Ohio Supercomputer Center
An OH-TECH Consortium Member

Performance Tuning Workshop

Dr. Judy Gardiner
July 27, 2017

www.osc.edu OH- - TECH | 2iofechnology Consortium

Workshop Philosophy

« Aim for “reasonably good” performance

e Discuss performance tuning technigues common to most
HPC architectures

— Compiler options

— Code modification
* Focus on serial performance

— **Most important: Unit stride memory access
e Touch on parallel processing

— Multithreading

— MPI

Ohio Supercomputer Center Slide 2 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

More Important than Performance!

Correctness of results

Code readability / maintainability
Portability — future systems

Time to solution vs. execution time

Ohio Supercomputer Center Slide 3 OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

Factors Affecting Performance

Effective use of processor features
— High degree of internal concurrency in a single core

o Data locality
— Memory access is slow compared to computation

 Filel/O
— Use an appropriate file system

e Scalable algorithms
e Compiler optimizations

— Modern compilers are amazing!
o EXxplicit parallelism

Ohio Supercomputer Center Slide 4 OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

Outline

e Hardware overview

 Performance measurement and analysis

e Help from the compiler

e Code tuning / optimization

o Parallel computing

* Optional hands-on exercises

Ohio Supercomputer Center Slide 5

OH - TECH |

Ohio Technology Consortium
A Division of the Ohio Board of Regents

Owens Cluster
Specifications

648 standard nodes

Intel Xeon E5-2680 V4 (Broadwell)
28 cores per node

128 GB memory

1.5 TB local disk space

i
portal

access via
web browser
(ondemand.osc.edu)

terminal
access via
ssh program
(owens.osu.edu)

Owens Cluster
Peak Performance: 706 TF CPU + ~750 TF GPU

6 debug nodes
standard nodes
1 hour walltime limit

login
nodes
100 Gb/sec Infiniband Network (EDR)

.

|
[B e e B B R e

1

|]
|
]
|

d».

160 GPU nodes
160 NVIDIA Pascal P100 GPUs
1 each on 160 standard nodes

1
1
1
R e B B e]
|
|

1
[l Tl T T T R e e]
1

L)
T
]

e B R Sl Sl Rl el Rl Rl

| o B B S el B e R R R

Project Scratch
16 large memory nodes
Intel Xeon E5-4830 V3 (Haswell)
48 cores per node

shared data storage O
1.5 TB memory

compute nodes 24 TB local disk space

[Tl T Tl "Rt Tl T R T R]

b

Ohio Sl.lpercomputer center Slide 6 OH . TE CH Ohio Technology Consortium

A Division of the Ohio Board of Regents

Hierarchical Memory

Note: Numbers Functional Units

are out of date.

Processor Core

L1 Cache Registers

Processor Data Bus (10-80 GB/s)

L2 Cache (On or Off-Die)

Memory Bus (4-20 GB/s)

Interconnect Network

(125-2000 MB/s)
To

Remote
Node

Local Memory

Ohio Supercomputer Center Slide 7 OH: TECH | 2yiolechnology Consortium

Some Processor Features

o 28 cores per node
— 14 cores per socket * 2 sockets per node
e \ector unit
— Supports AVX 2
— Vector length 4 double or 8 single precision values
— Fused multiply-add
 Hyperthreading
— Hardware support for 2 threads per core
— Not currently enabled on OSC systems

i

Ohio Supercomputer Center Slide 8 OH- - TECH | Shiolechnology Consertium

m

Keep data close to the processor — file systems

e NEVER DO HEAVY I/O IN YOUR HOME DIRECTORY!
— Home directories are for long-term storage, not scratch files
— One user’s heavy I/O load can affect all users

e For I/O-intensive jobs

— Local disk on compute node (not shared)
« Stage files to and from home directory into $TMPDIR
e Execute program in $TMPDIR
— Scratch file system
o [fs/scratch/username or $PFSDIR
« Faster than other file systems
* Good for parallel jobs
 May be faster than local disk

Ohio Supercomputer Center Slide 9 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

What Is good performance?

FLOPS
— Floating Point OPerations per Second

Peak performance

— Theoretical maximum (all cores fully utilized)
— Owens — 859 trillion FLOPS (859 teraflops)

Sustained performance
— LINPACK benchmark
— Owens — 706 teraflops

Application performance is typically much less

Ohio Supercomputer Center Slide 10 OH- - TECH | Shiolechnology Consertium

Performance Measurement and Analysis

 Wallclock time
— How long the program takes to run

« Performance reports
— Easy, brief summary

* Profiling
— Detalled information, more involved

Ohio Supercomputer Center Slide 11 OH- - TECH | Shiolechnology Consertium

Timing — command line

 Time a program
— /usr/bin/time command

/usr/bin/time j3

5415.03user 13.75system 1:30:29elapsed 99%CPU \
(Qavgtext+@avgdata Omaxresident)k \

@inputs+@outputs (255major+509333minor)pagefaults Oswaps

— Note: Hardcode the path — less information otherwise

e /usr/bin/time gives results for
— user time (CPU time spent running your program)
— system time (CPU time spent by your program in system calls)
— elapsed time (wallclock)
— % CPU -- (user+system)/elapsed
— memory, pagefault, and swap statistics
— 1/O statistics

Ohio Supercomputer Center Slide 12 OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

Timing routines embedded In code

 Time portions of your code

— C/C++
o Wallclock: time(2), difftime(3), getrusage(2)
« CPU: times(2)

— Fortran 77/90
 Wallclock: SYSTEM_ CLOCK(3)
e CPU: DTIME(3), ETIME(3)

— MPI (C/C++/Fortran)
 Wallclock: MPI_Witime(3)

Ohio Supercomputer Center Slide 13 OH- - TECH | Shiolechnology Consertium

Profiling Tools Available at OSC

* Profiling tools
— Allinea Performance Reports
— Allinea MAP
— Intel VTune
— Intel Trace Analyzer and Collector (ITAC)
— Intel Advisor

Ohio Supercomputer Center Slide 14 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

What can a profiler show you?

Whether code is

— compute-bound

— memory-bound

— communication-bound

How well the code uses available resources

— Multiple cores

— Vectorization

How much time is spent in different parts of the code

Profilers use hardware performance counters

Ohio Supercomputer Center Slide 15 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

Compilation flags for profiling

» For profiling
— Use -g flag
— Explicitly specify optimization level -On
— Example: 1cc -g -03 -0 mycode mycode.c

e Use the same level of optimization you normally do
— Bad example: 1cc -g -0 mycode mycode.c
e Equivalent to -O0

Ohio Supercomputer Center Slide 16 OH- - TECH | Shiolechnology Consertium

Allinea MAP

 Interpretation of profile requires some expertise
o Gives details about your code’s performance

 For a non-MPI program:

— module load allinea

— map --profile --no-mpi1 ./mycode [args]
 For an MPI program:

— map --profile -np num _procs ./mycode [args]
* View and explore resulting profile using Allinea client

Ohio Supercomputer Center Slide 17 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

{225am)
(L3ag)
.l
{53hag)
{372)
]
(D2ag)
{#7avg) L, 2 L i - | S
) Mam fread compute 5 %, Cpeni 44 %, He 101 %, Unenie 401 %, Seenng 1 % | 0 DOt 325 %; CFL tAger 1.9 %; CFL memiry arress 596 %; [RU o wectir S0 %; CAL mteger vertnr L2 % (M1 hranch 147 %; 1@5@
10
1101
110 {fprintf("pley $d\n®, luwer level match):
1103 1
LifEa elae
s 1 E I i
1T Wiy count blonder = DeeisionMPa{true, count WPs, ¥, GeidPT3 level, grid resclution, iteration, Size CriddD, filsname wps pre, filename mps proinfo.save filepath,
1107 Hinterval, slower level mavch,&pre 3Jaigma,&pre mean,count results, émind mpo, émoxH mpa,minmaxHeight,
1508 SubiMagImages L, JubMaglzages R,grid resolutivn, Image rea{0),LRECs,RRECS,
1me Limagesize, data size 1[level],SubImages L Rimagesize data size r{level],SubImages R, Tesplate size,
1110 param, Grid wga,CridPT,
EHig HumOf Ihparan, L Rimsgeperam, Lslaripos, Ralazlpos,
13 proinfo_save filepath, row,col,proinfo.pre DEMrif):
112 count ME3 = gount resulta[0];
s flprintf("pley ¥d\a", lower level match):
1= nrintfiProy = §Alronl = §dirlaval = §dlrirararion = §A1eFnd hinndar naintain® way enl lews] irsrarionis
PP Siads | (prailygune.) Fiches

Tod Ol Omseal Furctn
H bounch,

_op lounch_tresd
et (OperiP Overheesel)
ey frek_hamer(int, i)

_mp, Pyper_hamier relesssiharrier_type, lmp_inf®, int, nt, ink, void™) {0peniP Dverhead]
Verticalinelocus_blunder [Open® region 1}

0.1%

e _suspend 54 [Dnen Dverhead)
_mp_suspend temgiate [iined] {Dperh® Drerhead)

GetlbjectToinegeREC_snge

Vi bnalned oxass [Oper P e 11
e 6 pause rined]

maloc

nE%
3% 10 vscanf intemal
W ok wait private

o wail wekd 4
SetHeighmange_bunder JpeniP regon 1]
__tinee novaneel
sched yield

sl
pdugs_singie [mined]
o % pause [rined] (DoendP Overhead)

<l

_ g, dhem

_Int_maloc
hed et (et D)

Profiling — What do | look for?

* Hot spots — where most of the time is spent
— This is where we’ll focus our optimization effort
e EXxcessive number of calls to short functions
— Use inlining! (compiler flags)
e Memory usage
— Swapping, thrashing — not allowed at OSC (job gets killed)

 CPU time vs. wall time (% CPU)
— Low CPU utilization may mean excessive I/O delays

Ohio Supercomputer Center Slide 19 OH- - TECH | Shiolechnology Consertium

Allinea Performance Reports

« Easyto use

— “-g” flag not needed - works on precompiled binaries
o Gives a summary of your code’s performance

— view report with browser

 For a non-MPI program:
— module load allinea
— perf-report --no-mpi ./mycode [args]
e For an MPI program:
— perf-report -np num _procs ./mycode [args]

Ohio Supercomputer Center Slide 20 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

fEEEEAET FTTrF=r =

63 GB per node

Hael— e e

1 process, OMP_NUM_THREADS was 0

rO01 9.ten.osc.edu

Fri Aug 28 11:03:22 2015
667 seconds (11 minutes)

/nfs/14/judithg, howat /SETSM_c_0224

Summary: setsm is Compute-bound in this configuration

C Time spent running application code. High valuss are usually good.
omp ute This is very high; check the CPU performance section for advice.

MPI 0.0% |

/O ao% |

Time spent in MPI calls. High values are usually bad.
Thiis is very low: this code may banefit from a higher process count.

Time spent in filesystem 1/0. High values are usually bad.
This is wery low; however single-process 10 may cause MPI wait timeas.

This application run was Compute-bound. A breakdown of this time and advice for investigating further is in the CFU

section below.

As very little time is spent in MFI calls, this code may also benefit from running at larger scales.

CPU

A breakdown of the S6.0% CPU time:
Single—core code 245% W
OpenMFP regions 755% N

Scalar numeric ops 24.0% i
Vector numericops 3.8% |

Memory accesses

632.9% NN

The per-core performance is memory-bound. Use a profiler to
identify time-consuming loops and check their cache

performance.

MPI

A breakdown of the 0.0% MPI time:

Time in collective calls 0.0%
Time in point-to-point calls 0.0%

Effective process collective rate 0.00 bytes/s

Effective process point—to—point rate 0.00 bytes/s

Mo time is spent in MP| operations. There's nothing to optimize
here!

More Information about Allinea Tools

o www.osc.edu/documentation/software list/allinea

« www.allinea.com

Ohio Supercomputer Center Slide 22 OH: TECH | otiTecnology Consortium

ivision of the Ohio Board of Regents

http://www.osc.edu/documentation/software_list/allinea
http://www.allinea.com/

Compiler and Language Choice

 HPC software traditionally written in Fortran or C

e OSC supports several compiler families
— Intel (icc, icpc, ifort)
o Usually gives fastest code on Intel architecture
— Portland Group (PGl - pgcc, pgc++, pgf90)
» Good for GPU programming, OpenACC

— GNU (gcc, g++, gfortran)
* Open source, universally available

Ohio Supercomputer Center Slide 23 OH- - TECH | Shiolechnology Consertium

Compiler Options for Performance Tuning

Why use compiler options?

— Processors have a high degree of internal concurrency
— Compilers do an amazing job at optimization
— Easy to use — Let the compiler do the work!

— Reasonably portable performance

e Optimization options

— Let you control aspects of the optimization

e Warning:

— Different compilers have different default values for options

Ohio Supercomputer Center

Slide 24

OH . TE CH ‘ Ohio Technology Consortium
A Division of the Ohio Board of Regents

Compiler Optimizations

* Function inlining

— Eliminate function calls

Interprocedural optimization/analysis (ipo/ipa)
— Same file or multiple files

Loop transformations

— Unrolling, interchange, splitting, tiling
Vectorization

— Operate on arrays of operands
Automatic parallelization of loops

— Very conservative multithreading

Ohio Supercomputer Center Slide 25 OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

What compiler flags do | try first?

o General optimization flags (-02, -O3, -fast)
e Fast math
e Interprocedural optimization / analysis

* Profile again, look for changes
* Look for new problems / opportunities

Ohio Supercomputer Center Slide 26 OH- - TECH | Shiolechnology Consertium

Floating Point Speed vs. Accuracy

Faster operations are sometimes less accurate
Some algorithms are okay, some gquite sensitive

Intel compilers
— Fast math by default with -O2 and -O3
— Use -fp-model precise if you have a problem (slower)

GNU compilers
— Precise math by default with -O2 and -O3 (slower)
— Use -ffast-math for faster performance

Ohio Supercomputer Center Slide 27 OH- - TECH | Shiolechnology Consertium

Interprocedural Optimization / Inlining

Inlining
— Replace a subroutine or function call with the actual body
of the subprogram

Advantages

— Overhead of calling the subprogram is eliminated

— More loop optimizations are possible if calls are eliminated
One source file

— Typically automatic with -O2 and -O3

Multiple source files compiled separately

— Use compiler option for compile and link phases

Ohio Supercomputer Center Slide 28 OH- - TECH | Shiolechnology Consertium

Optimization Compiler Options — Intel compilers

-fast Common Don’t use -fast for MPI
optimizations programs with Intel

-On Set optimization compilers
level (0,1,2,3) | « Use same compiler

-ipo Interprocedural command to link for —1po
optimization, with separate compilation
uliinleal es e Many other optimization

-03 Loop transforms options are available

_ « See man pages for details

-XHost Use highest . _
instruction set Recommended options:
available -03 -XxHost

-parallel Loop auto- « Example:

parallelizaton

ifort —03 program.f90

Ohio Supercomputer Center

Side 2 OH-TECH | 2iiszisn o
A Division of the Ohio Board of Regents

Optimization Compiler Options — PGI compilers

e Many other optimization

options are available
e Use same compiler

command to link for —-Mipa
with separate compilation

-fast Common
optimizations

-0n Set optimization
level (0, 1, 2, 3, 4)

-Mipa Interprocedural
analysis

-Mconcur Loop auto-

parallelizaton

e See man pages for details

e Recommended options:

Ohio Supercomputer Center

-fast

Example:
pgf90 —Fast program.f90

Side 3 OH-TECH | 2iiszisn o
A Division of the Ohio Board of Regents

Optimization Compiler Options — GNU compilers

 Many other optimization

options are available
e See man pages for detalls

« Recommended options:
-03 -ffast-math

-0On Set optimization
level (O, 1, 2, 3)

N/A for Interprocedural

separate optimization

compilation

-03 Loop transforms

-ffast-math | Potentially

unsafe float pt
optimizations

-march=native

e Example:
gfortran —-03

-march=native

Use highest
instruction set
available

program.f9o0

Ohio Supercomputer Center

Side OH-TECH | 2iiszisn o
A Division of the Ohio Board of Regents

Compiler Optimization Reports

* Let you understand
— how well the compiler is doing at optimizing your code
— what parts of code need work

e (Generated at compile time

— Describe what optimizations were applied at various points
In the source code

— May tell you why optimizations could not be performed

Ohio Supercomputer Center Slide 32 OH- - TECH | Shiolechnology Consertium

Options to Generate Optimization Reports

* Intel compilers
— —opt-report
— Output to a file

o Portland Group compilers
— -Minfo

— Output to stderr
 GNU compilers
— —fopt-info
— Output to stderr by default

Ohio Supercomputer Center Slide 33 OH- - TECH | Shiolechnology Consertium

Sample from an Optimization Report

LOOP BEGIN at laplace-good.f(10,7)

remark #15542: loop was not vectorized: inner loop was already vectorized

LOOP BEGIN at laplace-good.f(11,10)
<Peeled loop for vectorization>
LOOP END

LOOP BEGIN at laplace-good.f(11,10)
remark #15300: LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at laplace-good.f(11,10)
<Remainder loop for vectorization>

remark #15301: REMAINDER LOOP WAS VECTORIZED
LOOP END

LOOP BEGIN at laplace-good.f(11,10)
<Remainder loop for vectorization>
LOOP END

LOOP END

Ohio Supercomputer Center Slide 34

OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

A word about algorithms

Problem-dependent — can’t generalize
Scalability is important

— How computational time increases with problem size
Replace with an equivalent algorithm of lower complexity

— computational geometry: change from vertex representation to
half-plane representation

e O(2") > O(n)
— replace 2D convolutions with 2D FFTs
e O(n%) = O(n?log(n))
Replace home-grown algorithm with call to optimized library

Ohio Supercomputer Center Slide 35 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

Code Modifications for Optimization

 Memory optimizations
— Unit stride memory access
— Efficient cache usage
e \ectorization
— Vectorizable loops
— Vectorization inhibitors

Ohio Supercomputer Center Slide 36 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

Unit Stride Memory Access

 The most important factor in your code’s performance!!!

* Loops that work with arrays should use a stride of one
whenever possible

e C, C++ are row-major; in a 2D array, they store elements
consecutively by row:
— First array index should be outermost loop
— Last array index should be innermost loop

e Fortran is column-major, so the reverse is true:
— Last array index should be outermost loop
— First array index should be innermost loop

« Avoid arrays of derived data types, structs, or classes

Ohio Supercomputer Center Slide 37 OH - TECH | 2hiolechnology Consortium

Data Layout: Object-Oriented Languages

Arrays of objects may give poor performance on HPC
systems if used naively

— C structs
— C++ classes
— Fortran 90 user-defined types
 |nefficient use of cache — not unit stride
— Can often get factor of 3 or 4 speedup just by fixing it
* You can use them efficiently! Be aware of data layout.

o Data layout may be the only thing modern compilers
can’t optimize

Ohio Supercomputer Center Slide 38 OH- - TECH | Shiolechnology Consertium

Efficient Cache Usage

e Cache lines

— 8 words (64 bytes) of consecutive memory

— Entire cache line is loaded when a piece of data is fetched
e Good example — Entire cache line used

— 2 cache lines used for every 8 loop iterations

— Unit stride
hoiss, AN, b 2 B5%0 188G, . a®
(gg—a()+b(1) b(l):b(2):b(3): . b(8)

Ohio Supercomputer Center Slide 39 OH- - TECH | Shiolechnology Consertium

Efficient Cache Usage — Cache Lines (cont.)

 Bad example — Unneeded data loaded
— 1 cache line loaded for each loop iteration

— 8 words loaded, only 2 words used

— Not

unit stride

s(1
end(d

TYPE ::

real*8 a, b, ¢, d, w, X, vy, z
END TYPE node
TYPE(node) :©: s(N)
do 1=1,N

node

Yha = s(i)%a + s(i)%b
(@)

cache

line:

a(1),b(1),c(1),d(),w(1),x(1),y(1),z(1)

Ohio Supercomputer Center

H . TE CH ‘ Ohio Technology Consortium
A Division of the Ohio Board of Regents

Vectorization / Streaming

o Code is structured to operate on arrays of operands
— Single Instruction, Multiple Data (SIMD)

e Vector instructions built into processor (AVX, SSE, etc.)
— Vector length 8 single or 4 double precision on Owens

 Requires unit stride

e Fortran 90, MATLAB have this idea built in

* A vectorizable loop:

do

a
end

i=1,N
(D)=b(n)+x(1)*c(n)
do

Ohio Supercomputer Center Slide 41 OH- - TECH | Shiolechnology Consertium

Vectorization Inhibitors

e Not unit stride

— Loops in wrong order (column-major vs. row major)
o Usually fixed by the compiler

— Loops over derived types
e Function calls
— Sometimes fixed by inlining
— Can split loop into two loops
e Too many conditionals
— “If” statements

Ohio Supercomputer Center Slide 42 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

Optimized Mathematical Libraries

MKL (Intel Math Kernel Library)

— BLAS

— LAPACK

— FFT

— Vectorized transcendental functions (sin, cos, exp)

FFTW
ScaLAPACK
SuperLU

... and many others

Ohio Supercomputer Center Slide 43 OH- - TECH | Shiolechnology Consertium

Parallel Computing

e Multithreading
— Shared-memory model (single node)
— OpenMP support in compilers
 Message Passing Interface (MPI)
— Distributed-memory model (single or multiple nodes)
— Several available libraries
* Accelerators / Coprocessors

— GPUs
— Intel Xeon Phi (not currently available at OSC)

Ohio Supercomputer Center Slide 44 OH- - TECH | Shiolechnology Consertium

What is OpenMP?

o Shared-memory, threaded parallel programming model
« Portable standard

o A set of compiler directives

e Alibrary of support functions

o Supported by vendors’ compilers
— Intel
— Portland Group
— GNU
— Cray

Ohio Supercomputer Center Slide 45 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

Parallel loop execution — Fortran

* Inner loop vectorizes

o Quter loop executes on multiple threads

PROGRAM omploop
INTEGER, PARAMETER :: N = 1000
INTEGER 1, j

' Initialize arrays

'$6MP PARALLEL DO
do j=1,N
do |:ﬂ_

end do
end do

150MP END PARALLEL DO
END PROGRAM omploop

REAL, DIMENSION(N,N) :: a, b, c, X

a(l,J) b(i,J)+x(1,3)*c(1,])

Ohio Supercomputer Center

OH'TECH | 2z

Iogy Consorti um
e Ohio Board of Reg

Parallel loop execution — C

* Inner loop vectorizes
o Quter loop executes on multiple threads

[owens-10gin01]$ cat omploop.c
int main(Q)

{
int N = 1000;
float *a, *b, *c, *Xx;
. // Allocate and initialize arrays

#pragma omp parallel for
for (int 1=0; i<N: 1+1) {
for (int

}}

}

LI T R Mo IS

Ohio Supercomputer Center Slide 47 OH TECH | oherechne

logy Consorti um
e Ohio Board of Reg

Compiling a program with OpenMP

* Intel compilers
— Add the —gopenmp option
[owens-10gin01]$ 1fort -gopenmp ompex.f90 —o0 ompex

e gnu compilers
— Add the —Fopenmp option
[owens-1ogin01]$ gcc -fopenmp ompex.c —0 ompex

o Portland Group compilers
— Add the —mp option

[owens-10gin01]$ pgfo0 -mp ompex.fO0 —0 ompex

Ohio Supercomputer Center OH- - TECH | Shiolechnology Consertium

Running an OpenMP program

 Request multiple processors through PBS
— Example: nodes=1:ppn=28
e Setthe OMP_NUM_THREADS environment variable
— Default: Use all available cores
* For best performance run at most one thread per core

— Otherwise too much overhead
— Applies to typical HPC workload, exceptions exist

i

Ohio Supercomputer Center Slide 49 OH- - TECH | Shiolechnology Consertium

m

Running an OpenMP program — Example

[owens-10gin01]$ cat omploop.pbs
#PBS —N omploop

#PBS —j oe

#PBS -1 nodes=1:ppn=28

#PBS —1 walltime=1:00

cd $PBS_O WORKDIR
export OMP_NUM_THREADS=28
/usr/bin/time ./omploop

Ohio Supercomputer Center

OH-TECH

Ohio Technology Consortium

A Division

of the Ohio Board of Regents

More Information about OpenMP

* WWW.0penmp.org

e OpenMP Application Program Interface

— Version 3.1, July 2011
— http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf

Ohio Supercomputer Center Slide 51 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

http://www.openmp.org/
http://www.openmp.org/wp-content/uploads/OpenMP3.1.pdf

What is MPI?

Message Passing Interface
— Multiple processes run on one or more nodes
— Distributed-memory model

A message passing library

A run-time environment

— mpiexec

Compiler wrappers

Supported by all major parallel machine manufacturers

Ohio Supercomputer Center Slide 52 OH: TECH | otiTecnology Consortium

A Division of the Ohio Board of Regents

OpenMP vSs. MPI Infiniband network

€ >

Node with 8 cores Node with 8 cores

0

I 7~
| i
J,Node with 8 cores e “><_. Node with 8 cores

\
/
<—————>

Ohio SUPercomputer center Slide 53 OH . TE CH Ohio Technology Consortium

A Division of the Ohio Board of Regents

A simple MPI program

[owens-10gin01]$ cat hello.c

#include <mpi.h>

#include <stdio.h>

int main(int argc, char *argv[])

{
Int rank,size;
MPI_Init(&argc, &argv);
MPI1_Comm_rank(MPI_COMM_WORLD, &rank) ;
MPI_Comm_size(MPI_COMM_WORLD,&size);
printf(""Hello from node %d of %d\n",rank,size);
MPI_Finalize();
return(0);

+

Ohio Supercomputer Center

OH-TECH

Ohio Technology Consortium

A Division

of the Ohio Board of Regents

MPI Implementations Available at OSC

e mvapich2
— default

e IntelMPI
— available only with Intel compilers

e OpenMPI

Ohio Supercomputer Center Slide 55 OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

Compiling MPI programs

o Compile with the MPI compiler wrappers
— mpicc, mpicxx and mpi1f90
— Accept the same arguments as the compilers they wrap

[owens-10gin01]$ mpicc —o hello hello.c

o Compiler and MPI implementation depend on modules
loaded

Ohio Supercomputer Center Slide 56 OH: TECH | otiTecnology Consortium

ivision of the Ohio Board of Regents

Running MPI programs

 MPI programs must run in batch only

— Debugging runs may be done with interactive batch jobs

mpiexec

— Automatically determines execution nodes from PBS
— Starts the program running, 2x28=56 copies

[owens-10gin01]$ cat hello.pbs
#PBS —N mpi_hello

#PBS —j oe

#PBS —1 nodes=2:ppn=28

#PBS —1 walltime=1:00

cd $PBS O WORKDIR
mpiexec ./hello

Ohio Supercomputer Center Slide 57

OH - TECH |

Ohio Technology Consortium

A Division

of the Ohio Board of Regents

More Information about MPI

e WWw.mpi-forum.org

 MPI: A Message-Passing Interface Standard
— Version 3.1, June 4, 2015
— http://Impi-forum.org/docs/mpi-3.1/mpi31-report.pdf

Ohio Supercomputer Center Slide 58 OH- - TECH | Shiolechnology Consertium

http://www.mpi-forum.org/
http://mpi-forum.org/docs/mpi-3.1/mpi31-report.pdf

GPU-Accelerated Computing

 GPU = Graphics Processing Unit
— Can be used to accelerate computation
e OSC clusters have some nodes with NVIDIA GPUs
 Manycore processors
— more cores than multicore
e Can be programmed with CUDA
— low level
 PGI and gnu compilers support OpenACC
— easler than CUDA
— similar to OpenMP

Ohio Supercomputer Center Slide 59 OH- - TECH | Shiolechnology Consertium

Summary: What would | do with your code?

o Profile it
o Experiment with compiler optimization flags
* Analyze data layout, memory access patterns
 Examine algorithms
— Complexity
— Availablility of optimized version

* Look for potential parallelism, inhibitors to parallelism
— Including vectorization

rtium

Ohio Supercomputer Center Slide 60 OH- - TECH | Shiolechnology Consertium

Other Sources of Information

 Online manuals

— man ifort

— man pgc++

— Man gcCcC

Related workshop courses

— www.osc.edu/supercomputing/training
Online tutorials from Cornell

— https://cvw.cac.cornell.edu/
oschelp@osc.edu

Ohio Supercomputer Center Slide 61 OH-TECH

Ohio Technology Consortium
A Division of the Ohio Board of Regents

http://www.osc.edu/supercomputing/training
https://cvw.cac.cornell.edu/
mailto:oschelp@osc.edu

Questions

Judy Gardiner

Scientific Applications Engineer
Ohio Supercomputer Center
judithg@osc.edu

i
| |oh|osupercomputercenter

www.osc.edu

1224 Kinnear Road
Columbus, OH 43212
Phone: (614) 292-9623

.4 oOhiosupercomputerctr

VAARY “-.\ \»\‘\ \\Y \

el

OH . TE CH ‘ Ohio Technology Consortium
A Division of the Ohio Board of Regents

	Performance Tuning Workshop
	Workshop Philosophy
	More Important than Performance!
	Factors Affecting Performance
	Outline
	Owens Cluster Specifications
	Hierarchical Memory
	Some Processor Features
	Keep data close to the processor – file systems
	What is good performance?
	Performance Measurement and Analysis
	Timing – command line
	Timing routines embedded in code
	Profiling Tools Available at OSC
	What can a profiler show you?
	Compilation flags for profiling
	Allinea MAP
	Slide Number 18
	Profiling – What do I look for?
	Allinea Performance Reports
	Slide Number 21
	More Information about Allinea Tools
	Compiler and Language Choice
	Compiler Options for Performance Tuning
	Compiler Optimizations
	What compiler flags do I try first?
	Floating Point Speed vs. Accuracy
	Interprocedural Optimization / Inlining
	Optimization Compiler Options – Intel compilers
	Optimization Compiler Options – PGI compilers
	Optimization Compiler Options – GNU compilers
	Compiler Optimization Reports
	Options to Generate Optimization Reports
	Sample from an Optimization Report
	A word about algorithms
	Code Modifications for Optimization
	Unit Stride Memory Access
	Data Layout: Object-Oriented Languages
	Efficient Cache Usage
	Efficient Cache Usage – Cache Lines (cont.)
	Vectorization / Streaming
	Vectorization Inhibitors
	Optimized Mathematical Libraries
	Parallel Computing
	What is OpenMP?
	Parallel loop execution – Fortran
	Parallel loop execution – C
	Compiling a program with OpenMP
	Running an OpenMP program
	Running an OpenMP program – Example
	More Information about OpenMP
	What is MPI?
	OpenMP vs. MPI
	A simple MPI program
	MPI Implementations Available at OSC
	Compiling MPI programs
	Running MPI programs
	More Information about MPI
	GPU-Accelerated Computing
	Summary: What would I do with your code?
	Other Sources of Information
	Questions

