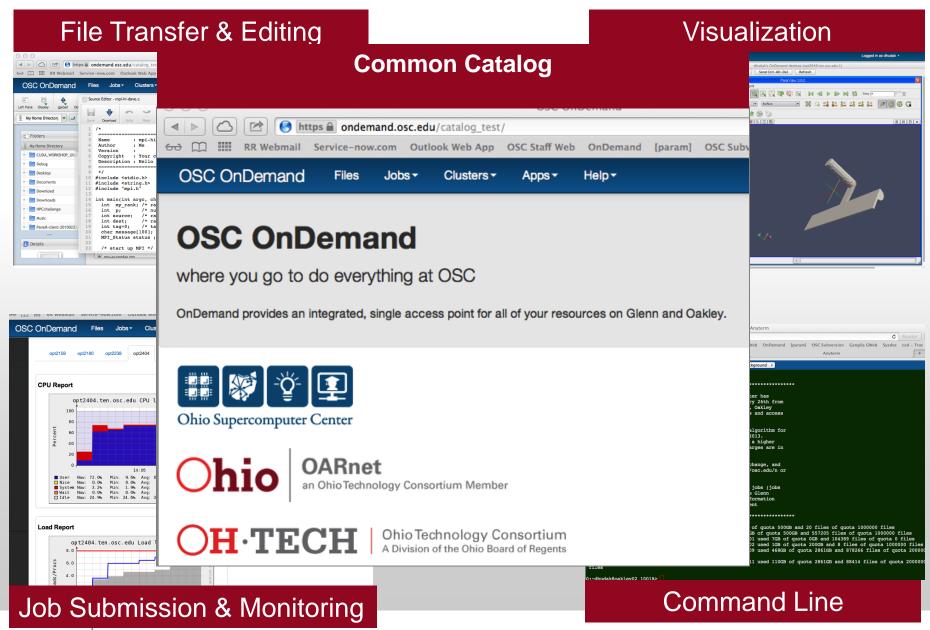
Connecting to the Oakley or Glenn Cluster

- Connect to OSC machines using ssh (secure shell)
 - From a Linux/UNIX machine: At prompt, enter ssh userid@oakley.osc.edu
 ssh userid@glenn.osc.edu
 - From a Mac: Enter ssh command in TERMINAL window
 - From Windows: ssh client software needed
 - Both commercial and free versions are available
- New: Connect using OnDemand portal (web-based)

OSC OnDemand

- 1: User Interface
 - Web based
 - Usable from computers, tablets, smartphones
 - Zero installation
 - Single point of entry
 - User needs three things
 - ondemand.osc.edu
 - OSC Username
 - OSC Password
 - Connected to all resources at OSC

- 2: Interactive Services
 - File Access
 - Job Management
 - Visualization Apps
 - Desktop access
 - Single-click apps
 (Abaqus, Ansys,
 Comsol, Paraview)
 - Terminal Access


Connecting to an OSC Cluster with Graphics

- Programs on the cluster can have an X-based GUI
 - Display graphics on your computer
- Linux/UNIX and Mac: Use -x flag
 - ssh -X userid@oakley.osc.edu
- Windows: Need extra software
 - Both commercial and free versions are available
 - Configure your ssh client to tunnel or forward X11
- Primarily used with programs on login node
 - Can also use with interactive batch jobs

Transferring Files to and from the Cluster

- Most file transfers to and from OSC machines use sftp or scp
 - Linux and Mac have them built in
 - Windows needs extra software
- For small files, connect to login node oakley.osc.edu
 glenn.osc.edu
- For large files, transfer may fail due to shell limits
 - Connect to gridftp01.osc.edu (file transfer only)

Text editing

- Traditional Unix editors
 - vi
 - emacs
 - Many books and web pages about vi and emacs
- GUI editor
 - gedit
- Simple editor
 - nano
- Can also edit on your computer and transfer files back and forth
 - dos2unix, unix2dos, mac2unix

Demo

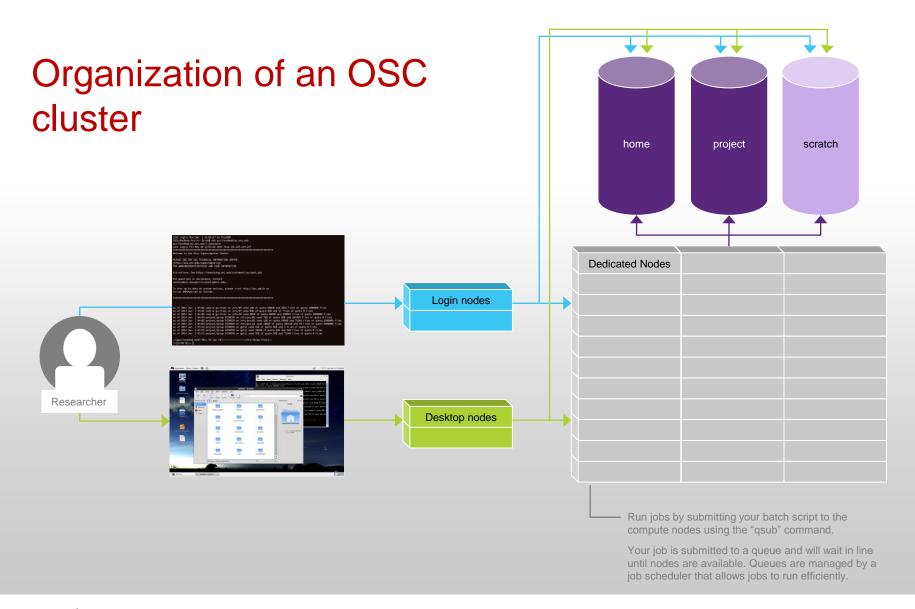
- OSC OnDemand
- ssh
- sftp
- Linux
- Home directory tree
- Text editor: nano

Modules

- Add or remove software from your environment, e.g.,
 - module load comsol
- Allow multiple versions of software to coexist on our system
- Allow us to make changes without affecting you
 - PLEASE DON'T HARDCODE PATHS!
- Can load modules at command prompt or in your
 .bash_profile or .bashrc file
- Also load modules in your job (batch) scripts

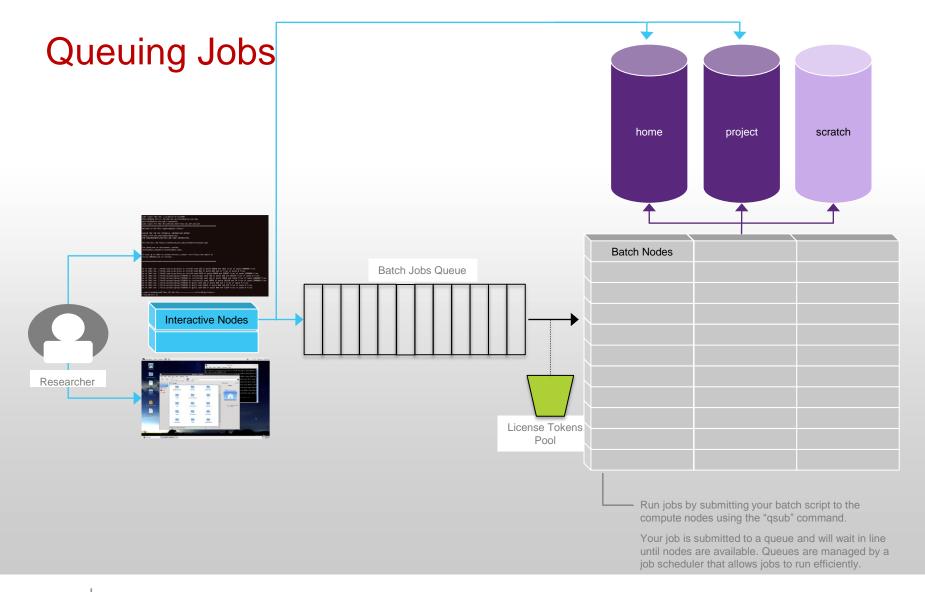
Modules and your shell environment

- How modules work
 - Modify environment variables like \$PATH and \$MANPATH within your shell
- Default set of modules loaded at login
 - module system, batch system (do not unload)
 - default compiler and MPI modules
- Do NOT completely replace \$PATH in your
 .bash_profile or .bashrc
- DO prepend directories to the existing \$PATH
 - Type: export PATH=\$HOME/bin:\$PATH


Module Commands (Oak/Glenn not the same!)

- What modules do you have loaded?
 - module list
- What modules are available?
 - module spider or module avail
- Multiple versions of the same software
 - module avail intel
- Add a software module to your environment
 - module load cuda
- Remove a software package from your environment
 - module unload intel
- Load a different software version
 - module swap intel intel/13.1.3.192

Batch Processing



Batch System at OSC

- Compute nodes are allocated through the batch system
 - PBS Portable Batch System
 - Torque resource manager
 - Moab scheduler
- Documentation at

www.osc.edu/supercomputing/batch-processing-at-osc

Idea Behind Batch Processing

- Whatever you would normally type at the command prompt goes into your batch script
- Output that would normally go to the screen goes into a log file (or files)
- The system runs your job when resources become available
- Very efficient in terms of resource utilization

Running a Job on the Compute Nodes

- Create a batch script for a job
- Submit the job
- Job gets queued
- Job runs when resources become available
- Get your results when the job finishes

Sample Batch Script

```
#PBS -N serial fluent
#PBS -1 walltime=1:00:00
                                        Job setup information
#PBS -1 nodes=1:ppn=1
                                        for PBS
#PBS -i oe
#PBS -1 software=fluent+1
                                         # This is a comment
# Set up the FLUENT environment
module load fluent
# Move to directory job was submitted from
                                                    Commands
cd $PBS O WORKDIR
                                                    to be run
# Run fluent
fluent 3d -q < run.input
                 Put all this into a text file!
```


- Command to submit a job
 - qsub script file
- Response from PBS (example)
 - 123456.oak-batch.osc.edu
- Show status of batch jobs
 - qstat -a jobid
 - qstat -u username
 - qstat -f jobid

Scheduling Policies and Limits

- Walltime limit
 - 168 hours for serial jobs (single node)
 - 96 hours for parallel jobs (multiple nodes)
- Per-user limits
 - 128 concurrently running jobs
 - 2040 processor cores in use
 - 1000 jobs in the batch system, running or queued
- Per-group limits
 - 192 concurrently running jobs
 - 2040 processor cores in use

Waiting for Your Job To Run

- Queue wait time depends on many factors
 - System load
 - Resources requested
 - nodes, cores, large memory, gpus, software licenses
 - Fair share limits (if load is high)
 - reduced priority for users or groups using a lot of resources
- To see estimated start time for job
 - showstart jobid
 - Very unreliable

Job Output

- Screen output ends up in file job_name.ojobid
 - Copied to your working directory when job ends
 - Example: testjob.o1234567
- To see screen output while job is running
 - qpeek jobid
 - Example: qpeek 1234567

Interactive Batch Jobs

- Interactive, but handled through batch system
 - Resource limits same as standard batch limits
- Useful for tasks forbidden on login nodes
 - Debug parallel programs
 - Run a GUI program that's too large for login node
- May not be practical when system load is high
 - Long wait, same as standard batch job
- To submit an interactive batch job (example)
 - qsub -I -X -l nodes=2:ppn=12 -l walltime=1:00:00

Batch Queues

- Oakley and Glenn have separate batch systems
 - Submit job and check status on the same cluster
- Debug reservation
 - A few nodes on each system are reserved for short jobs
 (≤ 1 hour)

Glenn or Oakley – Which should I choose?

- Some software installed only on one system
 - See software page for your application
- Oakley is newer and faster, with more memory
- Glenn often has shorter queue waits
- Can switch between them
 - Most sequential code will run on either system
 - Performance may be better on system code was built on
 - Keep separate executables in different subdirectories

Parallel Computing

- Each processor is fast, but real speed comes from using multiple processors
- Multithreading
 - Use multiple cores on a single node
 - Shared memory
- Message passing (MPI)
 - Use one or multiple nodes
 - Distributed memory

To Take Advantage of Parallel Computing

- Program must be written to take advantage of multiple cores and/or multiple nodes
- Many commercial applications have multithreaded or parallel versions
- Must use mpiexec for multiple nodes
- Can't just request more nodes or cores and expect your job to run faster

Specifying Resources in a Job Script

- Nodes and cores (processors) per node
- Memory
- GPUs
 - See "Batch Processing at OSC" on OSC website
- Walltime
 - Overestimate slightly job will be deleted if it hits limit
 - Shorter job may start sooner due to backfill
- Software licenses
 - See specific software page on OSC website

Ohio Supercomputer Center

An OH-TECH Consortium Member

Storage

Home Directories

- Each user has a home directory
- Visible from all OSC systems
- Backed up daily "permanent storage"
- Quotas
 - 500GB of storage per user account
 - 1,000,000 files maximum
 - Cannot create new files if over quota
 - Quota and usage info displayed at login

Project Directories

- PI may request project directory if more space needed
 - Send request to OSC Help
 - Large requests are reviewed by SUG Allocations
 Committee
 - Shared by all users in the project
- Backed up daily
- Visible from all OSC systems
- Project quota is separate from the home directory quota

Sample Quota Display

Quota display at login (information collected nightly):

```
As of 2010 Jul 15 04:02 userid usr1234 on /nfs/06 used 28GB of quota 500GB and 41374 files of quota 1000000 files

As of 2010 Jul 16 04:02 project/group PRJ0321 on /nfs/proj01 used 27GB of quota 5000GB and 573105 files of quota 1000000 files
```

Output from quota command (run manually):

File Management

- Compress large, rarely used files
 - Use gzip or bzip2 commands
- Combine large numbers of small files into an archive
 - Use tar command

Parallel File System – Lustre

- Designed to handle heavy parallel I/O load
- Faster access than home and project directories
- NOT good for small files
- Visible from all cluster nodes (shared)
- Suitable for short-term storage (up to 6 months) of large amounts of data
- Also useful as batch-managed temporary storage
- NOT backed up

Local Disk - \$TMPDIR

- Local file system on each compute node
 - 812 GB on each Oakley node
 - 393 GB on each Glenn node
- Fast use for intermediate or scratch files
- Not shared between nodes
- Not backed up
- Managed by the batch system
- Data removed when job exits

Overloading the File Servers

- "A supercomputer is a device for turning compute-bound problems into I/O-bound problems." --Ken Batcher (parallel computing pioneer)
- One user's heavy I/O load can affect responsiveness for all users on that file system
- Never do heavy I/O in your home or project directory!
- Use \$TMPDIR, copying files in and out as necessary
- Don't let large numbers of jobs run in lockstep.

Third-Party Software Applications

Access to Licensed Software

- Most software licenses for academic use only
- Some software requires signed license agreement
 - Check website
 - Contact OSC Help

- Chemistry (*license agreement required)
 - *AMBER
 - ChemTools
 - COLUMBUS
 - *CSD (Cambridge Structural Database)
 - ESPRESSO
 - GAMESS
 - *Gaussian
 - GROMACS
 - LAMMPS
 - MacroModel®
 - MEAD
 - NAMD
 - NWChem
 - Open Babel
 - *Turbomole

Bioinformatics

- Bioperl
- BLAST
- BLAT
- Bowtie
- Clustal W
- EMBOSS
- Fitmodel
- HMMER
- MrBayes
- NAMĎ
- PAML
- PAUP
- RAxML
- RepeatMasker
- TreeBeST

- Structural Mechanics (*license agreement required;
 - \$\psi\$statewide licensed)
 - *ABAQUS
 - + Altair HyperWorks
 - *ANSYS
 - COMSOL Multiphysics
 - *LSDYNA
 - LS-PREPOST

- Fluid Dynamics (*license agreement required)
 - *Fluent
 - OpenFOAM

- Mathematics/Statistics (\$\psi\$statewide licensed)
 - MATLAB (special licensing restrictions)
 - Octave
 - -R
 - Stata
 - FFTW
 - ScaLAPACK
 - MINPACK
 - sprng2
 - \$\Psi\$ Intel MKL
 - ACML (Glenn only)

- General programming software (\$\psi\$ statewide licensed)
 - gnu compilers and debugger
 - −

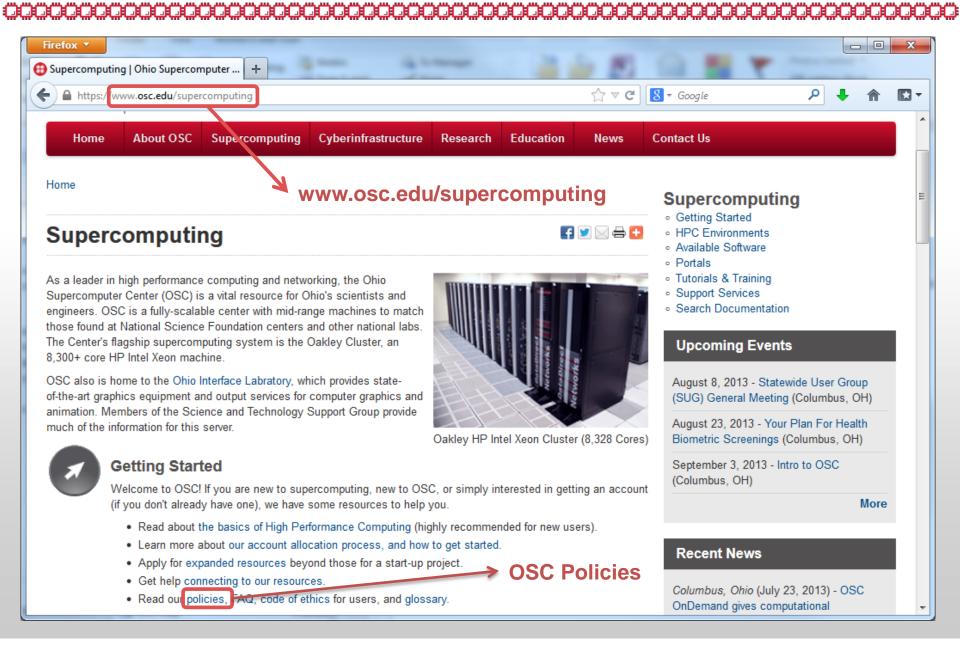
 ¶ Intel compilers
 - Totalview debugger
 - PGI compilers
 - MPI library
 - HDF5
 - NetCDF
 - Java, Java Virtual Machine
 - Python

- Parallel programming software (\$\psi\$ statewide licensed)
 - MPI library (mvapich, mvapich2)
 - OpenMP
 - CUDA
 - OpenACC

- Visualization software
 - GNUplot
 - Jmol
 - VTK
- More applications can be found at Software page: http://www.osc.edu/supercomputing/software/

OSC doesn't have the software you need?

- Commercial software
 - Fill out a request form (see our FAQ)
 - SUG will consider it
- Open-source software
 - You can install it yourself in your home directory
 - If there's enough demand, we can install it for shared use
- Have your own license?
 - Contact OSC Help



Ohio Supercomputer Center

An OH-TECH Consortium Member

OSC Policies

OSC Policies

- OSC-1, OSC Data Lifecycle Management Policy
 - Use of home directory, project directory and \$TMPDIR
 - Storage and file quotas
 - Backup and recovery

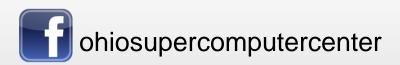
OSC Policies

- OSC-11, OSC User Management Policy
 - Who can get an account
 - Charges for accounts
 - Types of accounts
 - Account restrictions
 - Account resource units
 - Inappropriate system use

For More Information

- Visit our documentation website www.osc.edu/supercomputing
- Contact the help desk (OSC Help) M-F 9-5

oschelp@osc.edu


614-292-1800

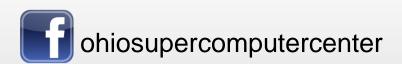
1-800-686-6472

Questions

Judy Gardiner

Scientific Applications Engineer Ohio Supercomputer Center judithg@osc.edu

1224 Kinnear Road Columbus, OH 43212 Phone: (614) 292-9623


ohiosupercomputerctr

Questions

Brian Guilfoos

HPC Client Services Manager Ohio Supercomputer Center guilfoos@osc.edu

1224 Kinnear Road Columbus, OH 43212 Phone: (614) 292-2846

ohiosupercomputerctr

