Introduction to High Performance Computing at the Ohio Supercomputer Center

Dr. Judy Gardiner
Spring 2014
Outline

• Overview
 – What is OSC?
 – HPC Concepts
 – Hardware Overview
 – Resource Grants and Accounts at OSC

• How to use our systems
 – User Environment
 – Batch Processing
 – Storage
 – Third-Party Software Applications
 – Policies
What is the Ohio Supercomputer Center?
The OH-TECH Consortium

Ohio Supercomputer Center provides high performance computing, software, storage and support services for Ohio’s scientists, faculty, students, businesses and their research partners.

OARnet connects Ohio’s universities, colleges, K-12, health care and state and local governments to its high-speed fiber optic network backbone. OARnet services include co-location, support desk, federated identity and virtualization.

OhioLINK serves nearly 600,000 higher education students and faculty by providing a statewide system for sharing 50 million books and library materials, while aggregating costs among its 90 member institutions.

eStudent Services provides students increased access to higher education through e-learning and technology-enhanced educational opportunities, including virtual tutoring.

Research & Innovation Center will operate, when opened, as the proving grounds for next-generation technology infrastructure innovations and a catalyst for cutting-edge research and collaboration.
About OSC

• Founded in 1987
• Statewide resource for all universities in Ohio
 – high performance computing services
 – computational science expertise
 – “… propel Ohio's research universities and private industry to the forefront of computational based research.”
• Funded through the Ohio Board of Regents
• Reports to the Chancellor
• Located on OSU’s west campus
• Fiscal agent is OSU
OSC 2012 Usage Data:
Hours Used, By Institution

- Ohio State University: 81%
- Nationwide Children’s Hospital: 6%
- Univ. of Akron: 4%
- Case Western Reserve: 2%
- Bowling Green: 2%
- Univ. of Cincinnati: 2%
- Ohio Univ.: 2%
- Other: 1%
- Univ. Toledo: 1%
Science and Technology Support Group (STS)

- **OSC Help**
 - Help desk and basic consulting
 - Contact by phone or email (oschelp@osc.edu)

- **Training**
 - Usually three workshops per semester on a variety of topics

- **Website**
 - www.osc.edu/supercomputing

- **Advanced consulting**
 - Code parallelization & optimization
 - Software development, algorithm research
What can OSC provide you?

- **“Capability computing”**
 - Computation too large to run on laptop/desktop
- **“Capacity computing”**
 - Takes too long on laptop, need to make many runs
- **Access to licensed software**
 - Have academic licenses for many commercial packages
- **Expertise, collaboration**
 - Parallel computing, algorithms, web portals, etc.
Statewide Licensed Software

- Use the software in your lab or office
 - Connect to license server at OSC
- Software available
 - Altair Hyperworks
 - Totalview Debugger
 - Intel Compilers, Tools, Libraries
 - Portland Group Compilers
- Contact OSC Help
 - Provide your IP address
HPC Concepts
Big Numbers

<table>
<thead>
<tr>
<th>Prefix</th>
<th>Example: bytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>• K</td>
<td>• 1KB – very small</td>
</tr>
<tr>
<td>– kilo, 10^3, thousand</td>
<td>• 12MB L2 cache per core</td>
</tr>
<tr>
<td>• M</td>
<td>• 48GB memory per node</td>
</tr>
<tr>
<td>– mega, 10^6, million</td>
<td>• .5 TB disk space per user</td>
</tr>
<tr>
<td>• G</td>
<td>• 4 PB aggregate storage</td>
</tr>
<tr>
<td>– giga, 10^9, million</td>
<td>• Exascale systems – current research area</td>
</tr>
<tr>
<td>• T</td>
<td>• Exascale systems – current research area</td>
</tr>
<tr>
<td>– tera, 10^{12}, trillion</td>
<td></td>
</tr>
</tbody>
</table>
HPC Terminology

• Cluster
 – A group of computers (nodes) connected by a high-speed network, forming a supercomputer

• Node
 – Equivalent to a high-end workstation, part of a cluster

• Core
 – A processor (CPU), multiple cores per processor chip

• FLOPS
 – “FLoating-point Operations (calculations) Per Second”
Ohio Supercomputer Center
An OH-TECH Consortium Member

Hardware Overview
Supercomputers at OSC

• Oakley cluster
 – Online March 2012
 – Named for Annie Oakley, famous Ohio sharpshooter
 – HP system, Intel Xeon processors, 8280 cores

• Glenn cluster
 – “Glenn phase II” online July 2009
 – Named for John Glenn, Ohio astronaut and senator
 – IBM 1350, AMD Opteron processors, 5200 cores
OSC’s Newest HPC System: Oakley Cluster
Organization of an OSC Cluster

Your PC

ssh connection
glenn.osc.edu
oakley.osc.edu

Login nodes
2-4 general login nodes

Batch job

Compute nodes
600+ nodes
Infiniband network connects nodes

Shared file systems
Visible from all nodes of Oakley, Glenn, & other OSC systems
Login Nodes – Configuration

• Oakley
 – 2 general-purpose login nodes
 – 12 cores, 124 GB memory each
 – Connect to oakley.osc.edu

• Glenn
 – 4 general-purpose login nodes
 – 8 cores, 32 GB memory each
 – Connect to glenn.osc.edu
Login Nodes – Usage

• Purpose
 – Submit jobs to batch system
 – Edit files
 – Manage your files
 – Interactive work – small scale

• Limits
 – 20 minutes CPU time
 – 1GB memory

• Use the batch system for serious computing!
Compute Nodes – Oakley

- 684 standard nodes
 - 12 cores per node
 - 48 GB memory (4GB/core)
 - 812 GB local disk space

- 8 large memory nodes
 - 12 cores per node
 - 192 GB memory (16GB/core)
 - 812 GB local disk space

- Network
 - Nodes connected by 40Gbit/sec Infiniband network (QDR)
Special Resources – Oakley

- **GPU computing**
 - 128 NVIDIA Tesla M2070 GPUs
 - 64 of the standard nodes have 2 GPUs each
- **1 huge memory node**
 - 32 cores
 - 1 TB memory
- **Intel Xeon Phi accelerators (Ruby cluster)**
 - 8 nodes, each with one Phi card
 - limited-access test cluster
Compute Nodes – Glenn

• 634 standard nodes
 – 8 cores per node
 – 24 GB memory (3GB/core)
 – 393 GB local disk space

• 8 large memory nodes
 – 16 cores per node
 – 64 GB memory (4GB/core)
 – 188 GB local disk space

• Network
 – Nodes connected by 20Gbit/sec Infiniband network (DDR)
Special Resources – Glenn

- GPU computing
 - 18 NVIDIA Quadro Plex S4 systems
 - Each Quadro Plex S4 has 4 Quadro FX GPUs
 - 36 of the standard nodes have 2 GPUs each
Hardware Performance – Oakley

• CPU performance
 – 88 trillion floating point operations per second (TFLOPS) peak performance
 – 79 TFLOPS sustained performance

• GPU acceleration
 – 66 TFLOPS peak performance

• Total peak performance
 – 154 TFLOPS
Specs: Oakley Cluster vs. Top 500 Systems in the World

<table>
<thead>
<tr>
<th>Metric</th>
<th>June 2012</th>
<th>June 2012</th>
<th>November 2012</th>
<th>November 2012</th>
<th>June 2013</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Performance Ranking</td>
<td>Efficiency Ranking</td>
<td>Performance Ranking</td>
<td>Efficiency Ranking</td>
<td>Ranking</td>
</tr>
<tr>
<td>Overall Ranking in the World</td>
<td>180<sup>th</sup></td>
<td>37<sup>th</sup></td>
<td>460<sup>th</sup></td>
<td>30<sup>th</sup></td>
<td>Not Listed</td>
</tr>
<tr>
<td>Overall Ranking in US</td>
<td>89<sup>th</sup></td>
<td>8<sup>th</sup></td>
<td>235<sup>th</sup></td>
<td>8<sup>th</sup></td>
<td>Not Listed</td>
</tr>
<tr>
<td>Overall Academic Ranking in the World</td>
<td>40<sup>th</sup></td>
<td>9<sup>th</sup></td>
<td>91<sup>st</sup></td>
<td>13<sup>th</sup></td>
<td>Not Listed</td>
</tr>
<tr>
<td>Overall Academic Ranking in US</td>
<td>11<sup>th</sup></td>
<td>2<sup>nd</sup></td>
<td>23<sup>rd</sup></td>
<td>2<sup>nd</sup></td>
<td>Not Listed</td>
</tr>
</tbody>
</table>
OSC File Space Information

- **Lustre – Parallel File System (Temporary Space)**
 - ~570 TBs (all disk)
- **Project Space and GPFS**
 - ~1000 TBs total usable (Disk)
 - Hierarchical storage capable to tape subsystem
 - Allocated to projects in TBs, for limited time periods

- **Home Directory Space / NFS**
 - ~295 TBs usable (Disk)
 - Allocated to each user, 500 GB quota limit

Mass Storage Overview
- 2 Petabytes (PBs) of usable disk
- ~1 PB NFS storage
- 370 TBs GPFS storage
- 570 TBs Lustre storage
- 1.8 PBs tape
Resource Grants and Accounts at OSC
Who can get an account?

• Academic accounts
 – Principal investigator (PI) must be a full-time faculty member or research scientist at an Ohio academic institution
 – PI may authorize accounts for students, post-docs, collaborators, etc.
 – Classroom accounts are also available
 – No cost to Ohio academic users

• Commercial accounts
 – Commercial organizations may purchase time on OSC systems
Accounts and Projects at OSC

• Project
 – Headed by a PI
 – May include other users
 – Basis for accounting at OSC
 – Submit proposal for computing resources for a project

• Account
 – Username and password to access HPC systems
 – Each account associated with one project
 – Each account used by one person (please!)
 – If you work on multiple projects, you will have multiple accounts.
Allocations and Charges

• Charges are in terms of resource units
• Resource units
 – 1 resource unit (RU) = 10 CPU hours
 – CPU hour = walltime x (total # of cores requested)
• Project receives an allocation of RUs
• Jobs are charged to a project
Getting an Account

• Startup grant
 – One per PI per lifetime
 – Provide contact info, institution, department
 – 5000 RUs

• Additional allocations for a project
 – Submit a proposal for more RUs
 • Standard: 10,000
 • Major: 30,000
 • Discovery: >30,000
 – Peer-reviewed
 – Grants awarded by Statewide Users Group (SUG)
Acknowledging OSC

- Please acknowledge OSC in your publications:
 - "This work was supported in part by an allocation of computing time from the Ohio Supercomputer Center."
- These publications should be reported to OSC through the ARMSTRONG portal.
ARMSTRONG Researcher Portal

- https://armstrong.osc.edu
- Manage your project and accounts
 - Change password and shell
 - Monitor resource utilization on all your projects
 - Add authorized users (request accounts) – PIs only
- View current information
 - OSC system notices
 - Training opportunities and other events
 - Research opportunities
- Post publications
ARMSTRONG Researcher Portal
https://armstrong.osc.edu
Your Contact Info

• Keep your contact information current
 – Send email to oschelp@osc.edu to update email address
• If you’re at OSU, monitor your name.#@osu.edu
• If your student continues to use OSC after graduation, make sure email address is updated
 – Acceptable if still collaborating with you
• May need to contact you about problems
• You can opt out of routine notifications
Statewide Users Group (SUG)

• The Statewide Users Group (SUG) is made up of OSC users
 – Provides program and policy advice to OSC
 – Meets every four months
 – Headed by a chairperson elected yearly

• Standing committees
 – Allocations
 – Software and Activities
 – Hardware and Operations

• Get involved!
System Status

• Check system status on:
 – https://www.osc.edu/supercomputing (bottom of page)
 – https://armstrong.osc.edu/systemnotices/index.php
 – Message of the day (/etc/motd) – displayed at login
 – Twitter: @HPCnotices
 – Email for major outages or problems

• Scheduled downtimes
 – Quarterly maintenance – one day outage
 – Jobs held for up to two weeks prior
Demo

- Website tour: www.osc.edu
- ARMSTRONG: https://armstrong.osc.edu
Ohio Supercomputer Center
An OH-TECH Consortium Member

User Environment
Linux Operating System

- "UNIX-like"
- Widely used in HPC
- Mostly command-line
- Choice of shells (bash is default)
- Freely distributable, open-source software
- Tutorials available
- www.linux.org
Connecting to the Oakley or Glenn Cluster

• Connect to OSC machines using **ssh** (secure shell)
 – From a Linux/UNIX machine: At prompt, enter

    ```
    ssh userid@oakley.osc.edu
    ssh userid@glenn.osc.edu
    ```
 – From a Mac: Enter **ssh** command in TERMINAL window
 – From Windows: **ssh** client software needed
 • Both commercial and free versions are available

• New: Connect using OnDemand portal (web-based)
 OSC OnDemand

1: User Interface
- Web based
 - Usable from computers, tablets, smartphones
 - Zero installation
- Single point of entry
 - User needs three things
 - ondemand.osc.edu
 - OSC Username
 - OSC Password
 - Connected to all resources at OSC

2: Interactive Services
- File Access
- Job Management
- Visualization Apps
 - Desktop access
 - Single-click apps (Abaqus, Ansys, Comsol, Paraview)
- Terminal Access

Ohio Supercomputer Center
Connecting to an OSC Cluster with Graphics

• Programs on the cluster can have an X-based GUI
 – Display graphics on your computer
• Linux/UNIX and Mac: Use `-x` flag
 \[
 \text{ssh} \ -X \ \text{userid}@oakley.osc.edu
 \]
• Windows: Need extra software
 – Both commercial and free versions are available
 – Configure your ssh client to tunnel or forward X11
• Primarily used with programs on login node
 – Can also use with interactive batch jobs
Transferring Files to and from the Cluster

• Most file transfers to and from OSC machines use `sftp` or `scp`
 – Linux and Mac have them built in
 – Windows needs extra software

• For small files, connect to login node
 `oakley.osc.edu`
 `glenn.osc.edu`

• For large files, transfer may fail due to shell limits
 – Connect to `gridftp01.osc.edu` (file transfer only)
File Transfer & Editing

Common Catalog

Visualization

Job Submission & Monitoring

Command Line

OSC OnDemand
where you go to do everything at OSC

OnDemand provides an integrated, single access point for all of your resources on Glenn and Oakley.

Ohio Supercomputer Center

Ohio OARnet
an Ohio Technology Consortium Member

OH-TECH
Ohio Technology Consortium
A Division of the Ohio Board of Regents
Text editing

• Traditional Unix editors
 – vi
 – emacs
 – Many books and web pages about vi and emacs
• GUI editor
 – gedit
• Simple editor
 – nano
• Can also edit on your computer and transfer files back and forth
 – dos2unix, unix2dox, mac2unix
Demo

• OSC OnDemand
• ssh
• sftp
• Linux
• Home directory tree
• Text editor: nano
Modules

- Add or remove software from your environment, e.g.,
 - `module load comsol`
- Allow multiple versions of software to coexist on our system
- Allow us to make changes without affecting you
 - PLEASE DON’T HARDCODE PATHS!
- Can load modules at command prompt or in your `.bash_profile` or `.bashrc` file
- Also load modules in your job (batch) scripts
Modules and your shell environment

• How modules work
 – Modify environment variables like `${PATH}` and `${MANPATH}` within your shell

• Default set of modules loaded at login
 – module system, batch system (do not unload)
 – default compiler and MPI modules

• Do NOT completely replace `${PATH}` in your `.bash_profile` or `.bashrc`

• DO prepend directories to the existing `${PATH}`
 – Type: `export PATH=$HOME/bin:$PATH`
Module Commands (Oak/Glenn not the same!)

- What modules do you have loaded?
 - module list
- What modules are available?
 - module spider or module avail
- Multiple versions of the same software
 - module avail intel
- Add a software module to your environment
 - module load cuda
- Remove a software package from your environment
 - module unload intel
- Load a different software version
 - module swap intel intel/13.1.3.192
Batch Processing
Organization of an OSC Cluster

Your PC

ssh connection
glenn.osc.edu
oakley.osc.edu

Login nodes

2-4 general
login nodes

Batch job

Compute nodes

600+ nodes
Infiniband
network
connects
nodes

Shared file systems

Visible from all nodes of Oakley, Glenn, & other OSC systems
Batch System at OSC

• Compute nodes are allocated through the batch system
 – PBS – Portable Batch System
 – Torque – resource manager
 – Moab – scheduler

• Documentation at
 www.osc.edu/supercomputing/batch-processing-at-osc
Idea Behind Batch Processing

• Whatever you would normally type at the command prompt goes into your batch script
• Output that would normally go to the screen goes into a log file (or files)
• The system runs your job when resources become available
• Very efficient in terms of resource utilization
Running a Job on the Compute Nodes

- Create a batch script for a job
- Submit the job
- Job gets queued
- Job runs when resources become available
- Get your results when the job finishes
Sample Batch Script

```bash
#PBS -N serial_fluent
#PBS -l walltime=1:00:00
#PBS -l nodes=1:ppn=1
#PBS -j oe
#PBS -l software=fluent+1

# Set up the FLUENT environment
module load fluent

# Move to directory job was submitted from
cd $PBS_O_WORKDIR

# Run fluent
fluent 3d -g < run.input
```

Job setup information for PBS

This is a comment

Commands to be run

Put all this into a text file!
Submitting a Job and Checking Status

• Command to submit a job
 – qsub script_file

• Response from PBS (example)
 – 123456.oak-batch.osc.edu

• Show status of batch jobs
 – qstat -a jobid
 – qstat -u username
 – qstat -f jobid
Scheduling Policies and Limits

• Walltime limit
 – 168 hours for serial jobs (single node)
 – 96 hours for parallel jobs (multiple nodes)

• Per-user limits
 – 128 concurrently running jobs
 – 2040 processor cores in use
 – 1000 jobs in the batch system, running or queued

• Per-group limits
 – 192 concurrently running jobs
 – 2040 processor cores in use
Waiting for Your Job To Run

• Queue wait time depends on many factors
 – System load
 – Resources requested
 • nodes, cores, large memory, gpus, software licenses
 – Fair share limits (if load is high)
 • reduced priority for users or groups using a lot of resources

• To see estimated start time for job
 – `showstart jobid`
 – Very unreliable
Job Output

• Screen output ends up in file `job_name.o.jobid`
 – Copied to your working directory when job ends
 – Example: `testjob.o1234567`

• To see screen output while job is running
 – `qpeek jobid`
 – Example: `qpeek 1234567`
Interactive Batch Jobs

• Interactive, but handled through batch system
 – Resource limits same as standard batch limits
• Useful for tasks forbidden on login nodes
 – Debug parallel programs
 – Run a GUI program that’s too large for login node
• May not be practical when system load is high
 – Long wait, same as standard batch job
• To submit an interactive batch job (example)
 – qsub -I -X -l nodes=2:ppn=12 -l walltime=1:00:00
Batch Queues

- Oakley and Glenn have separate batch systems
 - Submit job and check status on the same cluster
- Debug reservation
 - A few nodes on each system are reserved for short jobs (≤ 1 hour)
Glenn or Oakley – Which should I choose?

- Some software installed only on one system
 - See software page for your application
- Oakley is newer and faster, with more memory
- Glenn often has shorter queue waits
- Can switch between them
 - Most sequential code will run on either system
 - Performance may be better on system code was built on
 - Keep separate executables in different subdirectories
Parallel Computing

- Each processor is fast, but real speed comes from using multiple processors
- Multithreading
 - Use multiple cores on a single node
 - Shared memory
- Message passing (MPI)
 - Use one or multiple nodes
 - Distributed memory
To Take Advantage of Parallel Computing

- Program must be written to take advantage of multiple cores and/or multiple nodes
- Many commercial applications have multithreaded or parallel versions
- Must use `mpiexec` for multiple nodes
- Can’t just request more nodes or cores and expect your job to run faster
Specifying Resources in a Job Script

• Nodes and cores (processors) per node
• Memory
• GPUs
 – See “Batch Processing at OSC” on OSC website
• Walltime
 – Overestimate slightly – job will be deleted if it hits limit
 – Shorter job may start sooner due to backfill
• Software licenses
 – See specific software page on OSC website
Home Directories

• Each user has a home directory
• Visible from all OSC systems
• Backed up daily – “permanent storage”
• Quotas
 – 500GB of storage per user account
 – 1,000,000 files maximum
 – Cannot create new files if over quota
 – Quota and usage info displayed at login
Project Directories

- PI may request project directory if more space needed
 - Send request to OSC Help
 - Large requests are reviewed by SUG Allocations Committee
 - Shared by all users in the project
- Backed up daily
- Visible from all OSC systems
- Project quota is separate from the home directory quota
Sample Quota Display

Quota display at login (information collected nightly):

As of 2010 Jul 15 04:02 userid usr1234 on /nfs/06 used 28GB of quota 500GB and 41374 files of quota 1000000 files
As of 2010 Jul 16 04:02 project/group PRJ0321 on /nfs/proj01 used 27GB of quota 5000GB and 573105 files of quota 1000000 files

Output from `quota` command (run manually):

<table>
<thead>
<tr>
<th>Disk quotas for user usr1234 (uid 11059):</th>
</tr>
</thead>
<tbody>
<tr>
<td>Filesystem</td>
</tr>
<tr>
<td>blocks quota limit grace files quota limit grace</td>
</tr>
<tr>
<td>fs06-oak.ten.osc.edu:/nfs/06/osc</td>
</tr>
<tr>
<td>201698292 450000000 524288000 631137 950000 1000000</td>
</tr>
</tbody>
</table>
File Management

• Compress large, rarely used files
 – Use **gzip** or **bzip2** commands
• Combine large numbers of small files into an archive
 – Use **tar** command
Parallel File System – Lustre

• Designed to handle heavy parallel I/O load
• Faster access than home and project directories
• NOT good for small files
• Visible from all cluster nodes (shared)
• Suitable for short-term storage (up to 6 months) of large amounts of data
• Also useful as batch-managed temporary storage
• NOT backed up
Local Disk – $TMPDIR

- Local file system on each compute node
 - 812 GB on each Oakley node
 - 393 GB on each Glenn node
- Fast – use for intermediate or scratch files
- Not shared between nodes
- Not backed up
- Managed by the batch system
- Data removed when job exits
Overloading the File Servers

• “A supercomputer is a device for turning compute-bound problems into I/O-bound problems.” --Ken Batcher (parallel computing pioneer)
• One user’s heavy I/O load can affect responsiveness for all users on that file system
• **Never** do heavy I/O in your home or project directory!
• Use $TMPDIR, copying files in and out as necessary
• Don’t let large numbers of jobs run in lockstep.
Third-Party Software Applications
Access to Licensed Software

• Most software licenses for academic use only
• Some software requires signed license agreement
 – Check website
 – Contact OSC Help
Third party applications

- **Chemistry** (*license agreement required*)
 - *AMBER*
 - ChemTools
 - COLUMBUS
 - *CSD (Cambridge Structural Database)*
 - ESPRESSO
 - GAMESS
 - *Gaussian*
 - GROMACS
 - LAMMPS
 - MacroModel®
 - MEAD
 - NAMD
 - NWChem
 - Open Babel
 - *Turbomole*
Third party applications

• Bioinformatics
 – Bioperl
 – BLAST
 – BLAT
 – Bowtie
 – Clustal W
 – EMBOSS
 – Fitmodel
 – HMMER
 – MrBayes
 – NAMD
 – PAML
 – PAUP
 – RAxML
 – RepeatMasker
 – TreeBeST
Third party applications

- **Structural Mechanics** (*license agreement required; statewide licensed*)
 - *ABAQUS*
 - ‡Altair HyperWorks
 - *ANSYS*
 - COMSOL Multiphysics
 - *LSDYNA*
 - LS-PREPOST
Third party applications

- **Fluid Dynamics** (*license agreement required)
 - *Fluent
 - OpenFOAM
Third party applications

- Mathematics/Statistics (℠ statewide licensed)
 - MATLAB (special licensing restrictions)
 - Octave
 - R
 - Stata
 - FFTW
 - ScaLAPACK
 - MINPACK
 - sprng2
 -℠ Intel MKL
 - ACML (Glenn only)
Third party applications

• **General programming software** (℠ state wide licensed)
 – gnu compilers and debugger
 – ℗ Intel compilers
 – ℗ Totalview debugger
 – ℗ PGI compilers
 – MPI library
 – HDF5
 – NetCDF
 – Java, Java Virtual Machine
 – Python
Third party applications

- **Parallel programming software** (statewide licensed)
 - MPI library (mvapich, mvapich2)
 - OpenMP
 - CUDA
 - OpenACC
Third party applications

- Visualization software
 - GNUplot
 - Jmol
 - VTK

- More applications can be found at Software page:
 http://www.osc.edu/supercomputing/software/
OSC doesn’t have the software you need?

• Commercial software
 – Fill out a request form (see our FAQ)
 – SUG will consider it

• Open-source software
 – You can install it yourself in your home directory
 – If there’s enough demand, we can install it for shared use

• Have your own license?
 – Contact OSC Help
Ohio Supercomputer Center
An OH-TECH Consortium Member

OSC Policies
Supercomputing

As a leader in high performance computing and networking, the Ohio Supercomputer Center (OSC) is a vital resource for Ohio's scientists and engineers. OSC is a fully-scalable center with mid-range machines to match those found at National Science Foundation centers and other national labs. The Center's flagship supercomputing system is the Oakley Cluster, an 8,300+ core HP Intel Xeon machine.

OSC also is home to the Ohio Interface Laboratory, which provides state-of-the-art graphics equipment and output services for high performance computing and animation. Members of the Science and Technology Support Group provide much of the information for this server.

Getting Started

Welcome to OSC! If you are new to supercomputing, new to OSC, or simply interested in getting an account (if you don't already have one), we have some resources to help you.

- Read about the basics of High Performance Computing (highly recommended for new users).
- Learn more about our account allocation process, and how to get started.
- Apply for expanded resources beyond those for a start-up project.
- Get help connecting to our resources.
- Read our policies, FAQ, code of ethics for users, and glossary.

[OSC Policies]

www.osc.edu/supercomputing
OSC Policies

- OSC-1, OSC Data Lifecycle Management Policy
 - Use of home directory, project directory and TMPDIR
 - Storage and file quotas
 - Backup and recovery
OSC Policies

- OSC-11, OSC User Management Policy
 - Who can get an account
 - Charges for accounts
 - Types of accounts
 - Account restrictions
 - Account resource units
 - Inappropriate system use
For More Information

• Visit our documentation website
 www.osc.edu/supercomputing

• Contact the help desk (OSC Help) M-F 9-5
 oschelp@osc.edu
 614-292-1800
 1-800-686-6472
Questions

Judy Gardiner
Sr. Computational Science Researcher, OSC
(614) 292-9623
judithg@osc.edu

Brian Guilfoos
Science & Technology Support Manager, OSC
(614) 292-2846
guilfoos@osc.edu

1224 Kinnear Road
Columbus, OH 43212
www.osc.edu