
Slide 1 

Performance Tuning Workshop 
 
Dr. Judy Gardiner 
July 27, 2017 
 
 



Slide 2 

Workshop Philosophy 

• Aim for “reasonably good” performance 
• Discuss performance tuning techniques common to most 

HPC architectures 
– Compiler options 
– Code modification 

• Focus on serial performance 
– ***Most important:  Unit stride memory access 

• Touch on parallel processing 
– Multithreading 
– MPI 



Slide 3 

More Important than Performance! 

• Correctness of results 
• Code readability / maintainability 
• Portability – future systems 
• Time to solution vs. execution time 



Slide 4 

Factors Affecting Performance 

• Effective use of processor features 
– High degree of internal concurrency in a single core 

• Data locality 
– Memory access is slow compared to computation 

• File I/O 
– Use an appropriate file system 

• Scalable algorithms 
• Compiler optimizations 

– Modern compilers are amazing! 
• Explicit parallelism 



Slide 5 

Outline 

• Hardware overview 
• Performance measurement and analysis 
• Help from the compiler 
• Code tuning / optimization 
• Parallel computing 
• Optional hands-on exercises 



Slide 6 

Owens Cluster 
Specifications  



Slide 7 

Hierarchical Memory 

L2 Cache (On or Off-Die) 

Local Memory 

L1 Cache Registers 

Functional Units 

Memory Bus (4-20 GB/s) 

Processor Core 

Interconnect Network 
(125-2000 MB/s) 

Processor Data Bus (10-80 GB/s) 

To 
Remote 

Node 

Note:  Numbers 
are out of date. 



Slide 8 

Some Processor Features 

• 28 cores per node 
– 14 cores per socket * 2 sockets per node 

• Vector unit 
– Supports AVX 2 
– Vector length 4 double or 8 single precision values 
– Fused multiply-add 

• Hyperthreading 
– Hardware support for 2 threads per core 
– Not currently enabled on OSC systems 



Slide 9 

Keep data close to the processor – file systems 

• NEVER DO HEAVY I/O IN YOUR HOME DIRECTORY! 
– Home directories are for long-term storage, not scratch files 
– One user’s heavy I/O load can affect all users 

• For I/O-intensive jobs 
– Local disk on compute node (not shared) 

• Stage files to and from home directory into $TMPDIR 
• Execute program in $TMPDIR 

– Scratch file system 
• /fs/scratch/username or $PFSDIR 
• Faster than other file systems 
• Good for parallel jobs 
• May be faster than local disk 



Slide 10 

What is good performance? 

• FLOPS 
– Floating Point OPerations per Second 

• Peak performance 
– Theoretical maximum (all cores fully utilized) 
– Owens – 859 trillion FLOPS (859 teraflops) 

• Sustained performance 
– LINPACK benchmark 
– Owens – 706 teraflops 

• Application performance is typically much less 



Slide 11 

Performance Measurement and Analysis 

• Wallclock time 
– How long the program takes to run 

• Performance reports 
– Easy, brief summary 

• Profiling 
– Detailed information, more involved 



Slide 12 

Timing – command line 

• Time a program 
– /usr/bin/time command 

 
 
 
 

– Note: Hardcode the path – less information otherwise 

• /usr/bin/time gives results for 
– user time (CPU time spent running your program) 
– system time (CPU time spent by your program in system calls) 
– elapsed time (wallclock) 
– % CPU -- (user+system)/elapsed 
– memory, pagefault, and swap statistics 
– I/O statistics 

/usr/bin/time j3 
5415.03user 13.75system 1:30:29elapsed 99%CPU \  
(0avgtext+0avgdata 0maxresident)k \  
0inputs+0outputs (255major+509333minor)pagefaults 0swaps 



Slide 13 

Timing routines embedded in code 

• Time portions of your code 
– C/C++ 

• Wallclock:  time(2), difftime(3), getrusage(2) 
• CPU:  times(2) 

– Fortran 77/90 
• Wallclock:  SYSTEM_CLOCK(3) 
• CPU:  DTIME(3), ETIME(3) 

– MPI (C/C++/Fortran) 
• Wallclock:  MPI_Wtime(3) 



Slide 14 

Profiling Tools Available at OSC 

• Profiling tools 
– Allinea Performance Reports 
– Allinea MAP 
– Intel VTune 
– Intel Trace Analyzer and Collector (ITAC) 
– Intel Advisor 



Slide 15 

What can a profiler show you? 

• Whether code is 
– compute-bound 
– memory-bound 
– communication-bound 

• How well the code uses available resources 
– Multiple cores 
– Vectorization 

• How much time is spent in different parts of the code 
• Profilers use hardware performance counters 



Slide 16 

Compilation flags for profiling  

• For profiling 
– Use -g flag 
– Explicitly specify optimization level -On 
– Example:  icc -g -O3 -o mycode mycode.c 

 
• Use the same level of optimization you normally do 

– Bad example: icc -g -o mycode mycode.c 
• Equivalent to -O0 

 



Slide 17 

Allinea MAP 

• Interpretation of profile requires some expertise 
• Gives details about your code’s performance 
• For a non-MPI program: 

– module load allinea 
– map --profile --no-mpi ./mycode [args] 

• For an MPI program: 
– map --profile -np num_procs ./mycode [args] 

• View and explore resulting profile using Allinea client 



Slide 18 



Slide 19 

Profiling – What do I look for? 

• Hot spots – where most of the time is spent 
– This is where we’ll focus our optimization effort 

• Excessive number of calls to short functions 
– Use inlining!  (compiler flags) 

• Memory usage 
– Swapping, thrashing – not allowed at OSC (job gets killed) 

• CPU time vs. wall time (% CPU) 
– Low CPU utilization may mean excessive I/O delays 



Slide 20 

Allinea Performance Reports 

• Easy to use 
– “-g” flag not needed - works on precompiled binaries 

• Gives a summary of your code’s performance 
– view report with browser 

• For a non-MPI program: 
– module load allinea 
– perf-report --no-mpi ./mycode [args] 

• For an MPI program: 
– perf-report -np num_procs ./mycode [args] 

 



Slide 21 



Slide 22 

More Information about Allinea Tools 

• www.osc.edu/documentation/software_list/allinea 
 

• www.allinea.com 

http://www.osc.edu/documentation/software_list/allinea
http://www.allinea.com/


Slide 23 

Compiler and Language Choice 

• HPC software traditionally written in Fortran or C 
• OSC supports several compiler families 

– Intel (icc, icpc, ifort) 
• Usually gives fastest code on Intel architecture 

– Portland Group (PGI - pgcc, pgc++, pgf90) 
• Good for GPU programming, OpenACC 

– GNU (gcc, g++, gfortran) 
• Open source, universally available 



Slide 24 

Compiler Options for Performance Tuning 

• Why use compiler options? 
– Processors have a high degree of internal concurrency 
– Compilers do an amazing job at optimization 
– Easy to use – Let the compiler do the work! 
– Reasonably portable performance 

• Optimization options 
– Let you control aspects of the optimization 

• Warning:   
– Different compilers have different default values for options 



Slide 25 

Compiler Optimizations 

• Function inlining 
– Eliminate function calls 

• Interprocedural optimization/analysis (ipo/ipa) 
– Same file or multiple files 

• Loop transformations 
– Unrolling, interchange, splitting, tiling 

• Vectorization 
– Operate on arrays of operands 

• Automatic parallelization of loops 
– Very conservative multithreading 

 



Slide 26 

What compiler flags do I try first? 

• General optimization flags (-O2, -O3, -fast) 
• Fast math 
• Interprocedural optimization / analysis 

 
• Profile again, look for changes 
• Look for new problems / opportunities 



Slide 27 

Floating Point Speed vs. Accuracy 

• Faster operations are sometimes less accurate 
• Some algorithms are okay, some quite sensitive 
• Intel compilers 

– Fast math by default with -O2 and -O3 
– Use -fp-model precise if you have a problem (slower) 

• GNU compilers 
– Precise math by default with -O2 and -O3 (slower) 
– Use -ffast-math for faster performance 

 



Slide 28 

Interprocedural Optimization / Inlining 

• Inlining 
– Replace a subroutine or function call with the actual body 

of the subprogram 
• Advantages 

– Overhead of calling the subprogram is eliminated 
– More loop optimizations are possible if calls are eliminated 

• One source file 
– Typically automatic with -O2 and -O3 

• Multiple source files compiled separately 
– Use compiler option for compile and link phases 



Slide 29 

Optimization Compiler Options – Intel compilers 

-fast Common 
optimizations 

-On Set optimization 
level (0, 1, 2, 3) 

-ipo Interprocedural 
optimization, 
multiple files 

-O3 Loop transforms 

-xHost Use highest 
instruction set 
available 

-parallel Loop auto-
parallelizaton 

• Don’t use -fast for MPI 
programs with Intel 
compilers 

• Use same compiler 
command to link for -ipo 
with separate compilation 

• Many other optimization 
options are available 

• See man pages for details 
• Recommended options: 

-O3 -xHost 

• Example: 
ifort –O3 program.f90 

 



Slide 30 

Optimization Compiler Options – PGI compilers 

-fast Common 
optimizations 

-On Set optimization 
level (0, 1, 2, 3, 4) 

-Mipa Interprocedural 
analysis 

-Mconcur Loop auto-
parallelizaton 

• Many other optimization 
options are available 

• Use same compiler 
command to link for -Mipa 
with separate compilation 

• See man pages for details 
• Recommended options: 

-fast 

• Example: 
pgf90 –fast program.f90 

 



Slide 31 

Optimization Compiler Options – GNU compilers 

-On Set optimization 
level (0, 1, 2, 3) 

N/A for 
separate 
compilation 

Interprocedural 
optimization 

-O3 Loop transforms 

-ffast-math Potentially 
unsafe float pt 
optimizations 

-march=native Use highest 
instruction set 
available 

• Many other optimization 
options are available 

• See man pages for details 
• Recommended options: 

-O3 -ffast-math  
-march=native 

• Example: 
gfortran –O3 
program.f90 

 



Slide 32 

Compiler Optimization Reports 

• Let you understand  
– how well the compiler is doing at optimizing your code 
– what parts of code need work 

• Generated at compile time  
– Describe what optimizations were applied at various points 

in the source code 
– May tell you why optimizations could not be performed 

 



Slide 33 

Options to Generate Optimization Reports 

• Intel compilers 
– -opt-report 

– Output to a file 
• Portland Group compilers 

– -Minfo 

– Output to stderr 
• GNU compilers 

– -fopt-info 

– Output to stderr by default 



Slide 34 

Sample from an Optimization Report 
LOOP BEGIN at laplace-good.f(10,7) 
   remark #15542: loop was not vectorized: inner loop was already vectorized 
 
   LOOP BEGIN at laplace-good.f(11,10) 
   <Peeled loop for vectorization> 
   LOOP END 
 
   LOOP BEGIN at laplace-good.f(11,10) 
      remark #15300: LOOP WAS VECTORIZED 
   LOOP END 
 
   LOOP BEGIN at laplace-good.f(11,10) 
   <Remainder loop for vectorization> 
      remark #15301: REMAINDER LOOP WAS VECTORIZED 
   LOOP END 
 
   LOOP BEGIN at laplace-good.f(11,10) 
   <Remainder loop for vectorization> 
   LOOP END 
LOOP END 



Slide 35 

A word about algorithms 

• Problem-dependent – can’t generalize 
• Scalability is important 

– How computational time increases with problem size 
• Replace with an equivalent algorithm of lower complexity 

– computational geometry:  change from vertex representation to 
half-plane representation 

• O(2n)  O(n) 
– replace 2D convolutions with 2D FFTs 

• O(n4)  O(n2 log(n)) 
• Replace home-grown algorithm with call to optimized library 



Slide 36 

Code Modifications for Optimization 

• Memory optimizations 
– Unit stride memory access 
– Efficient cache usage 

• Vectorization 
– Vectorizable loops 
– Vectorization inhibitors 



Slide 37 

Unit Stride Memory Access 

• The most important factor in your code’s performance!!! 
• Loops that work with arrays should use a stride of one 

whenever possible 
• C, C++ are row-major; in a 2D array, they store elements 

consecutively by row: 
– First array index should be outermost loop 
– Last array index should be innermost loop 

• Fortran is column-major, so the reverse is true: 
– Last array index should be outermost loop 
– First array index should be innermost loop 

• Avoid arrays of derived data types, structs, or classes 



Slide 38 

Data Layout:  Object-Oriented Languages 

• Arrays of objects may give poor performance on HPC 
systems if used naively 
– C structs 
– C++ classes 
– Fortran 90 user-defined types 

• Inefficient use of cache – not unit stride 
– Can often get factor of 3 or 4 speedup just by fixing it 

• You can use them efficiently!  Be aware of data layout. 
• Data layout may be the only thing modern compilers 

can’t optimize 



Slide 39 

Efficient Cache Usage 

• Cache lines 
– 8 words (64 bytes) of consecutive memory 
– Entire cache line is loaded when a piece of data is fetched 

• Good example – Entire cache line used 
– 2 cache lines used for every 8 loop iterations 
– Unit stride 

 
 real*8 a(N), b(N) 

do i=1,N 
  a(i)=a(i)+b(i)  
end do 

2 cache lines: 
a(1),a(2),a(3), … a(8) 
b(1),b(2),b(3), … b(8) 



Slide 40 

Efficient Cache Usage – Cache Lines (cont.) 

• Bad example – Unneeded data loaded 
– 1 cache line loaded for each loop iteration 
– 8 words loaded, only 2 words used 
– Not unit stride 
TYPE :: node 
  real*8 a, b, c, d, w, x, y, z 
END TYPE node 
TYPE(node) :: s(N) 
do i=1,N 
  s(i)%a = s(i)%a + s(i)%b 
end do 

cache line: 
a(1),b(1),c(1),d(1),w(1),x(1),y(1),z(1) 



Slide 41 

Vectorization / Streaming 

• Code is structured to operate on arrays of operands 
– Single Instruction, Multiple Data (SIMD) 

• Vector instructions built into processor (AVX, SSE, etc.) 
– Vector length 8 single or 4 double precision on Owens 

• Requires unit stride 
• Fortran 90, MATLAB have this idea built in 
• A vectorizable loop: 

do i=1,N 
  a(i)=b(i)+x(i)*c(i)  
end do 



Slide 42 

Vectorization Inhibitors 

• Not unit stride 
– Loops in wrong order (column-major vs. row major) 

• Usually fixed by the compiler 
– Loops over derived types 

• Function calls 
– Sometimes fixed by inlining 
– Can split loop into two loops 

• Too many conditionals 
– “if” statements 



Slide 43 

Optimized Mathematical Libraries 

• MKL (Intel Math Kernel Library) 
– BLAS 
– LAPACK 
– FFT 
– Vectorized transcendental functions (sin, cos, exp) 

• FFTW 
• ScaLAPACK 
• SuperLU 
• … and many others 

 



Slide 44 

Parallel Computing 

• Multithreading 
– Shared-memory model (single node) 
– OpenMP support in compilers 

• Message Passing Interface (MPI) 
– Distributed-memory model (single or multiple nodes) 
– Several available libraries 

• Accelerators / Coprocessors 
– GPUs 
– Intel Xeon Phi (not currently available at OSC) 



Slide 45 

What is OpenMP? 

• Shared-memory, threaded parallel programming model 
• Portable standard 
• A set of compiler directives 
• A library of support functions 
• Supported by vendors’ compilers 

– Intel 
– Portland Group 
– GNU 
– Cray 



Slide 46 

Parallel loop execution – Fortran 

• Inner loop vectorizes 
• Outer loop executes on multiple threads 

PROGRAM omploop  
INTEGER, PARAMETER :: N = 1000 
INTEGER i, j 
REAL, DIMENSION(N,N) :: a, b, c, x 
... ! Initialize arrays 
!$OMP PARALLEL DO 
do j=1,N  
  do i=1,N 
    a(i,j)=b(i,j)+x(i,j)*c(i,j)  
  end do 
end do 
!$OMP END PARALLEL DO 
END PROGRAM omploop 



Slide 47 

Parallel loop execution – C 

• Inner loop vectorizes 
• Outer loop executes on multiple threads 

[owens-login01]$ cat omploop.c 
int main() 
{ 
  int N = 1000; 
  float *a, *b, *c, *x; 
... // Allocate and initialize arrays 
#pragma omp parallel for 
  for (int i=0; i<N; i++) { 
    for (int j=0; j<N; j++) { 
      a[i*N+j]=b[i*N+j]+x[i*N+j]*c[i*N+j]  
    } 
  } 
} 



Slide 48 

Compiling a program with OpenMP 

• Intel compilers  
– Add the –qopenmp option 

 
• gnu compilers 

– Add the –fopenmp option 
 

• Portland Group compilers 
– Add the –mp option 

 

[owens-login01]$ ifort -qopenmp ompex.f90 –o ompex 

[owens-login01]$ pgf90 -mp ompex.f90 –o ompex 

[owens-login01]$ gcc -fopenmp ompex.c –o ompex 



Slide 49 

Running an OpenMP program 

• Request multiple processors through PBS 
– Example:  nodes=1:ppn=28 

• Set the OMP_NUM_THREADS environment variable 
– Default:  Use all available cores 

• For best performance run at most one thread per core 
– Otherwise too much overhead 
– Applies to typical HPC workload, exceptions exist 

 



Slide 50 

Running an OpenMP program – Example 

[owens-login01]$ cat omploop.pbs 
#PBS –N omploop 
#PBS –j oe 
#PBS -l nodes=1:ppn=28 
#PBS –l walltime=1:00 
 
cd $PBS_O_WORKDIR 
export OMP_NUM_THREADS=28 
/usr/bin/time ./omploop 



Slide 51 

More Information about OpenMP 

• www.openmp.org 
 

• OpenMP Application Program Interface 
– Version 3.1, July 2011 
– http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf 

 

http://www.openmp.org/
http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf


Slide 52 

What is MPI? 

• Message Passing Interface 
– Multiple processes run on one or more nodes 
– Distributed-memory model 

• A message passing library 
• A run-time environment 

– mpiexec 

• Compiler wrappers 
• Supported by all major parallel machine manufacturers 



Slide 53 

Node with 8 cores  

memory 

Node with 8 cores  

memory 

Node with 8 cores  

memory 

OpenMP vs. MPI 

Node with 8 cores  

memory 

Infiniband network 



Slide 54 

A simple MPI program 

[owens-login01]$ cat hello.c 
#include <mpi.h> 
#include <stdio.h> 
int main(int argc, char *argv[]) 
{ 
    int rank,size; 
 
    MPI_Init(&argc,&argv); 
    MPI_Comm_rank(MPI_COMM_WORLD,&rank); 
    MPI_Comm_size(MPI_COMM_WORLD,&size); 
    printf("Hello from node %d of %d\n",rank,size); 
    MPI_Finalize(); 
    return(0); 
} 



Slide 55 

MPI Implementations Available at OSC 

• mvapich2 
– default 

• IntelMPI 
– available only with Intel compilers 

• OpenMPI 



Slide 56 

Compiling MPI programs 

• Compile with the MPI compiler wrappers  
–  mpicc, mpicxx and mpif90 
– Accept the same arguments as the compilers they wrap  

 
 

• Compiler and MPI implementation depend on modules 
loaded 

[owens-login01]$ mpicc –o hello hello.c 



Slide 57 

Running MPI programs 

• MPI programs must run in batch only 
– Debugging runs may be done with interactive batch jobs 

•  mpiexec  
– Automatically determines execution nodes from PBS  
– Starts the program running, 2x28=56 copies 

[owens-login01]$ cat hello.pbs 
#PBS –N mpi_hello 
#PBS –j oe 
#PBS –l nodes=2:ppn=28 
#PBS –l walltime=1:00 
 
cd $PBS_O_WORKDIR 
mpiexec ./hello 



Slide 58 

More Information about MPI 

• www.mpi-forum.org 
 

• MPI: A Message-Passing Interface Standard 
– Version 3.1, June 4, 2015 
– http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf  

http://www.mpi-forum.org/
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf


Slide 59 

GPU-Accelerated Computing 

• GPU = Graphics Processing Unit 
– Can be used to accelerate computation 

• OSC clusters have some nodes with NVIDIA GPUs 
• Manycore processors 

– more cores than multicore 
• Can be programmed with CUDA 

– low level 
• PGI and gnu compilers support OpenACC 

– easier than CUDA 
– similar to OpenMP 

 



Slide 60 

Summary:  What would I do with your code? 

• Profile it 
• Experiment with compiler optimization flags 
• Analyze data layout, memory access patterns 
• Examine algorithms 

– Complexity 
– Availability of optimized version 

• Look for potential parallelism, inhibitors to parallelism 
– Including vectorization 



Slide 61 

Other Sources of Information 

• Online manuals 
– man ifort 
– man pgc++ 
– man gcc 

• Related workshop courses 
– www.osc.edu/supercomputing/training 

• Online tutorials from Cornell 
– https://cvw.cac.cornell.edu/ 

• oschelp@osc.edu 
 

http://www.osc.edu/supercomputing/training
https://cvw.cac.cornell.edu/
mailto:oschelp@osc.edu


Slide 62 

Questions 
Judy Gardiner 
Scientific Applications Engineer 
Ohio Supercomputer Center 
judithg@osc.edu 

1224 Kinnear Road 
Columbus, OH 43212 
Phone: (614) 292-9623 
 
 ohiosupercomputerctr ohiosupercomputercenter 


	Performance Tuning Workshop
	Workshop Philosophy
	More Important than Performance!
	Factors Affecting Performance
	Outline
	Owens Cluster Specifications 
	Hierarchical Memory
	Some Processor Features
	Keep data close to the processor – file systems
	What is good performance?
	Performance Measurement and Analysis
	Timing – command line
	Timing routines embedded in code
	Profiling Tools Available at OSC
	What can a profiler show you?
	Compilation flags for profiling 
	Allinea MAP
	Slide Number 18
	Profiling – What do I look for?
	Allinea Performance Reports
	Slide Number 21
	More Information about Allinea Tools
	Compiler and Language Choice
	Compiler Options for Performance Tuning
	Compiler Optimizations
	What compiler flags do I try first?
	Floating Point Speed vs. Accuracy
	Interprocedural Optimization / Inlining
	Optimization Compiler Options – Intel compilers
	Optimization Compiler Options – PGI compilers
	Optimization Compiler Options – GNU compilers
	Compiler Optimization Reports
	Options to Generate Optimization Reports
	Sample from an Optimization Report
	A word about algorithms
	Code Modifications for Optimization
	Unit Stride Memory Access
	Data Layout:  Object-Oriented Languages
	Efficient Cache Usage
	Efficient Cache Usage – Cache Lines (cont.)
	Vectorization / Streaming
	Vectorization Inhibitors
	Optimized Mathematical Libraries
	Parallel Computing
	What is OpenMP?
	Parallel loop execution – Fortran
	Parallel loop execution – C
	Compiling a program with OpenMP
	Running an OpenMP program
	Running an OpenMP program – Example
	More Information about OpenMP
	What is MPI?
	OpenMP vs. MPI
	A simple MPI program
	MPI Implementations Available at OSC
	Compiling MPI programs
	Running MPI programs
	More Information about MPI
	GPU-Accelerated Computing
	Summary:  What would I do with your code?
	Other Sources of Information
	Questions

