
Hands-On	Exercises	for	Performance	Tuning	Workshop	
Judy	Gardiner	

Ohio	Supercomputer	Center	
July	27,	2017	

	

These	exercises	go	along	with	the	Performance	Workshop	at	the	Ohio	Supercomputer	Center	(OSC).	
They	are	based	on	a	simple	Laplace	solver	code	with	different	optimizations.	The	code	is	written	in	
Fortran,	but	the	principles	are	the	same	for	C/C++.	Loops	would	have	to	be	interchanged	for	C/C++	
because	arrays	are	laid	out	differently	than	in	Fortran	(row-major	vs.	column-major	order).	

Code	for	the	examples	is	on	Owens	in	the	directory:		~judithg/training/Performance	

Three	versions	of	the	code	are	used	to	illustrate	the	effect	of	various	optimizations.	If	appropriate	
optimization	flags	are	set,	the	compiler	can	automatically	perform	many	of	the	optimizations.	

laplace-good	 Code	accessing	memory	with	unit	stride	for	good	cache	utilization	and	
vectorization.	

laplace-slow	 Loops	are	incorrectly	ordered	for	poor	cache	utilization	(bad	example).	
laplace-omp	 OpenMP	version	for	multicore	usage.	

	

1. Start	an	interactive	batch	job	on	a	28-core	node	with	a	4-hour	walltime	limit.	

qsub –I –X –l nodes=1:ppn=28 –l walltime=4:00:00

	
[Wait	for	prompt]	
	
cd $PBS_O_WORKDIR
module load allinea

2. Compile	the	good	code	with	recommended	flags	and	time	its	execution.	

ifort -O3 -xHost –o laplace-good laplace-good.f
/usr/bin/time ./laplace-good

3. Generate	and	view	a	performance	report.	

perf-report --no-mpi ./laplace-good
firefox [name of file]

	
Note:	You	can	find	the	file	name	for	the	performance	report	by	using	the	command	“ls”.	
Example:		laplace-good_1p_1n_2017-07-06_14-21.html
	

4. Compile,	displaying	information	about	loop	optimizations.	This	generates	the	same	executable	as	
exercise	#1.	

ifort –O3 –xHost –qopt-report –o laplace-good laplace-good.f
cat laplace-good.optrpt

5. Compile	the	good	code	with	no	optimizations	and	time	its	execution.	Also	generate	a	performance	
report.	

ifort –O0 –o laplace-good-O0 laplace-good.f
/usr/bin/time ./laplace-good-O0

perf-report –-no-mpi ./laplace-good-O0
firefox [name of file]

6. Compile	the	slow	code	with	no	optimizations	and	time	its	execution.	Also	generate	a	performance	
report.	

ifort –O0 –o laplace-slow-O0 laplace-slow.f
/usr/bin/time ./laplace-slow-O0

perf-report –-no-mpi ./laplace-slow-O0
firefox [name of file]

7. Compile	the	slow	code	with	recommended	flags,	displaying	loop	optimization	information,	and	time	
its	execution.	

ifort -O3 –xHost –qopt-report –o laplace-slow laplace-slow.f
cat laplace-slow.optrpt
/usr/bin/time ./laplace-slow

8. Compile	OpenMP	code	and	time	its	execution	on	different	numbers	of	cores.	

ifort –O3 –xHost -qopenmp –o laplace-omp laplace-omp.f
export OMP_NUM_THREADS=1
/usr/bin/time ./laplace-omp
export OMP_NUM_THREADS=2
/usr/bin/time ./laplace-omp
export OMP_NUM_THREADS=4
/usr/bin/time ./laplace-omp

	

