Computing Services to Accelerate Research and Innovation

Dr. Judy Gardiner
Autumn 2015

Outline

• Overview
 – What is OSC?
 – HPC Concepts
 – Hardware Overview
 – Resource Grants and Accounts at OSC

• How to use our systems
 – User Environment
 – Batch Processing
 – Storage
 – Third-Party Software Applications
 – Policies
What is the Ohio Supercomputer Center?

www.osc.edu

The OH-TECH Consortium

<table>
<thead>
<tr>
<th>Ohio Supercomputer Center</th>
<th>provides high performance computing, software, storage and support services for Ohio’s scientists, faculty, students, businesses and their research partners.</th>
</tr>
</thead>
<tbody>
<tr>
<td>OARnet</td>
<td>connects Ohio’s universities, colleges, K-12, health care and state and local governments to its high-speed fiber optic network backbone. OARnet services include co-location, support desk, federated identity and virtualization.</td>
</tr>
<tr>
<td>OhioLINK</td>
<td>serves nearly 600,000 higher education students and faculty by providing a statewide system for sharing 50 million books and library materials, while aggregating costs among its 90 member institutions.</td>
</tr>
<tr>
<td>eStudent Services</td>
<td>provides students increased access to higher education through e-learning and technology-enhanced educational opportunities, including virtual tutoring.</td>
</tr>
<tr>
<td>Research & Innovation Center</td>
<td>will operate, when opened, as the proving grounds for next-generation technology infrastructure innovations and a catalyst for cutting-edge research and collaboration.</td>
</tr>
</tbody>
</table>

www.osc.edu
About OSC

- Founded in 1987
- Statewide resource for all universities in Ohio
 - high performance computing services
 - computational science expertise
 - “… propel Ohio’s research universities and private industry to the forefront of computational based research.”
- Funded through the Ohio Department of Higher Education
- Reports to the Chancellor
- Located on OSU’s west campus
- Fiscal agent is OSU
Research Impact FY2014

• Production Capacity
 – **82+ million CPU core-hours** delivered
 – Over **3.3 million jobs**
 – **835 TB data storage** space in use
 – **98% uptime** (target: 96% cumulative uptime)

• Client Service Facts
 – **24 universities** served around the state
 – **194 projects** received allocations
 – **948 individuals** ran a computing simulation or analysis
 – **330+ individuals** attended **18 training opportunities**

Active Projects

- 1 – 5
- 6 – 10
- 10 – 20
- 21+ (UC 35 & OSU 246)
Computing Resource Usage by Field of Science (FoS)

Aggregate Hours

- Mathematical and Physical Sciences: 50%
- Computer and Information Science and Engineering: 13%
- Biological, Behavioral, and Social Sciences: 10%
- Geosciences: 9%
- Engineering: 15%
- Other: 2%
- None: 1%

HPC Client Services

- Technical Assistance
 - Help desk and basic consulting
 - Contact by phone or email (oschelp@osc.edu)
- Facilitation
 - Meet with OSC staff to discuss your research needs
 - Get recommendations on services, connections to subject matter experts, and specialized projects initiated
- Project Administration
 - Manage allocations
 - Add/Remove authorized users
 - Utilization reports
- Training
 - Usually three workshops per semester on a variety of topics
- Advanced consulting
 - Code parallelization & optimization
 - Software development, algorithm research
- Website
 - www.osc.edu/supercomputing
What can OSC provide you?

• You can complete your research for less cost.
• You can do more science for the same cost.
• You can get to solution faster.

What can OSC provide you?

• “Capability computing” (High Performance Computing)
 – Computation too large to run on laptop/desktop
• “Capacity computing” (High Throughput Computing)
 – Takes too long on laptop, need to make many runs
• Data Analytics
 – Massive memory requirements
• Access to licensed software
 – Have academic licenses for many commercial packages
• Expertise, collaboration
 – Parallel computing, algorithms, web portals, etc.
Statewide Licensed Software

• Use the software in your lab or office
 – Connect to license server at OSC
• Software available
 – Altair Hyperworks
 – Totalview Debugger
 – Intel Compilers, Tools, Libraries
 – Portland Group Compilers
• Contact OSC Help
 – Provide your IP address

HPC Concepts

www.osc.edu
Big Numbers

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Example: bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>K – kilo, 10^3, thousand</td>
<td>• 1KB – very small</td>
</tr>
<tr>
<td>M – mega, 10^6, million</td>
<td>• 12MB L2 cache per core</td>
</tr>
<tr>
<td>G – giga, 10^9, million</td>
<td>• 48GB memory per node</td>
</tr>
<tr>
<td>T – tera, 10^{12}, trillion</td>
<td>• .5 TB disk space per user</td>
</tr>
<tr>
<td>P – peta, 10^{15}, quadrillion</td>
<td>• 4 PB aggregate storage</td>
</tr>
<tr>
<td>E – exa, 10^{18}, quintillion</td>
<td>• Exascale systems – current research area</td>
</tr>
</tbody>
</table>

HPC Terminology

• Cluster
 – A group of computers (nodes) connected by a high-speed network, forming a supercomputer
• Node
 – Equivalent to a high-end workstation, part of a cluster
• Core
 – A processor (CPU), multiple cores per processor chip
• FLOPS
 – “FLoating-point Operations (calculations) Per Second”
Supercomputers at OSC

- Ruby cluster (small cluster, limited access)
 - Online March 2015
 - Named for Ruby Dee, actress, poet, playwright, screenwriter, journalist and activist. She was born in Cleveland.
 - HP system, Intel Xeon processors, 4800 cores
- Oakley cluster
 - Online March 2012
 - Named for Annie Oakley, famous Ohio sharpshooter
 - HP system, Intel Xeon processors, 8280 cores
- Glenn cluster
 - “Glenn phase II” online July 2009
 - Named for John Glenn, Ohio astronaut and senator
 - IBM 1350, AMD Opteron processors, 3500 cores
Run jobs by submitting your batch script to the compute nodes using the "qsub" command. Your job is submitted to a queue and will wait in line until nodes are available. Queues are managed by a job scheduler that allows jobs to run efficiently.
Login Nodes – Configuration

- Oakley
 - 2 general-purpose login nodes
 - 12 cores, 124 GB memory each
 - Connect to oakley.osc.edu
- Ruby
 - 2 general-purpose login nodes
 - 20 cores, 132 GB memory each
 - Connect to ruby.osc.edu
- Glenn
 - 2 general-purpose login nodes
 - 16 cores, 64 GB memory each
 - Connect to glenn.osc.edu

Login Nodes – Usage

- Purpose
 - Submit jobs to batch system
 - Edit files
 - Manage your files
 - Interactive work – small scale
- Limits
 - 20 minutes CPU time
 - 1GB memory
- Use the batch system for serious computing!
Compute Nodes – Oakley

- 684 standard nodes
 - 12 cores per node
 - 48 GB memory (4GB/core)
 - 812 GB local disk space
- 8 large memory nodes
 - 12 cores per node
 - 192 GB memory (16GB/core)
 - 812 GB local disk space
- Network
 - Nodes connected by 40Gbit/sec Infiniband network (QDR)

Special Resources – Oakley

- GPU computing
 - 128 NVIDIA Tesla M2070 GPUs
 - 64 of the standard nodes have 2 GPUs each
- 1 huge memory node
 - 32 cores
 - 1 TB memory
Compute Nodes – Ruby

• 240 standard nodes
 – 20 cores per node
 – 64 GB memory (3.2GB/core)
 – 1 TB local disk space
• Network
 – FDR Infiniband interconnect

Special Resources – Ruby

• GPU computing
 – 20 NVIDIA Tesla K40 GPUs
• Intel Xeon Phi accelerators
 – 20 Intel Xeon Phi 5110p coprocessors
• 1 huge memory node
 – 32 cores
 – 1 TB memory
Compute Nodes – Glenn

- 436 compute nodes
 - 8 cores per node
 - 24 GB memory (3GB/core)
 - 393 GB local disk space

Network
- Nodes connected by 20Gbit/sec Infiniband network (DDR)

Special Resources – Glenn

- GPU computing
 - 18 NVIDIA Quadro Plex S4 systems
 - Each Quadro Plex S4 has 4 Quadro FX GPUs
 - 36 of the standard nodes have 2 GPUs each
Hardware Performance – Oakley

- CPU performance
 - 88 trillion floating point operations per second (TFLOPS) peak performance
 - 79 TFLOPS sustained performance
- GPU acceleration
 - 66 TFLOPS peak performance
- Total peak performance
 - 154 TFLOPS

Specs: Oakley Cluster vs. Top 500 Systems in the World

<table>
<thead>
<tr>
<th>Metric</th>
<th>June 2012</th>
<th>June 2012</th>
<th>November 2012</th>
<th>November 2012</th>
<th>June 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overall Ranking in the World</td>
<td>180th</td>
<td>37th</td>
<td>460th</td>
<td>30th</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Overall Ranking in US</td>
<td>89th</td>
<td>8th</td>
<td>235th</td>
<td>8th</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Overall Academic Ranking in the World</td>
<td>40th</td>
<td>9th</td>
<td>91st</td>
<td>13th</td>
<td>Not Listed</td>
</tr>
<tr>
<td>Overall Academic Ranking in US</td>
<td>11th</td>
<td>2nd</td>
<td>23rd</td>
<td>2nd</td>
<td>Not Listed</td>
</tr>
</tbody>
</table>
OSC File Space Information

- Lustre – Parallel File System (Temporary Space)
 - ~570 TBs (all disk)
- GPFS
 - ~1.1PB total usable (Disk)
 - Hierarchical storage capable to tape subsystem
 - Allocated to projects in TBs, for limited time periods
- Home Directory Space / NFS
 - ~295 TBs usable (Disk)
 - Allocated to each user, 500 GB quota limit

Mass Storage Overview

- 2 Petabytes (PBs) of usable disk
- 1100 TBs GPFS storage
- 570 TBs Lustre storage
- 1.8 PBs tape

Resource Grants and Accounts at OSC

www.osc.edu
Who can get an account?

- Academic accounts
 - Principal investigator (PI) must be a full-time faculty member or research scientist at an Ohio academic institution
 - PI may authorize accounts for students, post-docs, collaborators, etc.
 - Classroom accounts are also available
 - No cost to Ohio academic users
- Commercial accounts
 - Commercial organizations may purchase time on OSC systems

Accounts and Projects at OSC

- Project
 - Headed by a PI
 - May include other users
 - Basis for accounting at OSC
 - Submit proposal for computing resources for a project
- Account
 - Username and password to access HPC systems
 - Each account associated with one project
 - Each account used by one person (please!)
 - If you work on multiple projects, you will have multiple accounts.
Allocations and Charges

- Charges are in terms of resource units
- Resource units
 - 1 resource unit (RU) = 10 CPU hours
 - CPU hour = walltime x (total # of cores requested)
- Project receives an allocation of RUs
- Jobs are charged to a project

Getting an Account

- Startup grant
 - One per PI per lifetime
 - Provide contact info, institution, department
 - 5000 RUs
- Additional allocations for a project
 - Submit a proposal for more RUs
 - Standard: 10,000
 - Major: 30,000
 - Discovery: >30,000
 - Peer-reviewed
 - Grants awarded by Statewide Users Group (SUG)
Citing OSC

• Please cite OSC in your publications:
 – Details at www.osc.edu/citation
• These publications should be reported to OSC

ARMSTRONG Researcher Portal

• https://armstrong.osc.edu
• Manage your project and accounts
 – Monitor resource utilization on all your projects
 – Add authorized users (request accounts) – PIs only
• View current information
 – OSC system notices
 – Research opportunities
• Post publications
ARMSTRONG Researcher Portal
https://armstrong.osc.edu

MyOSC

- Site for managing your identity at OSC
- Update your email
- Change your password
- Recover access to your account
- Change your shell
- And a lot more in the future
 - Project reporting
 - Authorized user management
 - Requesting services (e.g. software access)
Your Contact Info

- Keep your contact information current
 - Use my.osc.edu to manage your account details.
- If your student continues to use OSC after graduation, make sure email address is updated
 - Acceptable if still collaborating with you
- May need to contact you about problems
- Will need to contact you about regular password changes
- You can opt out of routine notifications

Statewide Users Group (SUG)

- The Statewide Users Group (SUG) is made up of OSC users
 - Provides program and policy advice to OSC
 - Meets twice a year
 - Headed by a chairperson elected yearly
- Standing committees
 - Allocations
 - Software and Activities
 - Hardware and Operations
- Get involved!
 - Next meeting is December 3rd in Columbus
System Status

- Check system status on:
 - https://www.osc.edu/supercomputing (bottom of page)
 - https://armstrong.osc.edu/systemnotices/index.php
 - Message of the day (/etc/motd) – displayed at login
 - Twitter: @HPCnotices
 - Email for major outages or problems

- Scheduled downtimes
 - Quarterly maintenance – one day outage
 - Jobs held for up to two weeks prior

Demo

- Website tour: www.osc.edu
- ARMSTRONG: https://armstrong.osc.edu
- MyOSC: https://my.osc.edu
Demo

- Website tour: www.osc.edu
- MyOSC: https://my.osc.edu/
Linux Operating System

- “UNIX-like”
- Widely used in HPC
- Mostly command-line
- Choice of shells (bash is default)
- Freely distributable, open-source software
- Tutorials available
- www.linux.org

Connecting to the Oakley, Ruby, or Glenn Cluster

- Connect to OSC machines using ssh (secure shell)
 - From a Linux/UNIX machine: At prompt, enter
 ssh userid@oakley.osc.edu
 ssh userid@ruby.osc.edu
 ssh userid@glenn.osc.edu
 - From a Mac: Enter ssh command in TERMINAL window
 - From Windows: ssh client software needed
 - Both commercial and free versions are available
- New: Connect using OnDemand portal (web-based)
OSC OnDemand

1: User Interface
 - Web based
 • Usable from computers, tablets, smartphones
 • Zero installation
 - Single point of entry
 • User needs three things
 – ondemand.osc.edu
 – OSC Username
 – OSC Password
 • Connected to all resources at OSC

2: Interactive Services
 - File Access
 - Job Management
 - Visualization Apps
 • Desktop access
 • Single-click apps (Abaqus, Ansys, Comsol, Paraview)
 - Terminal Access

Connecting to an OSC Cluster with Graphics

- Programs on the cluster can have an X-based GUI
 - Display graphics on your computer
- Linux/UNIX and Mac: Use -X flag
  ```bash
  ssh -X userid@oakley.osc.edu
  ```
- Windows: Need extra software
 - Both commercial and free versions are available
 - Configure your ssh client to tunnel or forward X11
- Primarily used with programs on login node
 - Can also use with interactive batch jobs
Transferring Files to and from the Cluster

- Most file transfers to and from OSC machines use **sftp** or **scp**
 - Linux and Mac have them built in
 - Windows needs extra software
- For small files, connect to login node
 oakley.osc.edu
 glenn.osc.edu
- For large files, transfer may fail due to shell limits
 - Connect to gridftp01.osc.edu (file transfer only)
Text editing

- Traditional Unix editors
 - vi
 - emacs
 - Many books and web pages about vi and emacs
- GUI editor
 - gedit
- Simple editor
 - nano
- Can also edit on your computer and transfer files back and forth
 - dos2unix, unix2dox, mac2unix

Demo

- OSC OnDemand
- ssh
- sftp
- Linux
- Home directory tree
- Text editor: nano
Modules

- Add or remove software from your environment, e.g.,
 - `module load comsol`
- Allow multiple versions of software to coexist on our system
- Allow us to make changes without affecting you
 - PLEASE DON’T HARDCODE PATHS!
- Can load modules at command prompt or in your `.bash_profile` or `.bashrc` file
- Also load modules in your job (batch) scripts

Modules and your shell environment

- How modules work
 - Modify environment variables like `$PATH` and `$MANPATH` within your shell
- Default set of modules loaded at login
 - module system, batch system (do not unload)
 - default compiler and MPI modules
- Do NOT completely replace `$PATH` in your `.bash_profile` or `.bashrc`
- DO prepend directories to the existing `$PATH`
 - Type: `export PATH=$HOME/bin:$PATH`
Module Commands (Oak/Glenn not the same!)

- What modules do you have loaded?
 - module list
- What modules are available?
 - module spider or module avail
- Multiple versions of the same software
 - module avail intel
- Add a software module to your environment
 - module load cuda
- Remove a software package from your environment
 - module unload intel
- Load a different software version
 - module swap intel intel/13.1.3.192

Batch Processing
Run jobs by submitting your batch script to the compute nodes using the "qsub" command. Your job is submitted to a queue and will wait in line until slots are available. Queues are managed by a job scheduler that allows jobs to run efficiently.

Batch System at OSC

- Compute nodes are allocated through the batch system
 - PBS – Portable Batch System
 - Torque – resource manager
 - Moab – scheduler
- Documentation at www.osc.edu/supercomputing/batch-processing-at-osc
Run jobs by submitting your batch script to the compute nodes using the "qsub" command. Your job is submitted to a queue and scheduled to run until slots are available. Queues are managed by a job scheduler that allows jobs to run efficiently.

Idea Behind Batch Processing

- Whatever you would normally type at the command prompt goes into your batch script
- Output that would normally go to the screen goes into a log file (or files)
- The system runs your job when resources become available
- Very efficient in terms of resource utilization
Running a Job on the Compute Nodes

- Create a batch script for a job
- Submit the job
- Job gets queued
- Job runs when resources become available
- Get your results when the job finishes

Sample Batch Script

```bash
#PBS -N serial_fluent
#PBS -l walltime=1:00:00
#PBS -l nodes=1:ppn=1
#PBS -j oe
#PBS -l software=fluent+1

# Set up the FLUENT environment
module load fluent

# Move to directory job was submitted from
cd $PBS_O_WORKDIR

# Run fluent
fluent 3d -g < run.input
```

Job setup information for PBS

This is a comment

Commands to be run

Put all this into a text file!
Submitting a Job and Checking Status

- Command to submit a job
 - `qsub script_file`
- Response from PBS (example)
 - `123456.oak-batch.osc.edu`
- Show status of batch jobs
 - `qstat -a jobid`
 - `qstat -u username`
 - `qstat -f jobid`

Scheduling Policies and Limits

- Walltime limit
 - 168 hours for serial jobs (single node)
 - 96 hours for parallel jobs (multiple nodes)
- Per-user limits
 - 128 concurrently running jobs
 - 2040 processor cores in use
 - 1000 jobs in the batch system, running or queued
- Per-group limits
 - 192 concurrently running jobs
 - 2040 processor cores in use
Waiting for Your Job To Run

• Queue wait time depends on many factors
 – System load
 – Resources requested
 • nodes, cores, large memory, gpus, software licenses
 – Fair share limits (if load is high)
 • reduced priority for users or groups using a lot of resources
• To see estimated start time for job
 – showstart jobid
 – Very unreliable
Job Output

- Screen output ends up in file `job_name.ojobid`
 - Copied to your working directory when job ends
 - Example: `testjob.o1234567`
- To see screen output while job is running
 - `qpeek jobid`
 - Example: `qpeek 1234567`

Interactive Batch Jobs

- Interactive, but handled through batch system
 - Resource limits same as standard batch limits
- Useful for tasks forbidden on login nodes
 - Debug parallel programs
 - Run a GUI program that's too large for login node
- May not be practical when system load is high
 - Long wait, same as standard batch job
- To submit an interactive batch job (example)
 - `qsub -I -X -l nodes=2:ppn=12 -l walltime=1:00:00`
Batch Queues

- Oakley, Ruby, and Glenn have separate batch systems
 - Submit job and check status on the same cluster
- Debug reservation
 - A few nodes on each system are reserved for short jobs (≤ 1 hour)
 - Special flag required on Ruby: -q debug

Glenn or Oakley – Which should I choose?

- Some software installed only on one system
 - See software page for your application
- Oakley is newer and faster, with more memory
- Glenn often has shorter queue waits
- Can switch between them
 - Most sequential code will run on either system
 - Performance may be better on system code was built on
 - Keep separate executables in different subdirectories
Parallel Computing

• Each processor is fast, but real speed comes from using multiple processors
• Multithreading
 – Use multiple cores on a single node
 – Shared memory
• Message passing (MPI)
 – Use one or multiple nodes
 – Distributed memory

To Take Advantage of Parallel Computing

• Program must be written to take advantage of multiple cores and/or multiple nodes
• Many commercial applications have multithreaded or parallel versions
• Must use mpiexec for multiple nodes
• Can’t just request more nodes or cores and expect your job to run faster
Specifying Resources in a Job Script

• Nodes and cores (processors) per node
• Memory
• GPUs
 – See “Batch Processing at OSC” on OSC website
• Walltime
 – Overestimate slightly – job will be deleted if it hits limit
 – Shorter job may start sooner due to backfill
• Software licenses
 – See specific software page on OSC website

Storage

www.osc.edu
Home Directories

- Each user has a home directory
- Visible from all OSC systems
- Backed up daily – “permanent storage”
- Quotas
 - 500GB of storage per user account
 - 1,000,000 files maximum
 - Cannot create new files if over quota
 - Quota and usage info displayed at login

Project Directories

- PI may request project directory if more space needed
 - Send request to OSC Help
 - Large requests are reviewed by SUG Allocations Committee
 - Shared by all users in the project
- Backed up daily
- Visible from all OSC systems
- Project quota is separate from the home directory quota
Sample Quota Display

Quota display at login (information collected nightly):

As of 2010 Jul 15 04:02 userid usr1234 on /nfs/06 used 28GB of quota 500GB and 41374 files of quota 1000000 files
As of 2010 Jul 16 04:02 project/group PRJ0321 on /nfs/proj01 used 27GB of quota 5000GB and 573105 files of quota 1000000 files

Output from `quota` command (run manually):

```
Disk quotas for user usr1234 (uid 11059):
Filesystem    blocks  quota  limit  grace  files  quota  limit  grace
fs06-oak.ten.osc.edu:/nfs/06/osc  201698292  450000000 524288000          631137  950000 1000000
```

File Management

- Compress large, rarely used files
 - Use `gzip` or `bzip2` commands
- Combine large numbers of small files into an archive
 - Use `tar` command
Parallel File System – Lustre

• Designed to handle heavy parallel I/O load
• Faster access than home and project directories
• NOT good for small files
• Visible from all cluster nodes (shared)
• Suitable for short-term storage (up to 6 months) of large amounts of data
• Also useful as batch-managed temporary storage
• **Scratch storage – NOT backed up!**

Local Disk – $TMPDIR

• Local file system on each compute node
 – 812 GB on each Oakley node
 – 1000 GB on each Ruby node
 – 393 GB on each Glenn node
• Fast – use for intermediate or scratch files
• Not shared between nodes
• Not backed up
• Managed by the batch system
• Data removed when job exits
Overloading the File Servers

• “A supercomputer is a device for turning compute-bound problems into I/O-bound problems.” --Ken Batcher (parallel computing pioneer)
• One user’s heavy I/O load can affect responsiveness for all users on that file system
• **Never** do heavy I/O in your home or project directory!
• Use $TMPDIR, copying files in and out as necessary
• Don’t let large numbers of jobs run in lockstep.
Access to Licensed Software

- Most software licenses for academic use only
- Some software requires signed license agreement
 - Check website
 - Contact OSC Help

Third party applications

- **Chemistry** (*license agreement required)
 - *AMBER
 - ChemTools
 - COLUMBUS
 - *CSD (Cambridge Structural Database)
 - ESPRESSO
 - GAMESS
 - *Gaussian
 - GROMACS
 - LAMMPS
 - MacroModel®
 - MEAD
 - NAMD
 - NWChem
 - Open Babel
 - *Turbomole
Third party applications

• Bioinformatics
 – BioPerl
 – BLAST
 – BLAT
 – Bowtie
 – Clustal W
 – EMBoss
 – FilmModel
 – HMMER
 – MrBayes
 – NAMD
 – PAML
 – PAUP
 – RAxML
 – RepeatMasker
 – TreeBeST

Third party applications

• Structural Mechanics (*license agreement required; ﬁstatewide licensed)
 – ABAQUS
 – Altair HyperWorks
 – ANSYS
 – COMSOL Multiphysics
 – LSDYNA
 – LS-PREPOST
Third party applications

- Fluid Dynamics (*license agreement required)
 - *Fluent
 - OpenFOAM

- Mathematics/Statistics (¶ statewide licensed)
 - MATLAB (special licensing restrictions)
 - Octave
 - R
 - Stata
 - FFTW
 - ScaLAPACK
 - MINPACK
 - sprng2
 - ¶ Intel MKL
 - ACML (Glenn only)
Third party applications

• **General programming software** (statewide licensed)
 – gnu compilers and debugger
 – Intel compilers
 – Totalview debugger
 – PGI compilers
 – MPI library
 – HDF5
 – NetCDF
 – Java, Java Virtual Machine
 – Python

• **Parallel programming software** (statewide licensed)
 – MPI library (mvapich, mvapich2)
 – OpenMP
 – CUDA
 – OpenCL
 – OpenACC
Third party applications

• Visualization software
 – GNUplot
 – Jmol
 – VTK

• More applications can be found at Software page:
 http://www.osc.edu/supercomputing/software/

OSC doesn’t have the software you need?

• Commercial software
 – Fill out a request form (see our FAQ)
 – SUG will consider it
• Open-source software
 – You can install it yourself in your home directory
 – If there’s enough demand, we can install it for shared use
• Have your own license?
 – Contact OSC Help
OSC Policies

- OSC-1, OSC Data Lifecycle Management Policy
 - Use of home directory, project directory and $TMPDIR
 - Storage and file quotas
 - Backup and recovery

- OSC-11, OSC User Management Policy
 - Who can get an account
 - Charges for accounts
 - Types of accounts
 - Account restrictions
 - Account resource units
 - Inappropriate system use
For More Information

- Visit our documentation website
 www.osc.edu/supercomputing

- Contact the help desk (OSC Help) 24/7
 oschelp@osc.edu
 614-292-1800
 1-800-686-6472

Questions
Brian Guilfoos
HPC Client Services Manager
Ohio Supercomputer Center
guilfoos@osc.edu
1224 Kinnear Road
Columbus, OH 43212
Phone: (614) 292-2846

www.osc.edu
Questions

Judy Gardiner
Scientific Applications Engineer
Ohio Supercomputer Center
judithg@osc.edu
1224 Kinnear Road
Columbus, OH 43212
Phone: (614) 292-9623

facebook: ohiosupercomputercenter
twitter: ohiosupercomputerctr

www.osc.edu