
Introduction to the Partitioned Global
Address Space (PGAS) Programming
Model
David E. Hudak, Ph.D.
Program Director for HPC Engineering
dhudak@osc.edu

Overview

• Module 1: PGAS Fundamentals

• Module 2: UPC

• Module 3: pMATLAB

• Module 4: Asynchronous PGAS and X10

2

Introduction to PGAS– The Basics

PGAS Model

• Concepts
–  Memories and structures
–  Threads and affinity
–  Local and non-local accesses

• Examples
–  MPI
–  OpenMP
–  UPC
–  X10

4

Software Memory Examples

• Executable Image

• Memories
•  Static memory

•  data segment
•  Heap memory

•  Holds allocated structures
•  Grows from bottom of

static data region
•  Stack memory

•  Holds function call records
•  Grows from top of stack

segment

5

Memories and Structures

•  Software Memory
–  Distinct logical storage area in a

computer program (e.g., heap or stack)
–  For parallel software, we use multiple

memories
•  Structure

–  Collection of data created by program
execution (arrays, trees, graphs, etc.)

•  Partition
–  Division of structure into parts

• Mapping
–  Assignment of structure parts to

memories

6

� � � � � �

� � � � �
� � � 	 �� 	 � �

�

�

�

�

� �

� �

Threads

•  Units of execution
•  Structured threading

–  Dynamic threads:
program creates threads
during execution (e.g.,
OpenMP parallel loop)

–  Static threads: same
number of threads
running for duration of
program

•  Single program, multiple
data (SPMD)

• We will defer
unstructured threading

7

� � � � � �

Affinity and Nonlocal Access

•  Affinity is the association
of a thread to a memory

–  If a thread has affinity
with a memory, it can
access its structures

–  Such a memory is called
a local memory

• Nonlocal access
–  Thread 0 wants part B
–  Part B in Memory 1
–  Thread 0 does not have

affinity to memory 1

8

� �

� �

	 � 	 �

	 � 	 �

� �

� �

	 � 	 �

	 � 	 �

Comparisons

Thread
Count

Memory
Count

Nonlocal Access

Traditional 1 1 N/A
OpenMP Either 1 or p 1 N/A
MPI p p No. Message required.
C+CUDA 1+p 2 (Host/device) No. DMA required.
UPC, CAF,
pMatlab

p p Supported.

X10,
Asynchronous
PGAS

p q Supported.

9

Introduction to PGAS - UPC
David E. Hudak, Ph.D.

Slides adapted from some by
Tarek El-Ghazawi (GWU)
Kathy Yelick (UC Berkeley)
Adam Leko (U of Florida)

Outline of talk

1. Background

2. UPC memory/execution model

3. Data and pointers

4. Dynamic memory management

5. Work distribution/synchronization

What is UPC?
• UPC - Unified Parallel C

–  An explicitly-parallel extension of ANSI C
–  A distributed shared memory parallel programming

language

•  Similar to the C language philosophy
–  Programmers are clever and careful, and may need to get

close to hardware
•  to get performance, but
•  can get in trouble

•  Common and familiar syntax and semantics for
parallel C with simple extensions to ANSI C

Players in the UPC field

• UPC consortium of government, academia, HPC
vendors, including:

–  ARSC, Compaq, CSC, Cray Inc., Etnus, GWU, HP,
IBM, IDA CSC, Intrepid Technologies, LBNL, LLNL,
MTU, NSA, UCB, UMCP, UF, US DoD, US DoE, OSU

–  See http://upc.gwu.edu for more details

!$

Hardware support

•  Many UPC implementations are available
–  Cray: X1, X1E
–  HP: AlphaServer SC and Linux Itanium (Superdome)

systems
–  IBM: BlueGene and AIX
–  Intrepid GCC: SGI IRIX, Cray T3D/E, Linux Itanium

and x86/x86-64 SMPs
–  Michigan MuPC: “reference” implementation
–  Berkeley UPC Compiler: just about everything else

!%

General view

 A collection of threads operating in a partitioned
global address space that is logically distributed
among threads. Each thread has affinity with a
portion of the globally shared address space. Each
thread has also a private space.

Elements in partitioned global space belonging to
a thread are said to have affinity to that thread.

!&

First example: sequential vector
addition

//vect_add.c

#define N 1000

int v1[N], v2[N], v1plusv2[N];

void main()

{

 int i;

 for (i=0; i<N; i++)

 v1plusv2[i]=v1[i]+v2[i];

}

!'

First example: parallel vector addition

//vect_add.c

#include <upc.h>

#define N 1000

shared int v1[N], v2[N], v1plusv2[N];

void main()

{

 int i;

 upc_forall (i=0; i<N; i++; &v1plusv2[N])

 v1plusv2[i]=v1[i]+v2[i];

}

!(

Outline of talk

1. Background

2. UPC memory/execution model

3. Data and pointers

4. Dynamic memory management

5. Work distribution/synchronization

!)

UPC memory model

• A pointer-to-shared can reference all locations in the
shared space

•  A pointer-to-local (“plain old C pointer”) may only
reference addresses in its private space or addresses
in its portion of the shared space

•  Static and dynamic memory allocations are supported
for both shared and private memory

"

UPC execution model

•  A number of threads working independently in
SPMD fashion

–  Similar to MPI
–  MYTHREAD specifies thread index (0..THREADS-1)
–  Number of threads specified at compile-time or run-time

•  Synchronization only when needed
–  Barriers
–  Locks
–  Memory consistency control

"!

Outline of talk

1. Background

2. UPC memory/execution model

3. Data and pointers

4. Dynamic memory management

5. Work distribution/synchronization

""

Shared scalar and array data
• Shared array elements and blocks can be spread

across the threads
–  shared int x[THREADS]
 /* One element per thread */

–  shared int y[10][THREADS]
 /* 10 elements per thread */

• Scalar data declarations
–  shared int a;
 /* One item in global space
 (affinity to thread 0) */

–  int b;
 /* one private b at each thread */

"#

Shared and private data

• Example (assume THREADS = 3):
shared int x; /*x will have affinity to thread 0 */
shared int y[THREADS];
int z;

•  The resulting layout is:

"$

Shared data

shared int A[2][2*THREADS];

 will result in the following data layout:

Remember: C uses row-major ordering

"%

Blocking of shared arrays
• Default block size is 1

• Shared arrays can be distributed on a block per
thread basis, round robin, with arbitrary block
sizes.

• A block size is specified in the declaration as
follows:

–  shared [block-size] array [N];
–  e.g.: shared [4] int a[16];

"&

Blocking of shared arrays

• Block size and THREADS determine affinity

• The term affinity means in which thread’s local
shared-memory space, a shared data item will
reside

• Element i of a blocked array has affinity to thread:

"'

Shared and private data

• Assuming THREADS = 4

 shared [3] int A[4][THREADS];

 will result in the following data layout:

"(

Shared and private data summary

• Shared objects placed in memory based on affinity

• Affinity can be also defined based on the ability of
a thread to refer to an object by a private pointer

• All non-array scalar shared qualified objects have
affinity with thread 0

• Threads may access shared and private data

")

UPC pointers

• Pointer declaration:
–  shared int *p;

•  p is a pointer to an integer residing in the shared
memory space

•  p is called a pointer to shared

• Other pointer declared same as in C
–  int *ptr;
–  “pointer-to-local” or “plain old C pointer,” can be used to

access private data and shared data with affinity to
MYTHREAD

Pointers in UPC

#!

Pointers in UPC
• How to declare them?

–  int *p1; /* private pointer pointing locally */
–  shared int *p2; /* private pointer pointing
 into the shared space */

–  int *shared p3; /* shared pointer pointing
 locally */

–  shared int *shared p4; /* shared pointer
 pointing into
 the shared space */

#"

Pointers in UPC

• What are the common usages?
–  int *p1; /* access to private data or to local
 shared data */

–  shared int *p2; /* independent access of
threads
 to data in shared space */

–  int *shared p3; /* not recommended*/
–  shared int *shared p4; /* common access of all
 threads to data in
 the shared space*/

Outline of talk

1. Background

2. UPC memory/execution model

3. Data and pointers

4. Dynamic memory management

5. Work distribution/synchronization

#$

Dynamic memory allocation

• Dynamic memory allocation of shared memory is
available in UPC

• Functions can be collective or not

• A collective function has to be called by every
thread and will return the same value to all of them

#%

Global memory allocation

shared void *upc_global_alloc(size_t nblocks,
size_t nbytes);

 nblocks : number of blocks
 nbytes : block size

•  Non collective, expected to be called by one thread
•  The calling thread allocates a contiguous memory

space in the shared space

•  If called by more than one thread, multiple regions are
allocated and each thread which makes the call gets a
different pointer

•  Space allocated per calling thread is equivalent to :
 shared [nbytes] char[nblocks * nbytes]

#&

Collective global memory allocation
shared void *upc_all_alloc(size_t nblocks,
size_t nbytes);

 nblocks: number of blocks
 nbytes: block size

•  This function has the same result as upc_global_alloc.
But this is a collective function, which is expected to be
called by all threads

•  All the threads will get the same pointer
•  Equivalent to :
 shared [nbytes] char[nblocks * nbytes]

#'

Freeing memory

 void upc_free(shared void *ptr);

• The upc_free function frees the dynamically
allocated shared memory pointed to by ptr

•  upc_free is not collective

#(

Some memory functions in UPC
* Equivalent of memcpy :

–  upc_memcpy(dst, src, size)
/* copy from shared to shared */

–  upc_memput(dst, src, size)
/* copy from private to shared */

–  upc_memget(dst, src, size)
/* copy from shared to private */

*  Equivalent of memset:
–  upc_memset(dst, char, size)
/* initialize shared memory with a
character */

#)

Outline of talk

1. Background

2. UPC memory/execution model

3. Data and pointers

4. Dynamic memory management

5. Work distribution/synchronization

$

Work sharing with upc_forall()
•  Distributes independent iterations
•  Each thread gets a bunch of iterations
•  Affinity (expression) field determines how to distribute

work
•  Simple C-like syntax and semantics

upc_forall (init; test; loop; expression)
 statement;

•  Function of note:
upc_threadof(shared void *ptr)

returns the thread number that has affinity to the pointer-
to-shared

$!

Synchronization

• No implicit synchronization among the threads

• UPC provides the following synchronization
mechanisms:

–  Barriers
–  Locks
–  Fence
–  Spinlocks (using memory consistency model)

$"

Synchronization: barriers

• UPC provides the following barrier synchronization
constructs:

–  Barriers (Blocking)
•  upc_barrier {expr};

–  Split-Phase Barriers (Non-blocking)
•  upc_notify {expr};
•  upc_wait {expr};
•  Note: upc_notify is not blocking, upc_wait is

$#

Synchronization: fence

• UPC provides a fence construct
–  Equivalent to a null strict reference, and has the syntax

• upc_fence;
–  Null strict reference:

• {static shared strict int x; x=x;}

• Ensures that all shared references issued before
the upc_fence are complete

$$

Synchronization: locks

• In UPC, shared data can be protected against
multiple writers :
–  void upc_lock(upc_lock_t *l)
–  int upc_lock_attempt(upc_lock_t *l) //
returns 1 on success and 0 on failure

–  void upc_unlock(upc_lock_t *l)

•  Locks can be allocated dynamically. Dynamically
allocated locks can be freed

•  Dynamic locks are properly initialized and static locks
need initialization

Introduction to PGAS - pMatlab

Credit: Slides based on some from Jeremey Kepner
http://www.ll.mit.edu/mission/isr/pmatlab/pmatlab.html

Agenda

• Overview

•  pMatlab Execution (SPMD)
–  Replicated arrays

• Distributed arrays
–  Maps
–  Local components

46

Not real PGAS

•  PGAS – Partitioned Global Address Space
•  MATLAB doesn’t expose address space

–  Uses implicit memory management
–  User creates arrays
–  MATLAB interpreter allocates/frees the memory

•  So, when I say PGAS in MATLAB, I mean
–  Running multiple copies of the interpreter
–  Distributed arrays: allocating a single (logical) array as a collection

of local (physical) array components

•  Multiple implementations
–  Open source: MIT Lincoln Labs’ pMatlab + OSC bcMPI
–  Commercial: Mathworks’ Parallel Computing Toolbox, Interactive

Supercomputing (now Microsoft) Star-P

47

http://www.osc.edu/bluecollarcomputing/applications/bcMPI/index.shtml

Serial Program

• Matlab is a high level language
•  Allows mathematical expressions to be written concisely
•  Multi-dimensional arrays are fundamental to Matlab

Y(:,:) = X + 1;!

X = zeros(N,N);!
Y = zeros(N,N);!

Matlab

Pid=Np-1!

Pid=1!
Pid=0!

Parallel Execution

•  Run NP (or Np) copies of same program
–  Single Program Multiple Data (SPMD)

• Each copy has a unique PID (or Pid)
•  Every array is replicated on each copy of the program

Y(:,:) = X + 1;!

X = zeros(N,N);!
Y = zeros(N,N);!

pMatlab

Pid=Np-1!

Pid=1!
Pid=0!

Distributed Array Program

•  Use map to make a distributed array
• Tells program which dimension to distribute data
• Each program implicitly operates on only its own data

(owner computes rule)

Y(:,:) = X + 1;!

XYmap = map([Np 1],{},0:Np-1);!
X = zeros(N,N,XYmap);!
Y = zeros(N,N,XYmap);!

pMatlab

Explicitly Local Program

• Use local function to explicitly retrieve local part of a
distributed array

•  Operation is the same as serial program, but with different
data in each process (recommended approach)

Yloc(:,:) = Xloc + 1;!

XYmap = map([Np 1],{},0:Np-1);!
Xloc = local(zeros(N,N,XYmap));!
Yloc = local(zeros(N,N,XYmap));!

pMatlab

Parallel Data Maps

•  A map is a mapping of array indices to processes
• Can be block, cyclic, block-cyclic, or block w/overlap
• Use map to set which dimension to split among processes

Xmap=map([Np 1],{},0:Np-1)!

Matlab

0 1 2 3
Computer

PID! Pid!

Array

Xmap=map([1 Np],{},0:Np-1)!

Xmap=map([Np/2 2],{},0:Np-1)!

Maps and Distributed Arrays

Amap = map([Np 1],{},0:Np-1);

Process Grid

A = zeros(4,6,Amap);

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

0
0
0
0

P0
P1
P2
P3

List of processes

pMatlab constructors are overloaded to
take a map as an argument, and return a
distributed array.

A =

Distribution
{}=default=block

Parallelizing Loops

• The set of loop index
values is known as an
iteration space

•  In parallel programming,
a set of processes
cooperate in order to
complete a single task

•  To parallelize a loop, we
must split its iteration
space among processes

54

loopSplit Construct

•  parfor is a neat
construct that is
supported by
Mathworks’ PCT

• ParaM’s equivalent is
called loopSplit

• Why loopSplit and not
parfor? That is a subtle
question…

55

Global View vs. Local View

•  In parallel programming,
a set of processes
cooperate in order to
complete a single task

• The global view of the
program refers to actions
and data from the task
perspective

–  OpenMP programming is
an example of global view

• parfor is a global view
construct

56

Gobal View vs. Local View (con’t)

• The local view of the program
refers to actions and data
within an individual process

•  Single Program-Multiple Data
(SPMD) programs provide a
local view

–  Each process is an
independent execution of the
same program

–  MPI programming is an
example of SPMD

•  ParaM uses SPMD
•  loopSplit is the SPMD

equivalent of parfor

57

loopSplit Example

• Monte Carlo approximation of

• Algorithm
–  Consider a circle of radius 1
–  Let N = some large number (say 10000) and count = 0
–  Repeat the following procedure N times

•  Generate two random numbers x and y between 0 and 1
(use the rand function)

•  Check whether (x,y) lie inside the circle
•  Increment count if they do

–  Pi_value = 4 * count / N

Monte Carlo Example: Serial Code

59

N = 1000;!
count = 0;!
radius = 1;!
fprintf('Number of iterations : %.0f\n', N);!
for k = 1:N!
 % Generate two numbers between 0 and 1!
 p = rand(1,2);!
 % i.e. test for the condition : x^2 + y^2 < 1!
 if sum(p.^2) < radius!
 % Point is inside circle : Increment count!
 count = count + 1;!
 end!
End!
pival = 4*count/N;!
t1 = clock;!
fprintf('Calculated PI = %f\nError = %f\n', pival, abs(pi-
pival));!
fprintf('Total time : %f seconds\n', etime(t1, t0));!

Monte Carlo Example: Parallel Code

60

if (PARALLEL)!
 rand('state', Pid+1);!
end !
N = 1000000;!
count = 0;!
radius = 1;!
fprintf('Number of iterations : %.0f\n', N);!
[local_low, local_hi] = loopSplit(1, N, Pid, Np);!
fprintf('Process \t%i\tbegins %i\tends %i\n', Pid, local_low, ...!
 local_hi); !
for k = local_low:local_hi!
 % Here, p(x,y) represents a point in the x-y space !
 p = rand(1,2);!
 % i.e. test for the condition : x^2 + y^2 < 1!
 if sum(p.^2) < radius!
 count = count + 1;!
 end!
end!

Monte Carlo Example: Parallel Output

61

Number of iterations : 1000000!
Process 0 begins 1 ends 250000!
Process 1 begins 250001 ends 500000!
Process 2 begins 500001 ends 750000!
Process 3 begins 750001 ends 1000000!
Calculated PI = 3.139616!
Error = 0.001977!

Monte Carlo Example: Total Count

62

if (PARALLEL)!
 map1 = map([Np 1], {}, 0:Np-1);!
else!
 map1 = 1;!
end!
answers = zeros(Np, 1, map1);!
my_answer = local(answers);!
my_answer(1,1) = count;!
answers = put_local(answers, my_answer);!
global_answers = agg(answers);!
if (Pid == 0) !
 global_count = 0;!
 for i = 1:Np!
 global_count = global_count + global_answers(i,1);!
 end!
 pival = 4*global_count/N;!
 fprintf(‘PI = %f\nError = %f\n', pival, abs(pi-pival));!
end!

63

answers = zeros(Np, 1, map1);!
my_answer = local(answers);!
my_answer(1,1) = count;!
answers = put_local(answers, my_answer);!
global_answers = agg(answers);!

64

answers = zeros(Np, 1, map1);!
my_answer = local(answers);!
my_answer(1,1) = count;!
answers = put_local(answers, my_answer);!
global_answers = agg(answers);!

65

answers = zeros(Np, 1, map1);!
my_answer = local(answers);!
my_answer(1,1) = count;!
answers = put_local(answers, my_answer);!
global_answers = agg(answers);!

66

answers = zeros(Np, 1, map1);!
my_answer = local(answers);!
my_answer(1,1) = count;!
answers = put_local(answers, my_answer);!
global_answers = agg(answers);!

67

answers = zeros(Np, 1, map1);!
my_answer = local(answers);!
my_answer(1,1) = count;!
answers = put_local(answers, my_answer);!
global_answers = agg(answers);!

68

if (Pid == 0) !
 global_count = 0;!
 for i = 1:Np!
 global_count = global_count + global_answers(i,1);!

Introduction to PGAS - APGAS and the X10
Language

Credit: Slides based on some from David Grove, et.al.
http://x10.codehaus.org/Tutorials

Outline

• MASC architectures and APGAS

• X10 fundamentals

• Data distributions (points and regions)

• Concurrency constructs

• Synchronization constructs

• Examples

70

Multicore/Accelerator multiSpace Computing (MASC)

•  Cluster of nodes

•  Each node
–  Multicore processing

•  2 to 4 sockets/board now
•  2, 4, 8 cores/socket now

–  Manycore accelerator
•  Discrete device (GPU)
•  Integrated w/CPU (Intel “Knights Corner”)

•  Multiple memory spaces
–  Per node memory (accessible by local

cores)
–  Per accelerator memory

71

Multicore/Accelerator multiSpace Computing (MASC)

•  Achieving high
performance requires
detailed, system-
dependent specification of
data placement and
movement

•  Programmability Challenges
–  exhibit multiple levels of

parallelism
–  synchronize data motion across

multiple memories
–  regularly overlap computation

with communication

72

Every Parallel Architecture has a dominant
programming model

Parallel
Architecture

Programming
Model

Vector Machine
(Cray 1)

Loop vectorization
(IVDEP)

SIMD Machine
(CM-2)

Data parallel (C*)

SMP Machine
(SGI Origin)

Threads (OpenMP)

Clusters
(IBM 1350)

Message Passing
(MPI)

GPGPU
(nVidia Tesla)

Data parallel
(CUDA)

MASC Asynchronous
PGAS?

• MASC Options
–  Pick a single model

(MPI, OpenMP)
–  Hybrid code

•  MPI at node level
•  OpenMP at core level
•  CUDA at accelerator

–  Find a higher-level
abstraction, map it to
hardware

73

X10 Concepts

• Asynchronous PGAS
–  PGAS model in which threads can be dynamically

created under programmer control
–  p distinct memories, q distinct threads (p <> q)

• PGAS memories are called places in X10

• PGAS threads are called activities in X10

74

What is X10?

•  X10 is a new language developed in the IBM PERCS
project as part of the DARPA program on High
Productivity Computing Systems (HPCS)

• X10 is an instance of the APGAS framework in the
Java family

• X10
–  Is more productive than current models
–  Can support high levels of abstraction
–  Can exploit multiple levels of parallelism and non-uniform

data access
–  Is suitable for multiple architectures, and multiple workloads.

X10 Constructs

Fine grained concurrency
•  async S

Atomicity
•  atomic S
•  when (c) S

Global data-structures
•  points, regions,
distributions, arrays

Place-shifting operations
•  at (P) S

Ordering
•  finish S
•  clock

Two basic ideas: Places and Activites

X10 Project Status

•  X10 is an open source project (Eclipse Public License)
–  Documentation, releases, mailing lists, code, etc. all publicly

available via http://x10-lang.org
•  XRX: X10 Runtime in X10 (14kloc and growing)
•  X10 1.7.x releases throughout 2009 (Java & C++)
•  X10 2.0 released November 6, 2009

–  Java: Single process (all places in 1 JVM)
•  any platform with Java 5

–  C++: Multi-process (1 place per process)
•  aix, linux, cygwin, solaris
•  x86, x86_64, PowerPC, Sparc
•  x10rt: APGAS runtime (binary only) or MPI (open source)

Overview of Features
•  Many sequential features of Java

inherited unchanged
–  Classes (w/ single inheritance)
–  Interfaces, (w/ multiple

inheritance)
–  Instance and static fields
–  Constructors, (static) initializers
–  Overloaded, over-rideable

methods
–  Garbage collection

•  Structs
•  Closures
•  Points, Regions, Distributions,

Arrays

• Substantial extensions to the
type system

–  Dependent types
–  Generic types
–  Function types
–  Type definitions, inference

•  Concurrency
–  Fine-grained concurrency:

•  async (p,l) S
–  Atomicity

•  atomic (s)
–  Ordering

•  L: finish S
–  Data-dependent

synchronization
•  when (c) S

Points and Regions
•  A point is an element of an n-

dimensional Cartesian space
(n>=1) with integer-valued
coordinates e.g., [5], [1, 2], …

•  A point variable can hold values
of different ranks e.g.,

–  var p: Point = [1]; p = [2,3]; …
•  Operations

–  p1.rank
•  returns rank of point p1

–  p1(i)
•  returns element (i mod p1.rank) if

i < 0 or i >= p1.rank
–  p1 < p2, p1 <= p2, p1 > p2, p1 >=

p2
•  returns true iff p1 is

lexicographically <, <=, >, or >= p2
•  only defined when p1.rank and

p2.rank are equal

• Regions are collections
of points of the same
dimension

• Rectangular regions
have a simple
representation, e.g.
[1..10, 3..40]

• Rich algebra over
regions is provided

Distributions and Arrays

• Distributions specify mapping
of points in a region to places

–  E.g. Dist.makeBlock(R)
–  E.g. Dist.makeUnique()

•  Arrays are defined over a
distribution and a base type

–  A:Array[T]
–  A:Array[T](d)

•  Arrays are created through
initializers

–  Array.make[T](d, init)

•  Arrays are mutable
(considering immutable
arrays)

• Array operations
•  A.rank ::= # dimensions in

array
•  A.region ::= index region

(domain) of array
•  A.dist ::= distribution of array

A
•  A(p) ::= element at point p,

where p belongs to A.region
•  A(R) ::= restriction of array

onto region R
–  Useful for extracting

subarrays

async

• async S
–  Creates a new child

activity that executes
statement S

–  Returns immediately
–  S may reference final

variables in enclosing
blocks

–  Activities cannot be
named

–  Activity cannot be aborted
or cancelled

Stmt ::= async(p,l) Stmt

cf Cilk’s spawn

// Compute the Fibonacci
// sequence in parallel.
def run() {
 if (r < 2) return;
 val f1 = new Fib(r-1),
 f2 = new Fib(r-2);
 finish {
 async f1.run();
 f2.run();
 }
 r = f1.r + f2.r;
}

// Compute the Fibonacci
// sequence in parallel.
def run() {
 if (r < 2) return;
 val f1 = new Fib(r-1),
 f2 = new Fib(r-2);
 finish {
 async f1.run();
 f2.run();
 }
 r = f1.r + f2.r;
}

finish

•  L: finish S
–  Execute S, but wait until all

(transitively) spawned asyncs
have terminated.

•  Rooted exception model
–  Trap all exceptions thrown by

spawned activities.
–  Throw an (aggregate)

exception if any spawned
async terminates abruptly.

–  Implicit finish at main activity

•  finish is useful for expressing
“synchronous” operations on
(local or) remote data.

Stmt ::= finish Stmt

cf Cilk’s sync

at

•  at(p) S
–  Execute statement S at

place p
–  Current activity is blocked

until S completes

Stmt ::= at(p) Stmt

// Copy field f from a to b
def copyRemoteFields(a, b) {
 at (b.loc) b.f =
 at (a.loc) a.f;
}

// Increment field f of obj
def incField(obj, inc) {
 at (obj.loc) obj.f += inc;
}

// Invoke method m on obj
def invoke(obj, arg) {
 at (obj.loc) obj.m(arg);
}

// push data onto concurrent
// list-stack
val node = new Node(data);
atomic {
 node.next = head;
 head = node;
}

atomic

•  atomic S
–  Execute statement S

atomically
–  Atomic blocks are

conceptually executed in a
single step while other
activities are suspended:
isolation and atomicity.

•  An atomic block body
(S) ...

–  must be nonblocking
–  must not create concurrent

activities (sequential)
–  must not access remote

data (local)

// target defined in lexically
// enclosing scope.
atomic def CAS(old:Object,
 n:Object) {
 if (target.equals(old)) {
 target = n;
 return true;
 }
 return false;
}

Stmt ::= atomic Statement
MethodModifier ::= atomic

when

• when (E) S
–  Activity suspends until a state in

which the guard E is true.
–  In that state, S is executed

atomically and in isolation.
–  Guard E is a boolean expression

•  must be nonblocking
•  must not create concurrent

activities (sequential)
•  must not access remote data

(local)
•  must not have side-effects (const)

•  await (E)
–  syntactic shortcut for when (E) ;

Stmt ::= WhenStmt
WhenStmt ::= when (Expr) Stmt
 | WhenStmt or (Expr) Stmt

class OneBuffer {
 var datum:Object = null;
 var filled:Boolean = false;
 def send(v:Object) {
 when (!filled) {
 datum = v;
 filled = true;
 }
 }
 def receive():Object {
 when (filled) {
 val v = datum;
 datum = null;
 filled = false;
 return v;
 }
 }
}

Clocks: Motivation
•  Activity coordination using finish is accomplished by checking for

activity termination
•  But in many cases activities have a producer-consumer relationship

and a “barrier”-like coordination is needed without waiting for activity
termination

–  The activities involved may be in the same place or in different places
•  Design clocks to offer determinate and deadlock-free coordination

between a dynamically varying number of activities.

Activity 0 Activity 1 Activity 2 . . .

Phase 0

Phase 1

. . .

Clocks: Main operations

• var c = Clock.make();
–  Allocate a clock, register

current activity with it.
Phase 0 of c starts.

•  async(…) clocked (c1,c2,…) S
•  ateach(…) clocked (c1,c2,…) S

•  foreach(…) clocked (c1,c2,…) S

•  Create async activities
registered on clocks c1,
c2, …

•  c.resume();
–  Nonblocking operation that

signals completion of work
by current activity for this
phase of clock c

•  next;
–  Barrier — suspend until all

clocks that the current
activity is registered with
can advance. c.resume() is
first performed for each
such clock, if needed.

•  next can be viewed like a
“finish” of all computations
under way in the current
phase of the clock

Fundamental X10 Property

• Programs written using async, finish, at, atomic,
clock cannot deadlock

•  Intuition: cannot be a cycle in waits-for graph

y

x

(1)

(2)

Because of the time steps,
Typically, two grids are used

2D Heat Conduction Problem

• Based on the 2D Partial Differential Equation (1),
2D Heat Conduction problem is similar to a 4-point
stencil operation, as seen in (2):

A:!

1.0

n

n

Σ	

 ÷ 4

repeat until max
change < ε	

Heat Transfer in Pictures

Heat transfer in X10

• X10 permits smooth variation between multiple
concurrency styles

–  “High-level” ZPL-style (operations on global arrays)
•  Chapel “global view” style
•  Expressible, but relies on “compiler magic” for performance

–  OpenMP style
•  Chunking within a single place

–  MPI-style
•  SPMD computation with explicit all-to-all reduction
•  Uses clocks

–  “OpenMP within MPI” style
•  For hierarchical parallelism
•  Fairly easy to derive from ZPL-style program.

Heat Transfer in X10 – ZPL style

class Stencil2D {
 static type Real=Double;
 const n = 6, epsilon = 1.0e-5;

 const BigD = Dist.makeBlock([0..n+1, 0..n+1], 0),
 D = BigD | [1..n, 1..n],
 LastRow = [0..0, 1..n] as Region;
 const A = Array.make[Real](BigD, (p:Point)=>(LastRow.contains(p)?
1:0));
 const Temp = Array.make[Real](BigD);

 def run() {
 var delta:Real;
 do {
 finish ateach (p in D)
 Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

 delta = (A(D)–Temp(D)).lift(Math.abs).reduce(Math.max, 0.0);
 A(D) = Temp(D);
 } while (delta > epsilon);
 }
}

Heat Transfer in X10 – ZPL style

• Cast in fork-join style rather than SPMD style
–  Compiler needs to transform into SPMD style

• Compiler needs to chunk iterations per place
–  Fine grained iteration has too much overhead

• Compiler needs to generate code for distributed
array operations

–  Create temporary global arrays, hoist them out of loop,
etc.

• Uses implicit syntax to access remote locations.
Simple to write — tough to implement efficiently

def run() {
 val D_Base = Dist.makeUnique(D.places());
 var delta:Real;
 do {
 finish ateach (z in D_Base)
 for (p in D | here)
 Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

 delta =(A(D) – Temp(D)).lift(Math.abs).reduce(Math.max, 0.0);
 A(D) = Temp(D);
 } while (delta > epsilon);
}

Heat Transfer in X10 – II

•  Flat parallelism: Assume one activity per place is desired.
•  D.places() returns ValRail of places in D.

–  Dist.makeUnique(D.places()) returns a unique distribution (one
point per place) over the given ValRail of places

•  D | x returns sub-region of D at place x.

Explicit Loop Chunking

Heat Transfer in X10 – III

•  Hierarchical parallelism: P activities at place x.
–  Easy to change above code so P can vary with x.

•  DistUtil.block(D,P)(x,q) is the region allocated to the q’th
activity in place x. (Block-block division.)

Explicit Loop Chunking with Hierarchical Parallelism

def run() {
 val D_Base = Dist.makeUnique(D.places());
 val blocks = DistUtil.block(D, P);
 var delta:Real;
 do {
 finish ateach (z in D_Base)
 foreach (q in 1..P)
 for (p in blocks(here,q))
 Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;

 delta =(A(D)–Temp(D)).lift(Math.abs).reduce(Math.max, 0.0);
 A(D) = Temp(D);
 } while (delta > epsilon);
}

def run() {
 finish async {
 val c = clock.make();
 val D_Base = Dist.makeUnique(D.places());
 val diff = Array.make[Real](D_Base),
 scratch = Array.make[Real](D_Base);
 ateach (z in D_Base) clocked(c)
 do {
 diff(z) = 0.0;
 for (p in D | here) {
 Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;
 diff(z) = Math.max(diff(z), Math.abs(A(p) - Temp(p)));
 }
 next;
 A(D | here) = Temp(D | here);
 reduceMax(z, diff, scratch);
 } while (diff(z) > epsilon);
 }
}

Heat Transfer in X10 – IV

•  reduceMax() performs an all-to-all max reduction.
SPMD with all-to-all reduction == MPI style

One activity per place == MPI task

Akin to UPC barrier

Heat Transfer in X10 – V

“OpenMP within MPI style”

def run() {
 finish async {
 val c = clock.make();
 val D_Base = Dist.makeUnique(D.places());
 val diff = Array.make[Real](D_Base),
 scratch = Array.make[Real](D_Base);
 ateach (z in D_Base) clocked(c)
 foreach (q in 1..P) clocked(c)
 var myDiff:Real = 0;
 do {
 if (q==1) { diff(z) = 0.0}; myDiff = 0;
 for (p in blocks(here,q)) {
 Temp(p) = A(p.stencil(1)).reduce(Double.+, 0.0)/4;
 myDiff = Math.max(myDiff, Math.abs(A(p) – Temp(p)));
 }
 atomic diff(z) = Math.max(myDiff, diff(z));
 next;
 A(blocks(here,q)) = Temp(blocks(here,q));
 if (q==1) reduceMax(z, diff, scratch);
 next;
 myDiff = diff(z);
 next;
 } while (myDiff > epsilon);
 } }

Heat Transfer in X10 – VI

•  All previous versions permit fine-grained remote
access

–  Used to access boundary elements

• Much more efficient to transfer boundary elements in
bulk between clock phases.

• May be done by allocating extra “ghost” boundary at
each place

–  API extension: Dist.makeBlock(D, P, f)
•  D: distribution, P: processor grid, f: region→region transformer

• reduceMax() phase overlapped with ghost distribution
phase

