MODULE 4.1

Modeling Falling and Skydiving

Downloads

The text’s website has available for download for various system dynamics tools
the following files containing the models in this module: Fall, FallFriction, and Fall-

Skydive.

Intfroduction

What is it like to skydive? Imagine ascending in a small plane to, say, 10,000 feet, when
the jumpmaster opens the door. The jumpmaster asks you if you are ready to jump. You
head for the door and walk out onto a step under the wing, holding on to a strut You ex-
perience lots of wind and noise. Your heart is pounding wildly. The jumpmaster yells,
“Go!” You arch your body and release your grip on the strut. Your adrenalin levels have
never been higher as you plunge toward earth at 120 mph. Nevertheless, you are in con-
trol. For the next 30 seconds, simple body movements can alter your speed, direction
and position. At three thousand feet, the landscape is fast approaching, and you pull
your cord. As it deploys, your descent slows, and the mad rush of wind ceases, replaced
by the rustling sounds of your canopy. Soon you gently settle to the ground.

The use of parachutes or parachute-like devices to slow the descent of jumpets
from positions of considerable height may have begun with the twelfth-century
Chinese. However, the first evidence of a parachute in the western world appeared
in the late-fifteenth-century drawings of Leonardo da Vinci. His pyramid-shaped de-
sign was to be constructed of linen and a wooden frame. There is no record of
Leonardo expetimenting with his invention, but late last century it was demonstrated
successfully.

Not much development of parachutes took place until late in the eighteenth cen-
tury, when hot-air balloons were being shown across Europe. Andres-Jacques Gar-
nerin, a French balloonist of dubious reputation, was one of the first persons to
demonstrate a parachute without a rigid frame. He successfully descended from his
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balloon (which exploded) at about 3000 feet using a gondola suspended by an
umbrella-shaped parachute.

Tumps using parachutes from airplanes began in the early twentieth century but
were primarily for rescuing observation balloon pilots. Barnstormers performed
parachute-jumping demonstrations at air shows during the time between the world
wars. During World War II, both sides exploited the capabilities of parachutes for
dispersing men and supplies.

Sport parachuting (skydiving) probably has its roots in the first free-fall con-
ducted in 1914, but the sport really gained popularity only in the 1950s and 1960s
(Bates; Cislunar 1997).

In this module, using a system dynamics tool we model the motion of someone
skydiving. Such a jump has two phases, a free-fall stage followed by a parachute
stage with greater air friction. In preparation for development of this model, we re-
consider the main example in Module 2.3 on “Rate of Change” and a follow-up exer-
cise (Exercise 1) in Module 2.4 on “Fundamental Concepts of Integral Calculus” in-
volving the motion of a ball thrown straight up from a bridge. We model this motion,
first ignoring air friction and then refining the model to consider this additional force.

Acceleration, Velocity, and Position

The above-mentioned modules on calculus discuss how the instantancous rate of
change, or derivative, of position (s) with respect to time (7) is velocity (v), and the
instantaneous rate of change of velocity with respect to time is acceleration (a). In
derivative notation, we have the following:

ds
1) =—
v(t) 7
dv

a(t) = E

In Example 1, we use these derivatives in modeling the main illustration from the
module on “Rate of Change” (Module 2.3).

Quick Review Question 1

This question reflects on Step 2 of the modeling process—formulating a model—for
developing a model for a falling object. We simplify this first attempt at a model by
ignoring friction. After completing this question and before confinuing in the text,
we suggest that you develop a model for a falling object.

- Determine four variables for the model and their units in the metric system.
. Give a differential equation relating time (¢), position (s), and velocity (v).

- Give a differential equation relating time (7), velocity (v), and acceleration (a).
. Ignoring friction, give any of the following that is constant in a fall: time,

distance, velocity, acceleration. In a model diagram, we will store such a
value in a converter/variable.
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e. In a model diagram, list the components that will be in stocks (box vari-
ables): ¢, s, v, a, ds/dt, dv/dt N

f. In a model diagram, give the value(s) that will flow into the position stock
(box variable) for change in position: ¢, s, v, a, ds/dt, dv/dt. .

g. In a model diagram, give the value(s) that will flow into the velocity stock
(box variable) for change in velocity: ¢, s, v, a, ds/dt, dv/dt.

Example 1

To model with a system dynamics tool the motion of a .bgll that someone throws
straight up from a bridge, we have stocks for the quaqtltles tha.t accu.mulate, the
height (position) and velocity (velocity) of the ball. During the s1mu'lat10n, we can
observe their changing values in a graph and table. A flow repr‘esentlpg the change
goes into velocity (change_in_velocity). Change in velocity is acceler‘gtlon, and in this
case, the acceleration is due to gravity. Therefore, a converter/variable .(accele.m-
tion_due_to_gravity) contains the constant for acceleration due to2 gravity, which
with up being the positive direction is approximately —9.81 .m/sec . The converter
connects to change_in_velocity, which has this constant as its equation. Also, the
flow for the change in height (change_in_position) is identical to thé currel,n't veloc-
ity, velocity. Thus, we have a connector from velocity tp change_in _P?sztzon, and
define the value of this flow to be velocity. Because velocity can be pos1t1ve,' Z€10, o1
negative, we specify that the flow can go into or out of positi.on“ For ﬂex1b11.1ty in
models that we derive from this one, we also make change_in_velocity a blﬂow,
Moreover, we specify that velocity and position can take on nega?ivs: as well gs posi-
tive values. To match the example in the earlier modules, we init12.1hze ve{oczty to be
15 m/sec and position to be 11 m, which is the height of the? bridge. Figure 4.1.1
presents a diagram for a model of motion of the ball with a white arrowhead on each
flow, indicating the secondary biflow direction.

position
change in position
VN
change in velocity
VN
®< ) gl
velocity
acceleration

due to gravity

Figure 4.1.1 Diagram of motion of ball thrown straight up
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Figure 4.1.2 ‘ i
Y Graph of velocity (m/sec) and position (m) of ball versus time (sec)

Quick Review Question 2

Give the fi i iC units f
e the formula in metric units for each of the following components in Figure 4.1.1
re 4.1.1:

a. The converter acceleration_due_to _gravity
b. The flow change_in_velocity |
¢. The flow change_in _position

Output consists of a grap
Ar=0.25 sec and the Rung
cusses, we obtain a table of
of Change” The graph of v
ure 2.3.2) in that module. A
the line v(r) = 15— 9.8z,

For some of the models, it is more convenient
The speed gives the magnitude of the change in po

h and a tgble of velocity and height versus time With
e-Kuita 4 integration technique, which Module 5 4 d%t

Valges .that .matches Table 2.3.1 in Module 2.3 oln‘ “R 1ts .
elFo.cuy in Figure 4.1.1 agrees with a similar éraph (F;11 ?
8 Figure 4.1.2 shows, the graph of velocity versus time %s

t.o. consider speed than velocity.
sition with respect to time, whiie

24

position

24 &

Figure 4.1.3 Graph of velocit

s (oo y (m/sec), position (m), and speed (m/sec) of ball versus
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the velocity expresses the magnitude with the direction. Thus, speed is the absolute
value of the velocity. To incorporate speed, we have a connector/arrow from the ve-
locity stock to a new converter/variable, speed, which stores the equation for the ab-
solute value of velocity. The graph in Figure 4.1.3 shows speed and velocity de-
creasing in a linear fashion to 0 m/sec at about time 1.5 sec. Afterward, speed

steadily increases.

Physics Background

Before developing additional examples of falling and skydiving, we need to con-
sider some formulas from physics—Newton’s Second Law and approximations of
friction. Newton’s Second Law concerns force applied to a mass imparting accelera-
tion. So that we can refine models to account for air friction, we also consider sev-
eral approximations of such a force.

Newton’s Second Law has far-reaching significance. In this text, we employ the
]aw in modeling situations from the motion of skydivers to the motion of the planets.
The law states that a force F acting on a body of mass m gives the body acceleration
a. Moreover, as the following models indicate, the acceleration is directly propor-

tional to the force and inversely proportional to the mass:

a=Fim

or

We can apply this formula to obtain the relationship between weight and mass.
Weight is a force and is not the same as mass. The acceleration involved is accelera-
tion due to gravity, which is about —9.81 m/sec® or —32 ft/sec? for up being the posi-
tive direction. For example, an object that has mass of 20 kilograms (kg) has a
weight of ~196.2 newtons, as the following shows:

weight = F = (20 kg)(-9.81 m/sec?) = —196.2 kg m/sec? = —196.2 newtons

The metric unit for force is a newton (N) or kg m/sec?




Module 4.1

Quick Review Question 3

Determine the following including units:

a. The mass of an object that weighs 981 N,

b. The acceleration that resuls when a net force of 10
with mass 5 kg.

Kinetic friction or drag,
posite direction to a moving
dampens motion of an objec
water, the fluid friction is a function of the ob
we pedal a bicycle, the harder it is for us tod
the friction of the air on our bodies.

Several models that estimate friction exist. In Module 8.3 on
els,” we study how to derive our own model, such as a model for d
this module, we consider two models for drag on a body traveling through a fluid.

For a small object traveling slowly, such as a dust particle floating through the air,

we usually employ Stokes’ friction, which states that friction on the particle is ap-
proximately proportional to its velocity,

F=kv

where k in kg/sec is a constant of
and v in m/sec is the velocity.

For a larger object moving faster through a fluid, we usually employ Newtonian
friction, which states that the drag is approximately as follows:

proportionality for the particular object and fluid,

F =0.5CDAy?

where C is a dimensionless constant of proportionality (the coefficient of drag or
drag coefficient) related to the sha

pe of the object, D is the density of the fluid, and A
is the object’s projected area in the direction of movement. For a particular situation,

C, D, and A are constants, so that the drag is approximately proportional to the veloc-
ity squared. At 0°C, the density of air at sea level is 1.29 kg/m3. For shapes that are
hydrodynamically good, C < 1; for spheres, C is about 1; and for shapes that are hy-
drodynamically inefficient, C > 1. Many objects have a coefficient of drag of about 1.
Thus, through air with C = 1, Newtonian friction is approximately the following:

F =0.654y2

The density of water at 3.98°C, where the fluid achieves its maximum density, is
1.00000 g/cm?, yielding a formula with a different coefficient. Table 4.1.1 summa-
rizes the three models for fluid friction considered here.

The drag force is in the opposite direction of motion, and the sign of velocity in-
dicates the direction. On the upward portion of a trajectory, drag and gravity both act
downward; while on the downward part, drag is upward, and gravity downward.
Thus, for the general formula for Newtonian friction, we take the absolute value
of only one of the velocity terms and multiply the entire formula by 1, yielding
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N is applied to an object

too, is a force. This force between objects is in the op-
object and tends to slow motion. Thus, kinetic friction
t. When an object moves through a fluid, such as air or
ject’s velocity. For example, the faster
0 so. As our velocity increases, so does

“Empirical Mod-
rag, from data. In
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Table 4.1.1 ‘ S
Summary of Several Models for Magnitude of Fluid Friction
Name Formula Meanings of Symbols When to Use

* fricti F=kv 7 k constant Very small object mo.\(/img
stokesieton v velocity slowly through flui

fici Larger objects moving
i F=0.5CDAv  C coefficient of drag :
Nefw' tot?éin D density of fluid faster through fluid
tic

A object’s projected area in
direction of movement

v velocity
NeW.tofuaIl F =0.65Av? A object’s projected areain  Larger .objects with C :hl
pction i | direction of movement moving tas.teI throug
fhroueh i v velocity sea-level air

0.5CDAv|v|. If ABS is the absolute value function, the translation of this formula
inté a system dynamics tool is as follows:

i j cit
0.5 * drag_coefficient * density = projected_area * velo 2
x ABS(velocity)

Quick Review Question 4

Calculate the following:

: 3
. The density of 3.98°C water in kg/m . . |
?) réh: magnii]ude of friction in newtons of a ball falling through 3.98°C water,

where the coefficient of drag is 0.9, the cross-sectional area of the ball is
03 m2, and its velocity is —20 m/sec ' | .
[V (\)V(:item the formula for Newtonian friction for g system dynar;‘ncs t0(1)1,
. where the coefficient of drag is 1 and the air density 1s .1.29 kg/ml, ?arr;el 36’
—0.65Av|v|, A and v are appropriate variables, and ABS is the absolute v

function.

Quick Review Question 5

j i sea-
This question reflects on refinement of the model of an object f(zlilémfg thic())lrllgt;ikrlluing
i i i efore
i iction. After completing this question an
level air to account for friction : . oL
in the text, we suggest that you revise the model in Example 1 to account fo g
friction for practice in model development.

i i drag friction. ‘
a. Give the inputs to compute . ' ’ .
b. Give a formula for air friction in a system dynamics tool’s m?deit\ix(/) !
. for velocity, A for projected area, and ABS for the absolute value fun ‘
i c i he object.
¢. Give the force(s) acting on ject. ' ’ sl
d. Give a formula for an object’s weight in a syst.em dynamlc; tl?(ﬂ ls) '::;
. where g is the acceleration due to gravity and m is the mass of the object.
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e. Give a formula for ject’ ion i
an object’s acceleration in a system dynamics tool’s

model, where F is the total force o j i
: , n the object (weight + air fricti
1s the mass of an object. ject (eight-+air frction) and

Example 2

E?;?;ileTl t((i) model the motion of a ball thrown straight up does not account for air

. 10 do so, we consider two forces on the ball. oravi ricti

force due to gravity is its wei i Sovond L 1 Mction The
: ) ght, which by Newton’s Second Law i

adjusting the model diagram in Fi ' i vertornble b
it gure 4.1.1, we include a converter/vari ‘

weight with connections from convert i e tor

ers/variables for ma ati
. . ons : . ss and acceleration
dzi;;o _gfa\;zX (see Figure 4.1.4). Newtonian friction for the air friction including
onis F'=-0.65Av|v| In the diagram, connectors/arrows go from velocity and

position

change in position

@< f -

change in velocity

@ I D>
P

velocity speed

acceleration i
otal force air friction

N
projected area
mass

weight

acceleration
due to gravity

Figure 4.1.4 Diagram for motion of i
: of ball under infi ir fri
ers/variables from Figure 4.1.1 in color e of air i

ction; changes to convert-
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from a new projected_area conveiter to a new convertet for air_ friction. The
projected_area converter/variable stores the cross-sectional, or projected, area of the
object in the direction of motion. Assuming spherical objects, another converter/
variable stores the radius; and the equation in projected_area is pi * radius™2, where
pi is built in or an approximated constant 3.15169, depending on the system dynamics
tool. Both forces, weight and air_ friction, connect to a new converter/variable for
total_ force, which is the sum of the individual forces. Employing Newton’s Second
Law again with a = F/m, acceleration is total_ force/mass. This acceleration pro-
vides the change in velocity for the flow into velocity. ‘

Figure 4.1.4 contains a feedback loop. The initial value of air friction employs
the initial velocity, here 0 m/sec; and air_friction contributes to the fotal_ force,
which acceleration uses. Acceleration is the change_in_position, which contributes
to velocity. Then, the current value of velocity “feeds back” into air_friction for a
new computation of that force.

To detect the influence of drag, we consider a ball of mass 0.5 kg and radius
0.05 m dropped (initial velocity = 0 m/sec) from a height of 400 m. Equation Set
4.1.1 presents various underlying equations for the model.

Equation Set 4.1.1

Various underlying equations to accompany diagram in Figure 4.1.4

mass = 0.5 kg

acceleration_due_to_gravity =—9.81 m/sec?

radius = 0.05 m

weight = mass * acceleration_due_to_gravity
projected_area = 3.14159 * radius"2

air_friction = —0.65 * projected_area * velocity * ABS(velocity)
total_force = weight + air_ friction

acceleration = total_ forcelmass

change_in_velocity = acceleration

change_in_position = velocity

speed = ABS(velocity)

velocity(0) =0 m/sec

velocity(f) = velocity(t — Af) + (change_in_velocity) * Ar
position(0) =400 m

position() = position(t — A?) + (change_in_position) * At

Running the simulation for 15 seconds, we see in Figure 4.1.5 that the ball
reaches a constant, or terminal speed, of about 31 m/sec. From about time 6 sec-
onds on, the position graph is almost linear, so that acceleration is approximately

0 m/sec?,

Quick Review Question 6

At the terminal velocity, give the relationship between weight and air_friction: (A)
weight < air_ friction; (B) weight = air_friction; (C) weight > air_ friction
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t
3.75 7.50 11.25 15.00

Figure 4.1.5 Graph of position (m) and speed (m/sec) of object under influence of friction

Quick Review Question 7

This question reflects on refinement
diving. After completing this questio
that you revise the model.

of the model of Example 2 to incorporate sky-
n and before continuing in the text, we suggest

a. Give the phases of the fall during the simulation.

b. Give the variable whose value we can use to trigger the change in phase:
acceleration, mass, position, velocity, weight.

¢. Give the value(s) that change upon opening of the parachute: acceleration_
due_to_gravity, mass, projected_area, weight.

d. Describe anticipated changes to the graphs in Figure 4.1.5
of a parachute.

after deployment

Modeling a Skydive

Example 3

To model a skydive, we build heav

ily on Example 2 of a falling object. For sim-
ping out of a stationary helicopter at 2000 m

area of a jumper in the stable arch
the knees is approximately 0.4 m2 (about 4.3 f
but 28 m? (about 301 ft?) is a reasonable valy
by the height (position) above the ground,

the diagram contains a converter/variable (p

and legs bent at
t2). Parachutes vary in their designs,

e. We trigger the pull of the ripcord
say, 1000 m (about 3281 ft). Thus,
osition_open) for this quantity and
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position
change in position :
change in velocity : O
@< )
- speed
velocity
. air friction
acceleration total force
projected area
mass weight
position open
acceleration

due to gravity

Figure 4.1.6 Diagram of skydiver’s motion under influence of air friction

i j ‘ ition_open to pro-
connectors/arrows from position to projected_area and from position_op V4

jected_area. Figure 4.1.6 presents a model diagram for this example with changes

in color from Figure 4.1.4 on a ball’s fall. Assuming the parachute fully opens1 (:n;
stantaneously, the equation in projected_area is no longer a constant but employ
the following logic:

if (position > position_open)
projected_area < 0.4
else
projected_area < 28

Figure 4.1.7 shows graphs of the position and speed of a 9(:1—k§lg1 (compsa;c:llzj)eoz
b) i i il a height of 1000 m, which occur .
about 198-1b) skydiver versus time. Unti of 100 . " > at about
i ‘ kydiver is in a free-fall approaching

.3 seconds into the fall from 2000 m, the sky 3
tzelrr?liiil speed of about 58.2 m/sec (about 130 mph). At IOOQ I’l’l, the Serlsonsptli) ;
the ripcord, and in a very short amount of time, the parachutist’s speed slow
new terminal speed of 6.96 m/sec (about 15.6 mph).




Assessment of the Skydive Model

position

L speed

10 20 30 40
Figure 4.1.7 Position (m) and speed (m/sec) of skydiver

t

Quick Review Question 3

a. %ow does the terminfll speed of a skydiver who curls into a ball compare to
that of the same skydiver who is in a stable arch position?

A. Less B. Equal C. Greater

b. Referring to Figure 4.1.7, a i
eferr -1.7, approximately how long does it take for '
diver in free-fall to be close to terminal speed? : vl for the sky-

A. 13 sec B. 21 sec C. 40 sec

¢. Referring to Figure 4.1.7, at i i i
the rioecs 18 » at approximately what time does the skydiver pull

A. 13 sec B. 21 sec C. 40 sec

The shapes of the graphs of position and velocity
description of a skydive. However, our model4
130 mph (about 58.2 m/sec), while actual, me

éoin;n()? };I‘he drag coefficient of a Jumper is probably larger than the assumed
the— . od t € model. Also, the example emplgys the sea-level density of air, while
air eI.1s1ty at 10,000 ft (about 3,048 m) is about 73.8% (0.952 ke/m3) of
level density. Adjusting the initial position to be 3048 m and n2 an it o
0,95.2 kg/m?® with the Newtonian friction of F = (.5 CDAv?, the model indicat
terminal velocity of 68 m/sec (about 152 mph) for the free—f,all for less thanlgg1 oo,
onds. Howc3ver, the air density changes as the skydiver descends. Projects 4 S§C7_
explore refinements of the model to account for this variatioﬁ Prjoject Sal:dso

considers the skydiver jumpi ‘ i
beticon: y Jumping from a moving plane as opposed to a stationary

in.Figure 4.1.7 match the opening
exhibits a terminal speed of about
asured speeds of 110-120 mph are

using an air density of
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Exercises

1. a. Using the equations and values of Example 1, write differential equations
with initial conditions for acceleration and velocity.

b. Using calculus or an appropriate computational tool, solve the differential
equations of Part a to obtain velocity and position as functions of time.

2. Adjust Fall of Example 1 so that the object falls with an initial velocity of
zero and initial position of 400 m. Compare the results with those in Fall-
Friction of Example 2, which accounted for friction.

3. a. Using the equations and values of Example 2, write a differential equa-
tion involving the derivative of velocity for when an object reaches termi-
nal velocity. At terminal velocity, the forces acting on the body are equal.

b. Solve the equation of Part a using calculus or a computational tool.

4. Give the adjustments to the diagram in Figure 4.1.6 along with equations so
that graphs of new converters/variables adjusted_position and adjusted_speed
become horizontal lines at position 0 m after the parachutist lands.

. Repeat Exercise 3 using Stokes’ friction instead of Newtonian friction.

6. Suppose a raindrop evaporates as it falls but maintains its spherical shape.
Assume that the rate at which the raindrop evaporates (that is, the rate at
which it loses mass) is proportional to its surface area, where the constant of
proportionality is —0.01. The density (mass per volume) of water at 3.98°C is
1 g/lem3. The surface area of a sphere is 4772, and its volume is 47t73/3, where
ris the radius. Assume no air resistance. (Project 8 models the motion of this
raindrop under the influence of air resistance.)

a. Assume that the initial radius is 0.3 cm. Determine the raindrop’s initial
mass.

b. Write a differential equation for the rate of change of mass with respect to
time as a function of r.

¢. Write an equation for r as a function of mass.

7. Adjust Example 3 so that the parachute opening depends on time, not height
above the ground.

8. Write a system of differential equations to represent Example 3.

9. Using the models in your system dynamics tool’s Fall and FallFriction files
(see “Download”), compare position graphs for a dropped object with and
without consideration of friction. Also, consider the velocity graphs. Discuss
the results.

W

Projects

For all model development, use an appropriate system dynamics tool.

1. Develop a model to estimate the total change in position of the car with ve-

locities from Table 2.4.3 of Module 2.4, “Fundamental Concepts of Integral
Calculus” Employ an input graph instead of an equation to record Table
2.4.3’s values for the change in position. Give the absolute and relative errors
of your estimate in comparison to the exact value of 203% m.
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Table 4.1.2
Approximate Air Densities at Various Altitudes

Altitude (m) Density (kg/m’)

0 1.290
610 1.216
1219 1.146
1829 1.078
2438 1.014
3048 0.952
3658 0.894
4267 0.839
4877 0.786

2. Using Stokes’ friction, develop a model for the motion of a dust particle
floating down from a height of 50 m. Using comparative plots, determine its
terminal speeds for various values of Stokes” constant of proportionality.

. A bathysphere is a pressurized metal vessel in the shape of a sphere that al-
lows people to explore the ocean to much greater depths than are possible by
skin diving. A ship lowers and raises the sphere using a steel cable and com-
municates with its two occupants by telephone. In the 1930s, explorers
William Beebe and Otis Barton developed the first bathysphere, which
weighed 4500 pounds and had a diameter of 4°9”. In a subsequent one, they
descended to about 3000 ft in the ocean. Ignoring currents but not drag,
model the sinking motion of a bathysphere. Assume that the boat reels out
the steel cable fast enough so as not to affect the bathysphere’s motion (Col
2000; Uscher 2000).

. Table 4.1.2 contains air densities at various altitudes. Using these values on
an input graph, refine the model for Example 3 (Aber and Aber 2003).

. Suppose an airplane is traveling in a straight line horizontally at 130 m/sec at
a height of 600 m when a parachutist jumps out of the plane at an angle of
30° with the horizon. Model the motion of the skydive.

- Model the motion of a meteor falling to the earth. Assume an initial height of
100,000 m, initial velocity of —10,000 m/sec, coefficient of drag of 2, mass
of 500 kg, and density of 8000 kg/m? for iron or 3500 kg/m? for stone
(Schecker 1996). Give graphs for position, velocity, and acceleration versus
time. Give comparison graphs for velocity versus height for meteors of
various masses. Similarly, give comparison graphs for acceleration versus
height. NASA’s Glenn Research Center gives the following model for air
density using variables D for density (slugs/ft3), P for pressure (lbs/ftz) T for
temperature (°F), and & for altitude (ft):

P

T I718(T + 4507, “here

T +4597) "%
389 98

for h > 82,345 ft, T=-205.05 + 0.00164 h and P = 51.97 (

TE O TEER M O O

&
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for 36,152 <h<82345ft, T=-70 and P =473.1¢173-0000048n).  and

T+4597j5256

for h < 36,152 ft, T =59 — 0.00356% and P = 2116[ 5186

Note, if you wish to use metric instead of English units, you can use the fol-
lowing: 1 slug = 14.5939 kg and 1 ft = 0.3048 m (Benson).

. Using NASA’s Glenn Research Center model for air density at heights less

than 36,152 ft (see Project 6), refine the model in Example 3.

. a. Model the change in mass of the raindrop that Exercise 5 describes.

b. Model the motion of this raindrop taking into account air resistance.

. Develop a model to compare the terminal velocities of objects of different

masses, such as a mouse, cat, human, horse, elephant, etc. With the density
of living protoplasm being almost constant across a wide variety of species,
assume mass is proportional to the cube of a linear dimension, such as length
or circumference; but surface area is proportional to the square of a linear di-
mension. How do the terminal velocities of more massive objects compare to
those of less massive objects? Can a cat survive a fall from a tall building
(Diamond 1989)?

Answers to Quick Review Questions

. a. time, perhaps in seconds; distance, perhaps in meters; velocity, perhaps in

m/sec; acceleration, perhaps in m/sec?
b. v(¢) =

d
dv
a(t) = —-
. Acceleratlon, which is acceleration due to gravity, —9.81 m/sec?
sand v
ds/dt
. dvidt or a, which is the constant acceleration due to gravity without friction
. acceleration_due_to_gravity = —9.81 m/sec?
change_in_velocity = acceleration_due_to_gravity
change_in_position = velocity
. m=F/a=981 N/(9.81 m/sec?) = 100 kg
. a=F/m=10N/(5 kg) = 2 m/sec?

3
lg lkg>< 102 cm :103l<_g_
“em3 103 g Im m?3

. F=-05CDAv|v|= —0.5(0.9)(10%)(0.03)(=20)|-20| = 5400 N
-0.65 * A x v * ABS(Vv)

. velocity and projected area
. —0.65 * A * v = ABS(v)
. weight and air friction
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d m=*g
e. F/m
6. (B) weight = air_friction
7. a. Before and after opening of the parachute
b. position
¢. projected_area
d

. The position curve should continue to decrease but not as steeply. The speed
curve should suddenly drop and then level off to a new terminal velocity.

8. a. C. Greater because projected_area is less, causing air_ friction to be less,
making the absolute values of foral force, acceleration, change_in_
velocity, velocity, and speed more.

. A. 13 sec

B. 21 sec

oo
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MODULE 4.2

Modeling Bungee Jumping

Downloads

The text’s website has available for download with various system dynamics tools
the following files containing the models in this module: VerticalSpring and Bungee.

Infroduction

On April Fool’s Day in 1979, four members of Oxford University’s Dangerous
Sports Club, dressed in tails and top hats, climbed out onto the Clifton Suspension
Bridge in Bristol, UK. Each attached one end of a nylon-braided, rubber shock
cord to themselves and the other to the bridge. Then, they jumped off toward the
250-foot Avon Gorge. Voila! The sport of bungee jumping had begun in the western
world.

What in the world possessed these men to do such a thing? The story goes that
they watched a film on “land divers” from Pentecost Island in the South Pacific and
became inspired to try diving themselves.

What are “land divers”? These divers are the male inhabitants of Pentecost who
dive from platforms at various heights along a wooden tower. For these dives, lianas
(vines) attached to the tower are tied to their ankles. Divers may be as young as
seven years of age. Naturally, the lianas have to be selected very carefully. They
must be just the right length and elasticity for the height of the platform and the
weight of the diver. Consideration must be given to the length of the platform (which
collapses and absorbs some shock), the slope of the land, and the swaying of the
tower. A perfect dive will have the hair of the diver just brushing the ground. A mis-
calculation might be fatal. Land diving is part of ceremonies that ensure the yam
harvest and fertility. Now, extreme-sports enthusiasts come from all over the world
to experience “land diving.” :

How did this practice get started? Why would men choose to jump from plat-
forms with vines tied to their ankles? The annual land dives are based on local lore




