Algorithmic Techniques

<u>Course Goals</u>: To master commonly used algorithm techniques and computational thinking skills for scalable, many-core/many-thread programming

- Many-core hardware limitations and constraints
- Desirable and undesirable computation patterns
- Practical algorithm techniques to convert undesirable computation patterns into desirable ones

Syllabus:

- Week 1
 - Lecture 1 Introduction Logistics, scalability
 - Lecture 2 Overview, tentative schedule
- Week 2:
 - Lecture 3 Parallelism Scalability Transformations
 - Lecture 4 Thread Coarsening and Register Tiling
 - MP1: matrix multiplication thread coarsening and register tiling
- Week 3:
 - Lecture 5 Memory Tiling
 - Lecture 6 Memory Tiling
 - MP1: matrix multiplication—thread coarsening and register tiling
- Week 4
 - Lecture 7 Register Tiling
 - Lecture 8 Register Tiling
 - MP2: 7-Point Stencil Z-coarsening and register tiling
- Week 5:
 - Lecture 9 Data Layout Considerations
 - Lecture 10 Input Binning
 - MP3: 7-point stencil 2D memory tiling
- Week 6:
 - Lecture 11 Input Binning
 - Lecture 12 Non-uniform Data (Sparse methods)
 - MP4: Lattice Boltzmann Method: Data Layout
- Week 7:
 - Lecture 13 Non-Uniform Data (Sparse Methods)
 - Lecture 14 Non-Uniform Data (Variable Binning)
 - MP5: Sparse matrix-vector multiplication (CSR/ELL)
- Week 8:
 - Lecture 15 Non-Uniform Data (Variable Binning)
 - Lecture 16 Dynamic Data
 - MP6: Sparse matrix-vector multiplications (JDS)
- Week 9:
 - Lecture 17 Dynamic Data
 - Lecture 18 Map-Reduce
 - MP7: BFS hierarchical (private) queues and kernels
- Week 10:
 - Lecture 19 Final Project Kick-off Workshop

- Lecture 20 Final Project Kick-off Workshop
- Week 11:
 - Lecture 21 Exploratory Topics (Unstructured Mesh?)
 - Lecture 22 Exploratory Topics (Tree-coded Data?)
- Week 12
 - Lecture 23 Final Project Algorithm Presentations
 - Lecture 24 Final Project Algorithm Presentations
- Week 13:
 - Lecture 25 Final Project Algorithm Presentation
 - Lecture 26 Final Project Algorithm Presentation
- Week 14:
 - Lecture 27 Final Project Algorithm Presentation
 - Lecture 28 Final Project
- Week 15:
 - Lecture 29 Course Summary
 - Final Project Symposium (6 hours, 15 minutes per student)