

Ohio Supercomputer Center

An OH·TECH Consortium Member

Computing Services to Accelerate Research and Innovation

An introduction to OSC services, hardware, and environment

Kate Cahill Education & Training Specialist

"OSC is here to empower your research."

Outline

- What is OSC?
- HPC Concepts
- Hardware Overview
- Data Storage Systems
- Batch Processing
- Accessing Available Software
- OSC OnDemand Web Portal Demonstration

"640K ought to be enough for anybody." – Not Bill Gates

About OSC

- Founded in 1987
- Statewide resource for all universities in Ohio
 - high performance computing services
 - computational science expertise
 - " ... propel Ohio's research universities and private industry to the forefront of computational based research."
- Funded through the Ohio Department of Higher Education
- Reports to the Chancellor
- Located on OSU's west campus
- Fiscal agent is OSU

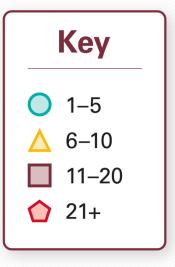
The OH-TECH Consortium

Ohio Supercomputer Center provides high performance computing, software, storage and support services for Ohio's scientists, faculty, students, businesses and their research partners.

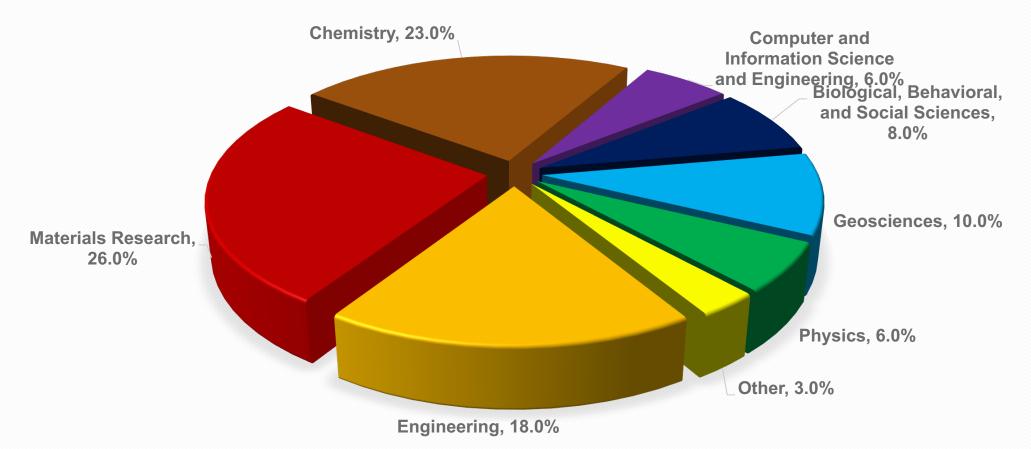
OARnet connects Ohio's universities, colleges, K-12, health care and state and local governments to its high-speed fiber optic network backbone. OARnet services include co-location, support desk, federated identity and virtualization.

OhioLINK serves nearly 600,000 higher education students and faculty by providing a statewide system for sharing 50 million books and library materials, while aggregating costs among its 90 member institutions.

eStudent Services provides students increased access to higher education through e-learning and technology-enhanced educational opportunities, including virtual tutoring.



Research & Innovation Center will operate, when opened, as the proving grounds for next-generation technology infrastructure innovations and a catalyst for cutting-edge research and collaboration.


Active Projects

• 469

Computing Resource Usage by Field of Science (FoS)

OSC Service Catalog

Cluster Computing

- High Performance Computing
- High Throughput Computing
- Data-Intensive Computing

Client Services

- 24x7 Call Center
- Level 2 Engineering Support

Scientific Software Development

- Software Development
- Software Parallelization

Partner on Proposals

- Cyberinfrastructure solutions
- Modeling & simulation for industry

Research Data Storage

- Project Storage
- Archival Storage

Client Facilitation

- Consultation (in-person and online)
- Training and Education
- Classroom accounts

Web Software Development

- Software Development
- Software Consulting
 - Visualization & Virtual Environments
- Visualization Services
- Virtual environments (DSL)


HPC Example Projects and Concepts

"The difference between us and a computer is that, the computer is blindingly stupid, but it is capable of being stupid many, many million times a second." – Douglas Adams

Why would HPC be necessary for your work?

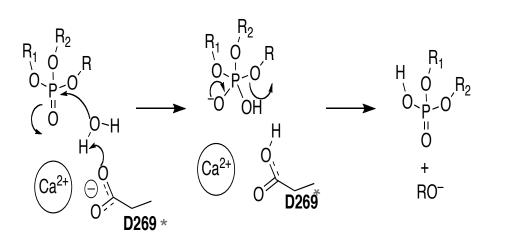
- Your simulations or analyses take too long on your personal computer
- The size of your data is too large to be contained (storage) or accessed (memory) on your computer
- You would like to free up your own system to do other tasks
- You need particular software for your work

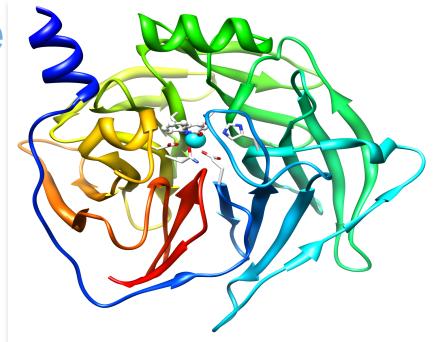
Mapping

Researchers who normally use OSC systems to enhance satellite images of glaciers turned their technology to disaster relief assistance following Nepal's April 2015 earthquake

PI: Ian Howat, Ohio State University

Source: NSF Office of Polar Programs

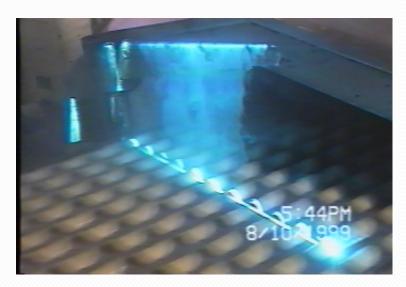

Flavor Physics

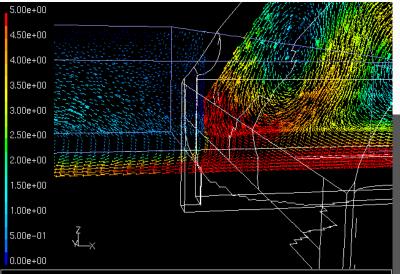

A researcher accesses OSC services to answer basic questions about the universe by modeling very high-mass particles, called quarks, which have six variations known as flavors

PI: Michael Sokoloff, Univ. of Cincinnati

Treating Nerve Agent Exposure

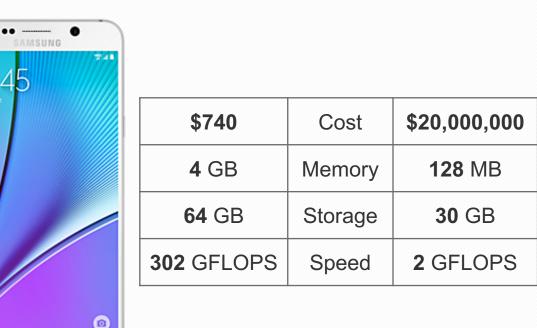
Treating Nerve Agent Exposure

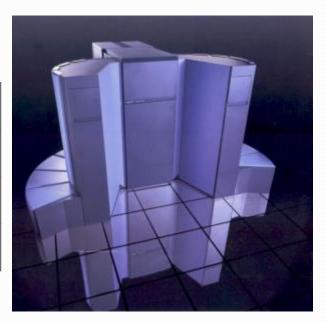

With the power of OSC computing services, a team studies how to capture and destroy organophosphorus nerve agents using modified proteins.


PI: Christopher Hadad, Ohio State University

How to make a billion pringles?

Velocity Vectors Colored By Velocity Magnitude (m/s) (Time=1.8410e+01) Mar 16, 2000 FLUENT 5.3 (3d, segregated, rngke, unsteady)


What is the difference between your laptop and a supercomputer?

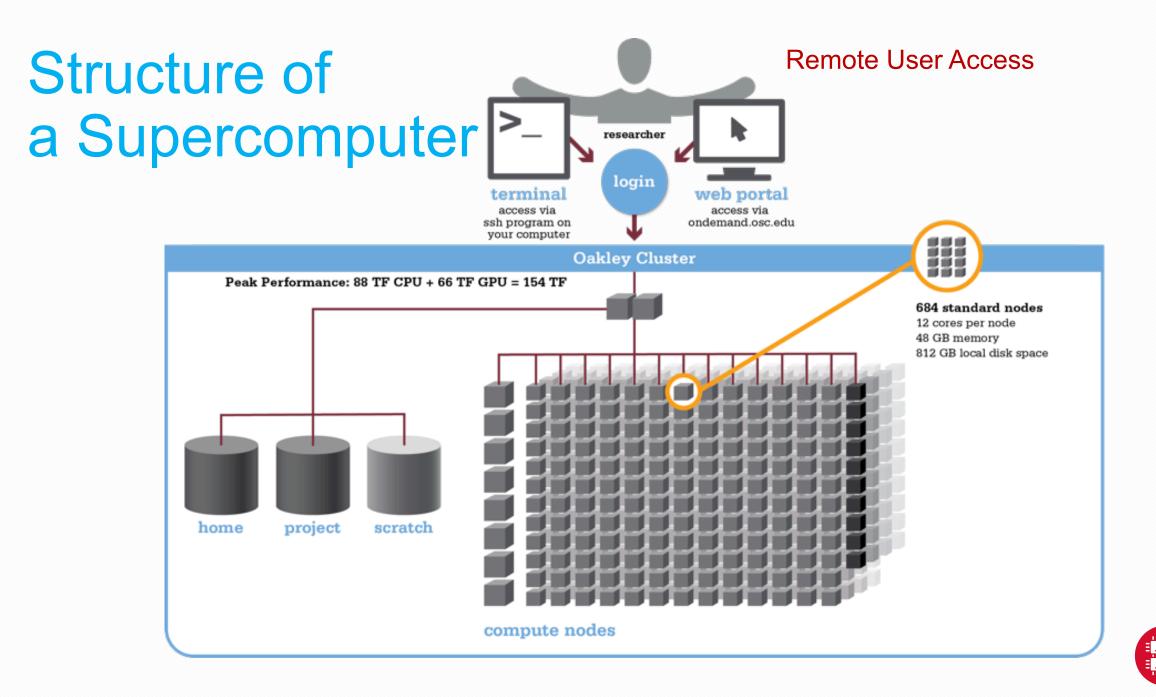

Supercomputers become history quickly!

Smartphone - 2015

 \bigcirc

Supercomputer - 1989

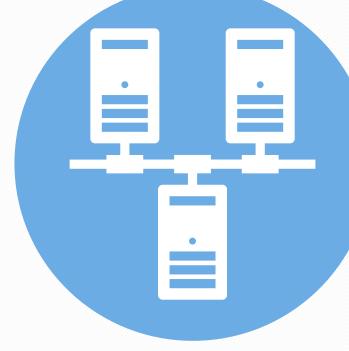
HPC Terminology


• Cluster

- A group of computers (nodes) connected by a high-speed network, forming a supercomputer
- Node
 - Equivalent to a high-end workstation, part of a cluster

Core

- A processor (CPU), multiple cores per processor chip
- FLOPS
 - "FLoating-point Operations (calculations) Per Second"



Memory

- Holds data that is being calculated on, as well as computational instructions
- Shared memory is local to one node and several process

threads can share the same data addresses.

• *Distributed memory* is on multiple nodes and each process normally has its own copy or part of the data.

Storage

Different types of "disk" for different needs

- Local disk in the node, often SSD
- Shared scratch

Parallel filesystems, eg Lustre or GPFS

Traditionally tuned for high bandwidth, not high IOPS May have a "burst buffer" layer in front of it

Short-term storage only!!

• Longer-term or archive

Big Numbers

Prefix byte = 1 grain of rice

- K (cup of rice)
 - kilo, 10³, thousand
- M (8 bags of rice)
 - mega, 10⁶, million
- G (3 trucks full)
 - giga, 10⁹, billion
- T (2 container ships)
 - tera, 10¹², trillion
- P (covers Manhattan island)
 - peta, 10¹⁵, quadrillion
- E (covers the UK 3x)
 - exa, 10¹⁸, quintillion

Relation to HPC

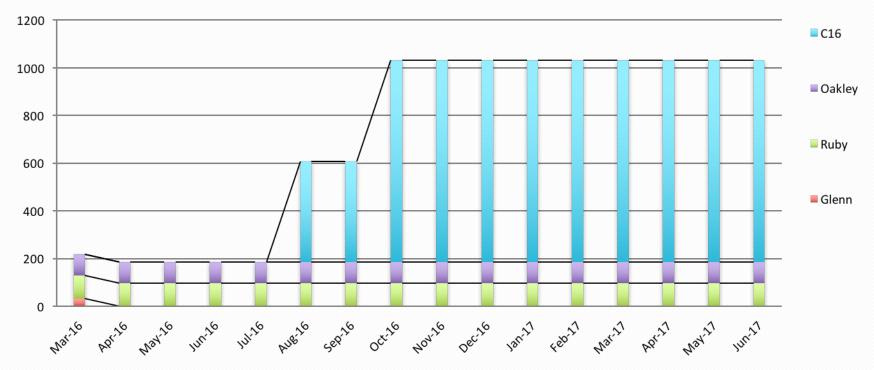
- 1KB very small
- 12MB L2 cache per core
- 48GB memory per node
- .5 TB disk space per user
- 4 PB aggregate storage
- Exascale systems current research area

Hardware Overview

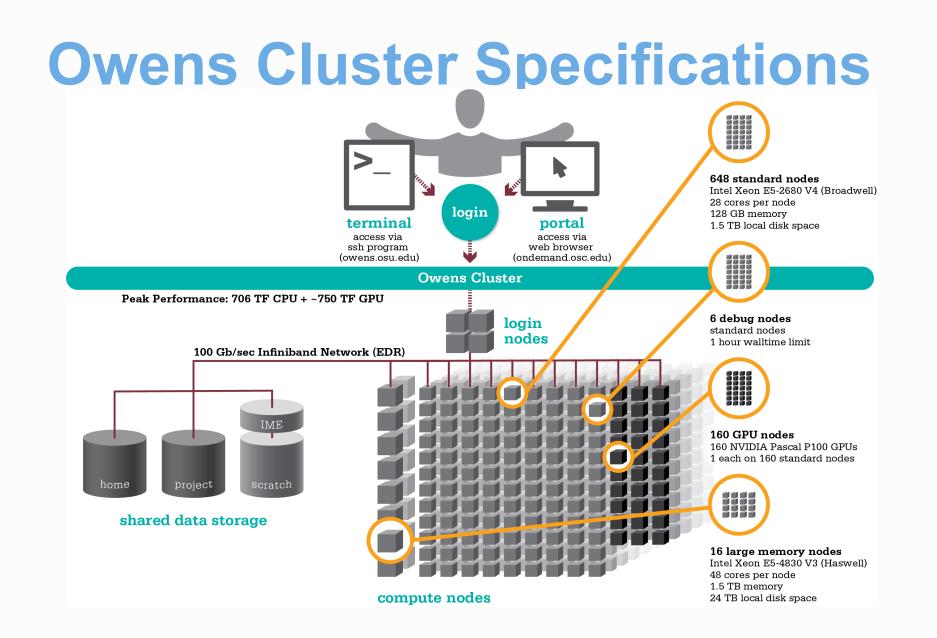
"To err is human, but to really foul things up you need a computer." – Paul Ehrlich

System Configurations

	Owens (2016)	Ruby (2014)	(2012)
Theoretical	~750		
Performance	TF	~144 TF	~154 TF
# Nodes	~820	240	692
# CPU Cores	~23,500	4800	8304
Total Memory	~120 TB	~15.3 TB	~33.4 TB
Memory per Core	>5 GB	3.2 GB	4 GB
Interconnect	EDR IB	FDR/EN IB	QDR IB

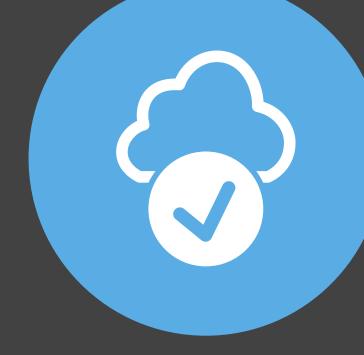


Oaklay



OWENS INCREASES PERFORMANCE 5X

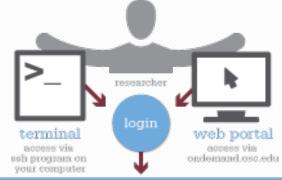
Peak Performance

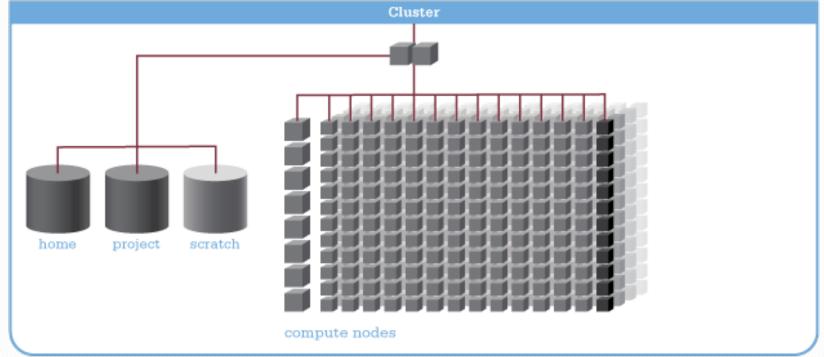


Login Nodes – Usage

• Purpose

- Submit jobs to batch system
- Edit files
- Manage your files
- Interactive work small scale
- Limits
 - 20 minutes CPU time
 - 1GB memory
- Use the batch system for serious computing!





"War is ninety percent information." – Napoleon Bonaparte

Four different file systems

Filesystem Overview

- Home
 - Store your files here, backed up daily
 - Use \$HOME or ~username to reference location
- Project
 - Available to Project PIs by request; shared by all users on a project, backed up daily
 - Use /fs/project/project# to reference location

- Scratch
 - Store large input or output files here
 - Faster I/O than Home or Project
 - Temporary storage, not backed up
- \$TMPDIR
 - Storage on compute nodes, for use during your batch job
 - Be sure to copy any results back to Home at the end of your job, all data purged when job quits

Filesystem	Quota	Backed-Up?	Purged?
Home (\$HOME)	500GB	Yes	No
Project (/fs/project)	By request	Yes	No
Scratch (/fs/scratch)	None	No	Yes – 120 days
Compute (\$TMPDIR)	800GB (Oakley), 1 TB (Ruby & Owens)	No	Yes – when job completes

File Management

- If you are concerned about Home directory quotas:
 - Compress large, rarely used files
 - Use gzip or bzip2 commands
 - Combine large numbers of small files into an archive
 - Use tar command
 - Request Project space for your group (PIs only)
 - Large requests are reviewed by allocations committee
 - Contact OSC Help to initiate request

Sample Quota Display

As of 2010 Jul 15 04:02 userid usr1234 on /nfs/06 used 28GB of quota 500GB and 41374 files of quota 1000000 files

As of 2010 Jul 16 04:02 project/group PRJ0321 on /nfs/proj01 used 27GB of quota 5000GB and 573105 files of quota 1000000 files

Disk quotas for user usr1234 (uid 11059):

Filesystem

blocks quota limit grace files quota limit grace fs06-oak.ten.osc.edu:/nfs/06/osc

 201698292
 45000000
 524288000
 631137
 950000
 1000000

Getting Started at OSC

"If you were plowing a field, which would you rather use? Two strong oxen or 1024 chickens?" - Seymour Cray

Who can get an OSC project?

- Academic project
 - Principal investigator (PI) must be a full-time faculty member or research scientist at an Ohio academic institution
 - PI may authorize accounts for students, post-docs, collaborators, etc.
 - Classroom projects are also available
 - No cost to Ohio academic users
- Commercial projects
 - Commercial organizations may purchase time on OSC systems

Accounts and Projects at OSC

- Project
 - Headed by a PI
 - May include other users
 - Basis for accounting at OSC
 - Submit proposal for computing resources for a project
- Account
 - Username and password to access HPC systems
 - Each account associated with one project
 - Each account used by one person (please!)
 - If you work on multiple projects, you will have multiple accounts

Allocations and Charges

- Charges are in terms of resource units
- Resource units
 - OWENS 1 resource unit (RU) = 10 CPU hours
 - OAKLEY & RUBY 1 resource unit (RU) = 20 CPU hours
 - CPU hour = walltime x (total # of cores requested)
- Project receives an allocation of RUs
- Jobs are charged to a project

Requesting a New Project-

https://www.osc.edu/supercomputing/support/account

- Startup grant
 - One per PI per lifetime
 - Provide contact info, institution, department
 - 5000 RUs
- Additional allocations for a project
 - Submit a proposal for more RUs
 - Standard: 10,000
 - Major: 30,000
 - Discovery: >30,000
 - Peer-reviewed
 - Grants awarded by Statewide Users Group (SUG)
- Classroom account

My.osc.edu

- Site for managing your identity at OSC
- Update your email
- Change your password
- Recover access to your account
- Change your shell
- And a lot more in the future
 - Project reporting
 - Authorized user management
 - Requesting services (e.g. software access)

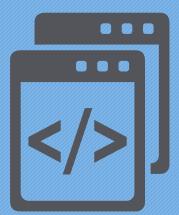
Your Contact Info

- Keep your contact information current
 - Use my.osc.edu to manage your account details.
- If your student continues to use OSC after graduation, make sure email address is updated
 - Acceptable if still collaborating with you
- May need to contact you about problems
- Will need to contact you about regular password changes
- You can opt out of routine notifications

System Status

- Check system status on:
 - Message of the day (/etc/motd) displayed at login
 - Twitter: @HPCnotices
 - Email for major outages or problems
- Scheduled downtimes
 - Quarterly maintenance usually one day outage
 - Jobs held for up to two weeks prior

Statewide Users Group (SUG)


- The Statewide Users Group (SUG) is made up of OSC users
 - Provides program and policy advice to OSC
 - Meets twice a year
 - Headed by a chairperson elected yearly
- Standing committees
 - Allocations
 - Software and Activities
 - Hardware and Operations
- Get involved!
 - Next meeting is April 5th in Columbus

- Please cite OSC in your publications:
 - Details at www.osc.edu/citation
- These publications should be reported to OSC

User Environment

"After growing wildly for years, the field of computing appears to be reaching its infancy." – John Pierce

Linux Operating System

- "UNIX-like"
- Widely used in HPC
- Mostly command-line
- Choice of shells (bash is default)
- Freely distributable, open-source software
- Tutorials available
- www.linux.org

Connecting to the clusters

- Connect to OSC machines using **ssh** (secure shell)
 - From a Linux/UNIX machine : At prompt, enter ssh userid@oakley.osc.edu
 ssh userid@ruby.osc.edu
 - From a Mac: Enter **ssh** command in TERMINAL window
 - From Windows: **ssh** client software needed
 - Both commercial and free versions are available
- New: Connect using OSC OnDemand portal (webbased)

Connecting to an OSC Cluster with Graphics

- Programs on the cluster can have an X-based GUI
 - Display graphics on your computer
- Linux/UNIX and Mac: Use -x flag

ssh -X userid@oakley.osc.edu

- Windows: Need extra software
 - Both commercial and free versions are available
 - Configure your ssh client to tunnel or forward X11
- Primarily used with programs on login node
 - Can also use with interactive batch jobs

OSC OnDemand ondemand.osc.edu

- 1: User Interface
 - Web based
 - Usable from computers, tablets, smartphones
 - Zero installation
 - Single point of entry
 - User needs three things
 - ondemand.osc.edu
 - OSC Username
 - OSC Password

Connected to all resources at OSC

- 2: Interactive Services
 - File Access
 - Job Management
 - Visualization Apps
 - Desktop access
 - Single-click apps (Abaqus, Ansys, Comsol, Paraview)
 - Terminal Access

Tutorial available at

osc.edu/ondemand

DSC OnDemand	Files	Jobs -	Clusters -	Apps -	Help	 Logged in as shussain
Message of the Day				Virtual Desktop Interface Qakley VDI Paraview		
2016/05/24 - SY A downtime is schede The downtime will aff available during this f In preparation for the 7th. Jobs that are he	uled for all fect all clus time. e downtime Id will be so	HPC system ters and se the batch s cheduled af	ms starting Jun rvices. Login se scheduler will b ter the system	🖵 Oakle 🚾 Abaqı	'S Workbench	scheduled to finish by 5PM. e systems will not be complete before 6AM June tus.
	Oakley Cluster Status 650 of 672 Nodes Active 96.73% 7785 of 8072 Processors Active 96.44% 2617 Total Jobs 772 Active 497 Eligible 1348 Blocked			Ruby Cluster Status 232 of 244 Nodes Active 95.03% 4652 of 4852 Processors Active 95.83% 231 Total Jobs 84 Active 104 Eligible 43 Biocked		

Transferring Files to and from the Cluster

- Most file transfers to and from OSC machines use sftp or scp
 - Linux and Mac have them built in
 - Windows needs extra software FileZilla
- For small files, connect to a login node owens.osc.edu
- For large files, transfer may fail due to shell limits
 - Connect to sftp.osc.edu (file transfer only)

File Permissions

- By default all files are readable by all users
- Check permissions using 1s -1

 -rw-r-r- 1 osu7824 PAS0925
 10839 Jan 13
 2015 triarm_VVVacid.sdf

 -rw-r--r- 1 osu7824 PAS0925
 11667 Jan 13
 2015 triarm_VVVester.sdf

 drwxr-xr-x
 8 osu7824 PAS0925
 4096 Jan 16
 2014 tutorial

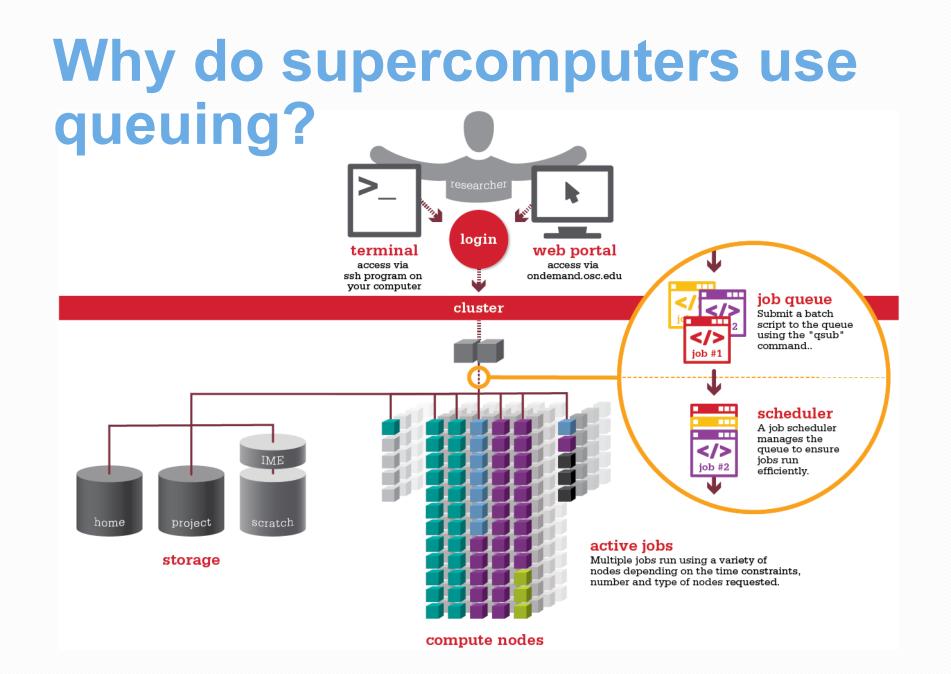
 -rw-r-xr- 1 osu7824 PAS0925
 9917889 Jan 15
 2015 ValBaskEst32_gopt.log

 -rw-r-xr-x
 1 osu7824 PAS0925
 12818 Jan 15
 2015 ValBaskEst32_gopt.mol2

 -rwxr-xr-x
 1 osu7824 PAS0925
 453376 Feb 26
 2015 ValBaskEst_c0_ValBaskEst0-CyHexPO-20Me-cl1_md1.mdcrd

- -rwxr-xr-x User, Group, Others
- Change file permissions using chmod chmod u=rw,g=r file

chmod -R u=rw,g=r directory



Batch Processing

"There's an old story about the person who wished his computer were as easy to use as his telephone. That wish has come true, since I no longer know how to use my telephone." – Bjarne Stroustrup

Batch System at OSC

- Compute nodes are allocated through the batch system
 - PBS Portable Batch System
 - Torque resource manager
 - Moab scheduler
- Documentation at

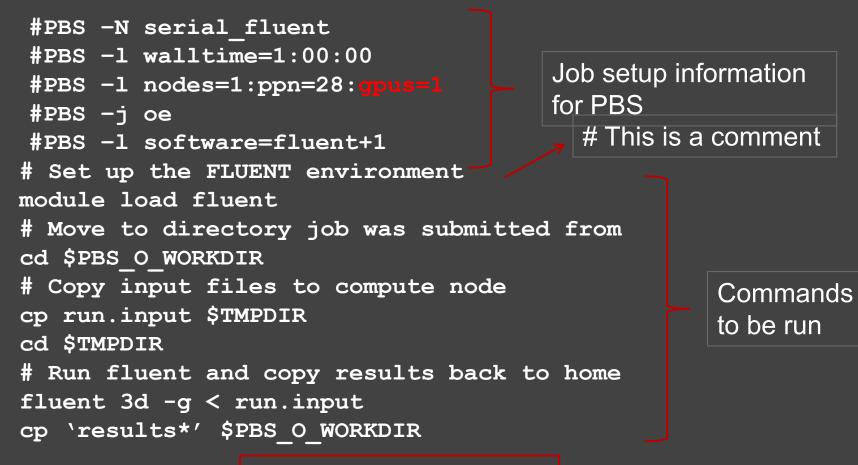
www.osc.edu/supercomputing/batch-processing-at-osc

Idea Behind Batch Processing

- Whatever you would normally type at the command prompt goes into your batch script
- Output that would normally go to the screen goes into a log file (or files)
- The system runs your job when resources become available
- Very efficient in terms of resource utilization

Steps for Running a Job on the Compute Nodes

- 1. Create a batch script for a job
- 2. Submit the job
- 3. Job gets queued
- 4. Job runs when resources become available
- 5. Get your results when the job finishes



Specifying Resources in a Job Script

- Nodes and cores (processors) per node
- Memory
- GPUs
 - See "Batch Processing at OSC" on OSC website
- Walltime
 - Overestimate slightly job will be deleted if it hits limit
 - Shorter job may start sooner due to backfill
- Software licenses
 - See specific software page on OSC website

Sample Batch Script

Put all this into a text file!

Submitting a Job and Checking Status

- Command to submit a job
 - qsub script_file
- Response from PBS (example)
 - 123456.oak-batch.osc.edu
- Show status of batch jobs
 - qstat -a jobid
 - qstat -u *username*
 - **qstat -f** *jobid* List of Batch commands on osc.edu

Scheduling Policies and Limits

- Walltime limit
 - 168 hours for serial jobs (single node)
 - 96 hours for parallel jobs (multiple nodes)
- Per-user limits
 - 128 concurrently running jobs
 - 2040 processor cores in use
 - 1000 jobs in the batch system, running or queued
- Per-group limits
 - 192 concurrently running jobs
 - 2040 processor cores in use

Waiting for Your Job To Run

- Queue wait time depends on many factors
 - System load
 - Resources requested
 - nodes, cores, large memory, gpus, software licenses
 - Fair share limits (if load is high)
 - reduced priority for users or groups using a lot of resources

Job Output

- Screen output ends up in file job_name.ojobid
 - Copied to your working directory when job ends
 - Example: testjob.o1234567
- To see screen output while job is running
 - qpeek jobid
 - Example: qpeek 1234567

Resources requested: nodes=2:ppn=28

Resources used: cput=125:18:32 walltime=02:14:32 mem=34.824GB vmem=77.969GB

Resource units charged (estimate): 12.556 RUs

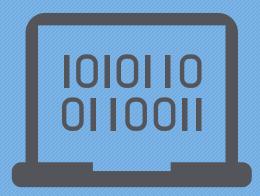
Interactive Batch Jobs

- Interactive, but handled through batch system
 - Resource limits same as standard batch limits
- Useful for tasks forbidden on login nodes
 - Debug parallel programs
 - Run a GUI program that's too large for login node
- May not be practical when system load is high
 - Long wait, same as standard batch job
- To submit an interactive batch job (example)
 - qsub -I -X -l nodes=2:ppn=28 -l walltime=1:00:00 -m abe

Batch Queues

- The three clusters have separate batch systems
 - Submit job and check status on the same cluster
- Debug reservation
 - A few nodes on each system are reserved for short jobs (≤ 1 hour)
 - Special flag required on Ruby and Owens: -q debug

Parallel Computing


- Each processor is fast, but real speed comes from using multiple processors
- Multithreading
 - Use multiple cores on a single node
 - Shared memory
- Message passing (MPI)
 - Use one or multiple nodes
 - Distributed memory

To Take Advantage of Parallel Computing

- Program must be written to take advantage of multiple cores and/or multiple nodes
- Many commercial applications have multithreaded or parallel versions
- Must use **mpiexec** for multiple nodes
- Can't just request more nodes or cores and expect your job to run faster

Loading and Running Software

Modules for Software access

- How modules work
 - Modify environment variables like **\$PATH** and **\$MANPATH** within your shell
- Default set of modules loaded at login
 - module system, batch system (do not unload)
 - default compiler and MPI modules
- Do NOT completely replace **\$PATH** in your .bash_profile Or .bashrc
- DO prepend directories to the existing **\$PATH**
 - Type: export PATH=\$HOME/bin:\$PATH

Adding or Removing Software from Your Environment

- Load the module for the software you need, e.g.,
 module load comsol
- Allows multiple versions of software to coexist on our system
- Allow us to make changes without affecting you
 - PLEASE DON'T HARDCODE PATHS!
- Can load modules at command prompt or in your .bash_profile or .bashrc file
- Also load modules in your job (batch) scripts

Module Commands

- What modules do you have loaded?
 - module list
- What modules are available?
 - module spider Or module avail
- Multiple versions of the same software
 - module avail intel
- Add a software module to your environment
 - module load cuda
- Remove a software package from your environment
 - module unload intel
- Load a different software version
 - module swap intel intel/13.1.3.192

Third party applications

- General programming software (^{\$\\$}statewide licensed)
 - gnu compilers and debugger

 - MPI library
 - HDF5
 - NetCDF
 - Java, Java Virtual Machine
 - Python

Third party applications

- Parallel programming software (\$statewide licensed)
 - MPI library (mvapich, mvapich2)
 - OpenMP
 - CUDA
 - OpenCL
 - OpenACC

Access to Licensed Software

- Most software licenses for academic use only
- Some software requires signed license agreement
 - Check website
 - Contact OSC Help
- List of applications can be found at Software page: http://www.osc.edu/supercomputing/software/

OSC doesn't have the software you need?

- Commercial software
 - Fill out a request form (see our FAQ)
 - SUG will consider it
- Open-source software
 - You can install it yourself in your home directory
 - If there's enough demand, we can install it for shared use
- Have your own license?
 - Contact OSC Help

Resources to get your questions answered

FAQs: <u>https://www.osc.edu/resources/getting_started/supercomputing_faq</u> HOW TOs: <u>https://www.osc.edu/resources/getting_started/howto</u>

New User Guide: https://www.osc.edu/resources/getting_started/new_user_resource_guide Updated presentations: https://www.osc.edu/~kcahill/NewUser

System updates

- Read Message of the Day on login
- Follow @HPCNotices on Twitter

Questions?

A DIVISI

OH·TECH

Ohio Technology Consortium A Division of the Ohio Department of Higher Education

y twitter.com/osc

f facebook.com/ohiosuperco mputercenter

w osc.edu

B oh-tech.org/blog

in linkedin.com/company/ohiosupercomputer-center