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Fall Semester 2016 
 
COURSE DESCRIPTION: 
High performance computing algorithms and software technology, with an emphasis on using 
distributed memory systems for scientific computing. Theoretical and practically achievable 
performance for processors, memory system, and network, for large-scale scientific applications. 
The state-of-the-art and promise of predictive computational science and engineering. 
Algorithmic kernels common to linear and nonlinear algebraic systems, partial differential 
equations, integral equations, particle methods, optimization, and statistics. Computer architecture 
and the stresses put on scientific applications and their underlying mathematical algorithms by 
emerging architecture. State-of-the-art discretization techniques, solver libraries, and execution 
frameworks. 
 
PREREQUISITES: 
Experience using C/C++ in a Unix environment, familiarity with basic numerical algorithms, and 
familiarity with computer architecture.  
 
COURSE FLAVOR: 
A good subtitle for this course would be “Algorithms as if architecture mattered.” Architecture 
increasingly does matter today.  During decades of progress using the paradigm of bulk 
synchronous processing on systems that were small enough to be considered “flat” and tightly 
coupled, architecture could largely be abstracted away through the message passing interface 
(MPI), an excellent example of “separation of concerns” in computer science. One could write in 
a high-level language without concern about where the compiler and runtime stashed the 
operands, because flops were relatively slow, which made everything else, including the physical 
layout of the architecture, appear nearly flat.  One could count flops for serial complexity 
estimation, and determine how many could be done concurrently (between synchronization 
events) for parallel complexity estimation.  Today, however, flops are cheap compared to the cost 
of moving data, in both time and energy expenditure.  Therefore, we must worry about the 
topology of the network and the latencies and bandwidths of every part of the memory system 
and network in getting the operands to the FPUs.  This gives high performance computing an 
emphasis different from some other types of computing.  The same architecture advances that 
make it frustrating also make it exciting!  What new high performance science and engineering 
computing users need are an introduction to the concepts, the hardware and software 
environments, and selected algorithms and applications of parallel scientific computing, with an 
emphasis on tightly coupled computations that are capable of scaling to thousands of processors 
and well beyond. The course material ranges (selectively) from high-level descriptions of 
motivating applications to low-level details of implementation, in order to expose the algorithmic 
kernels and the shifting balances of computation and communication between them. The 
homeworks range from simple theoretical studies to running and modifying demonstration codes. 
Modest programming assignments using MPI and PETSc culminate in an independent project 
leading to an in-class report. 
 
INSTRUCTORS: 
The principal lecturer will be David Keyes, Professor of Applied Mathematics and Computational 
Science, KAUST.  Guest lecturers will be invited to speak on their specialties. Lectures from 
Extreme Computing Research Center staff members highlighting open source scientific software 
will be incorporated into the course. 
 



GOALS AND SYLLABUS: 
The overall goal is to acquaint students who anticipate doing independent work that may benefit 
from large-scale simulation with current hardware, software tools, practices, and trends in parallel 
scientific computing, and to provide an opportunity to build and execute sample parallel codes.  
The software employed in course examples is freely available. The course is also designed to 
make students intelligent consumers and critics of parallel scientific computing literature and 
conferences. 

Much of the motivation for parallel scientific computing comes from simulations based on 
discretizations of partial differential equations (PDEs, typically described with sparse matrices), 
or integral equations (IEs, typically described with dense matrices), or based on interacting 
particles (unstructured interaction lists, often embedded in octtrees).  Of course, many 
applications are nonlinear, but these are typically approached as a series of linearized analyses. 
An understanding of the underlying equations, their physical meaning, and their mathematical 
analysis is important in some parts of the course and opens up many possibilities for independent 
projects.  Other material is easily abstracted away from its underlying operator equation context 
to that of a generic bulk-synchronous computation that interleaves flows of data with operations 
on that data.  The intention is to provide a course of benefit to a broad clientele of graduate 
researchers.  In addition to computer scientists and applied mathematicians, students from 
mechanical engineering, electrical engineering, chemical engineering, materials science, and 
geophysics should find it of interest and approachable if they already have sufficient background 
in computing to be motivated towards the high end. 

Thirteen algorithmic prototypes that occur regularly in scientific computing have been identified 
in a famous 2006 Berkeley technical report “The Landscape of Parallel Computing Research: 
The View from Berkeley” (UCB/EECS-2006-183).  Though ten years old, students may want to 
download and devour this report as representative of the motivation and flavor of the course. The 
Berkeley prototypes are: dense direct solvers, sparse direct solvers, spectral methods, N-body 
methods, structured grids / iterative solvers, unstructured grids / iterative solvers, Monte Carlo 
(including “MapReduce”), combinatorial logic, graph traversal, graphical models, finite state 
machines, dynamic programming, backtrack/branch-and-bound.  The first seven are essential 
floating point kernels and the last six essential integer kernels. The course examines several of 
these kernels in detail. 

Lecture coverage includes: 

• Introduction to large-scale predictive simulations: the combined culture of CS&E 
and HPC 

• Introduction to parallel architecture and programming models 

• Introduction to MPI, PETSc, and other software frameworks for HPC 

• Parallel algorithms for the solution of large, sparse linear systems and nonlinear 
systems with large, sparse Jacobians 

• Parallel algorithms for partial differential equations 

• Parallel algorithms for N-body particle dynamics 
 
 
 
EVALUATION AND GRADING: 



Evaluation consists of four components: problem sets, project, final exam, and class participation 
at the flipped local site. Problem sets may be undertaken cooperatively (and this is encouraged), 
but each student must submit the homework separately under their own name, vouching for their 
own responsibility for the answers. The quality of the write-up is part of the grade. It is intended 
that all students should be able to score well on the problem sets, because they will be announced 
well in advance of their due dates and students have unlimited time for their own reading and 
research of the topics consultations with one another. The problem sets should create an extended 
ongoing discussion for the class community. The project is intended to be individual.  If students 
want to team to undertake a “bigger” project and earn the same grade for it, this should be 
negotiated when projects are launched in mid-course. Projects will be submitted in report form, 
and each project will be featured for a short presentation to the class at the end of the semester.  
The final exam is, of course, individual. 
 
RECOMMENDED RESOURCES: 
None of these written resources are “required,” but are of potential reference interest.  They are 
not intended to be interchangeable, but are composed for different audiences, with different 
objectives, but unified around the challenges and opportunities of HPC.  Proceeding 
chronologically back in time, most are out of date in architectural details, due to the rapid 
evolution of the field, but the principles are mostly timeless. 

1) Introduction to High Performance Scientific Computing, by V. Eijkhout (Creative Commons, 2015) 
2) Using MPI; Portable Parallel Programming with the Message-Passing Interface, Third Edition, by W. D. 

Gropp et al. (MIT Press, 2014) 
3) Introduction to High Performance Computing for Scientists and Engineers, by G. Hager and G. Wellein 

(CRC Press, 2011) 
4) Applied Parallel Computing, by Y. Deng (World Scientific, 2011) 
5) Petascale Computing: Algorithms and Applications, by D. Bader, ed. (Chapman and Hall, 2008)  
6) Scientific Parallel Computing, by L. R. Scott et al. (Princeton, 2005) 
7) An Introduction to Parallel Computing: Design and Analysis of Algorithms,2nd ed., by A. Grama et al. 

(Pearson Addison Wesley, 2003) 
8) Sourcebook of Parallel Computing by J. Dongarra et al., eds. (Morgan-Kaufmann, 2002) 
9) Parallel Computer Architecture: A Hardware/Software Approach by D. E. Culler et al. (Morgan Kaufmann, 

1999) 
10) High Performance Computing, K. Dowd and C. Severance (O’Reilly, 1998) 

 
FREQUENTLY ASKED QUESTIONS:   
 

   Must I understand PDEs and Linear Algebra well to take this course? 
Algorithms for partial differential equation and linear algebraic computations motivate this course and add 
knowledge of their mathematics adds substance to the parallel applications.  However, the aspects of these 
subjects that are important to success in this course have to do with understanding the choreography of 
data and hardware.  If you are comfortable with following the data in these algorithms without a 
theoretical understanding of how they approximate the real world (modeling) or how rapidly they converge 
to it (analysis), you can survive this course and even excel in it.  Mathematical theorems, e.g., tying 
convergence of an iterative method to condition number of a matrix have a quality of subroutines: if the 
upstream hypotheses (inputs) are verified, the consequences (outputs) may be chained into downstream 
uses in this course, e.g., complexity analyses.  
 

   Must I be facile in Unix and C/C++ to take this course? 
In this course, you will work with sample applications written in C and you will build and execute on 
Linux-based distributed systems.  One can pick up what one needs without being an expert in the tools 
applied. 
 

   Do you have a motto for success in difficult endeavors like high performance computing? 
Actually, this is not a frequently asked question, but it should be . I do have a motto, taken from the most 
successful college football coach in history, Bear Bryant (1913—1983), as measured by the number of 
career wins amassed: “It's not the will to win, but the will to prepare to win that makes the difference.” 
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