
ODE MODELS FOR THE PARACHUTE PROBLEM�DOUGLAS B. MEADEyAbstract. Classroom discussions relating to the modelling of physical phenomena has experi-enced a resurgence in recent years. One problem that is accessible to students and mathematicallytractable is the motion of skydiver. The basic \parachute problem" is formulated and solved. Asimple analysis of the problem raises questions about the applicability of this model. Real-life datais used to propose an extended model. The modi�ed model is shown to be more physically realisticand is no more complicated than the original problem. This discussion gives equal emphasis to boththe modelling and the analysis of the problem.Key words. modelling, IVPs for ODEs, parachute problem, piecewise-de�ned dataAMS subject classi�cations. 34-01, 34A121. Introduction. The \parachute problem" is discussed in numerous di�erentialequations textbooks (e.g., [1, (p. 141, #19 and 20)], [3, (p. 95, #10, 11, 20, and 21)],[4, (p. 109, #20)], [7, (p. 112{114, Example 3 and #8)]) and journal articles (e.g.,[2], [6]). The appeal of the parachute problem is a combination of the facts that thebasic model (Newtonian mechanics with resistance) is relatively simple for studentsto understand and that working with piecewise-de�ned functions, with which manystudents have some di�culty, is good preparation for the future discussion of Laplacetransform methods. A common formulation of the parachute problem is:A skydiver drops from a helicopter hovering at a speci�ed height, x0,above the ground and falls toward the Earth under the inuence ofgravity. Assume the force due to air resistance is proportional to thevelocity of the parachutist, with di�erent constant of proportionalitywhen the chute is closed (free-fall) and open (�nal descent). Giventhe condition that determines when the chute is deployed, how longdoes the jump last?Typical questions to be addressed in the analysis of the problem include:� what are the terminal velocities of the di�erent stages of the jump? what isthe velocity when the chute is opened? at impact?� what is the latest time that the parachute can be opened while keeping theimpact velocity below a speci�ed threshold?� compare the motions for jumps when the parachute is opened after a �xedamount of time, at a speci�ed altitude, and when a given velocity is attained.� �nd the corresponding model with quadratic air resistance, with coe�cientsselected so that the pre- and post-deployment terminal velocities are the sameas for the linear model; how do the two motions compare?The purpose of this note is to present an analysis of the traditional parachuteproblem that coordinates graphical solutions with the theory for initial value problemsfor a system of �rst-order ODEs. While this initial discussion is rather elementary, itdoes emphasize a number of important points: parameters identi�cation, dimensionalanalysis, veri�cation of solutions. The problem becomes more interesting at the endof Section 2, when the accuracy of the model is considered. Information from an AirForce Academy Training Guide [8] is used, in Section 3, to derive and analyze an�This work was supported by NSF awards DMS{9404488 and OSR{9108722.yDept. of Mathematics, University of South Carolina, Columbia, SC 29208 (meade@math.sc.edu).1



2 D. B. MEADETextbook k1=m k2=m td x0Abell/Braselton 1/6 5/3 60sec n/aDrucker 4/15 4/3 x(14) = 0 1200ftEdwards/Penney 3/20 3/2 20sec 10,000ftKostelich/Armbruster 1/5 � 1:56 v(td) = 0:95v1 2000mNagle/Sa� 1/5 7/5 60sec 4000mTable 2.1Coe�cients of air resistance, deployment criteria, and jump height for the parachute problem.improved model. Additional extensions of the problem are included in the concludingremarks in Section 4.2. The Basic Model. The motion of the skydiver is governed by Newton'sSecond Law of Motion. Balancing the forces of acceleration, gravity, and air resistanceyields the second-order (linear) initial value problemmx00 = �mg � kx0; x(0) = x0; x0(0) = 0where x is the height of the skydiver above the Earth's surface, m is the skydiver'smass, g is the gravitational constant, k is the coe�cient of air resistance, and prime(0) denotes di�erentiation with respect to time. An equivalent �rst-order system forthe position and velocity,1 v, isv0 = �g � kmv; v(0) = 0;x0 = v; x(0) = x0:(2.1)This IVP has the advantage that the velocity equation (2.1)1 can be solved as a �rst-order linear ODE; the position is then obtained by integration. Almost any ODE textcontains the explicit solution for the case when m, g, and k are constants:v(t) = mgk �e� km t � 1� ; x(t) = x0 + m2gk2 �� kmt+ �1� e� km t�� :(2.2)But, k is not constant in the parachute problem. The statement of the problemsuggests the general form for the coe�cient of air resistance is:k(t) = � k1; t < tdk2; t � td(2.3)where td is the time when the parachute is deployed. The form of the di�erentialequation suggests that k=m, with units 1/time, can be considered in place of thetwo parameters k and m. Note that this observation eliminates many of the potentialproblems that arise from the mixing of the CGS and MKS systems. Typical parametervalues found in several ODE textbooks are reported in Table 2.1.Note that if td is a function of velocity, e.g., deployment occurs when the velocityreaches a speci�ed threshold, or position, e.g., deployment occurs at a given altitude,then the IVP is nonlinear. Typically, it will be necessary to �nd the solution withk = k1, compute td, then solve the problem with k = k2 and initial conditions selectedto enforce continuity of position and velocity at the time of deployment: v(t+d ) = v(t�d )1Note that v < 0 for a body falling towards Earth.
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(a) 0 � t � 250 seconds j/g

a/g

v/10

x/1000

-6

-4

-2

0

2

4

6

59 60 61 62 63 64 65

(b) 59 � t � 65 secondsFig. 2.1. Motion for (a) 0 � t � 250 seconds and (b) 59 � t � 65 seconds for a piecewiseconstant coe�cient of air resistance.and x(t+d ) = x(t�d ) where x(t�d ) denote the right- and left-hand limits of the positionat td, respectively. Even though the calculation is rather tedious, the explicit solutionis not di�cult to obtain;2 for t > td the velocity isv(t) = mgk1 �e� k1m td � 1� e� k2m (t�td) + mgk2 �e�k2m (t�td) � 1� :(2.4)For the sake of this discussion, consider the parameters found in Example 3,p. 112, of Nagle and Sa� [7]. Figure 2.1 shows graphical solutions for the position,velocity, and acceleration for 250 seconds after the jump begins as well as a closerlook at the motion near the time the chute is deployed.The graphical solution provides approximate answers to many of the simple ques-tions about the jump. For example, the parachute is opened at an altitude of � 1300mwhen the velocity is � 49 m/s. Landing occurs a little more than three minutes later,with a velocity of � 7 m/s. More precise answers can be found using the explicitsolution (see [5]). Is an impact velocity of � 7 m/s safely survivable without injury?The degree to which the position appears to be piecewise linear is noteworthy,particularly when compared to the complicated form of the exact solution, (2.2)2 andthe integral of (2.4). This is easily explained by the rapid convergence of the velocityto the terminal velocity during each stage of the jump. The graph of the velocityimmediately following deployment of the chute is so steep that the curious readermight question whether the curve is continuous. (This is a good question for thestudents.) But, what does this say about the acceleration?Notice that computing the acceleration by di�erentiation, a = v0, is complicatedby the piecewise de�nition of the velocity. (What is v0(td)?) A simpler method of ob-taining the acceleration is to refer directly to the ODE that governs the velocity (2.1)1.That is, a = �g � kmv. This approach to the acceleration clearly indicates that thereis a jump in the acceleration at the instant the parachute is deployed. The snatchforce is the acceleration at the �rst instant when the assembly reaches full extension;the opening shock, or jerk, is the shock produced while the parachute deploys [8].2This is a perfect situation to use a computer algebra system. See [5] for a discussion of the useof Maple for the parachute problem.



4 D. B. MEADEMathematically, the jerk is the time derivative of the acceleration,j(t) := dadt = �k0(t)m v(t)� k(t)m a(t):(2.5)When k is piecewise constant, as in (2.3), the snatch force has a jump discontinuityat the instant of deployment: [j(td)] := j(t+d ) � j(t�d ) = � [k(td)a(td)]m . Using theNagle/Sa� parameters, a(60�) � 0 G, a(60+) � 6 G, and [j(60)] � �8:4 G/s. Thesejumps seem to be fairly signi�cant; are they realistic?3. Real-World Considerations. The preceding discussion illustrates techniquesused to answer a wide variety of mathematical and physical questions about ODEmodels. The analysis raised several additional questions about the applicability ofthe results to a real-life parachute jump. To address these issues it is necessary to ob-tain real-life data about skydiving; two accessible references for this material include[8] and [9].Training jumps for the Parachute Team at the United States Air Force Academybegin 4,0000 (1,219 m) above ground level (AGL). The free-fall portion of the jumplasts about 10 seconds; free-falls longer than 13 seconds are grounds for removal fromthe team. The terminal velocity for free-fall is 120 miles/hr (176 ft/sec or 53.6 m/sec).The parachute requires approximately 3.2 seconds to fully deploy from the time theripcord is pulled | at an altitude of at least 2,5000 (762 m) AGL. The snatch force feltwhen the lines and canopy are fully elongated is a heavy, but smooth, tug that is notparticularly uncomfortable. While this force depends on the weight of the skydiver,it should not exceed 500 lbs ( �3 G for a 165 lb (75 kg) person). The harnessand parachute are designed to withstand a force of 5000 lb (30 G). The landingvelocity should be no worse than a free-fall from a 50 (1.52 m) wall | between 15 and17 ft/sec (4.6 and 5.2 m/sec). A reserve chute is required on all intentional jumps. If amalfunction occurs with the main chute at 30000 (912 m) AGL, almost 6 seconds willbe required to recognize and react to the problem and to deploy the reserve chute. Thereserve chute must be opened no lower than 10000 (304 m) AGL; deployment requiresonly 1.5 seconds and the landing velocity should not exceed 17.5 ft/sec (5.3 m/sec).A free-fall terminal velocity of 120 miles/hr implies k1m = 211 and a landing velocityof 16 ft/sec corresponds to k2m = 3216 . Note that the values of k1m found in Table 2.1 arerelatively realistic, the values of k2m are uniformly low (so that the landing velocitiesare too high). The jump height and deployment time can be more varied; constraintson these parameters arise from e.g., the minimum height needed for the parachute todeploy and the applicability of the model at higher altitudes.3The statement that the snatch force should be smooth, and not exceed 3 G,suggests that (2.3) is not appropriate. A smooth snatch force is assured only whenk 2 C1(0;1). The fact that the parachute does not open instantaneously providesthe necessary exibility to connect the two constant states in a continuous manner.The resulting form for k isk(t) = 8<: k1; t < tdkd; td � t < td + �dk2; t � td + �d(3.1)where the time required for the parachute to open is denoted by �d. Note that anexplicit solution to (2.1) with k as in (3.1) can be obtained by solving three IVPs.3It should be noted that some of the textbook problems become more realistic simply by changingthe units.
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(a) 0 � t � 200 seconds
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(b) 9 � t � 15 secondsFig. 3.1. Motion for (a) 0 � t � 200 seconds and (b) 9 � t � 15 seconds for a C0 coe�cientof air resistance.
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(a) 9 � t � 15 secondsFig. 3.2. Motion for (a) 0 � t � 200 seconds and (b) 9 � t � 15 seconds for a smooth (C1)coe�cient of air resistance.Assuming td and �d are known, or can be determined, each problem is a �rst-orderlinear ODE. In this sense the modi�ed model is no more complicated that the original.To complete the model it is necessary to choose a speci�c kd. Continuity ofthe acceleration will be assured when kd interpolates the two constant states. Forexample, when kd is a linear function, the motion (position, velocity, acceleration,and jerk) appear as in Figure 3.1. Note that this model predicts the maximum jerkis under the 3 G threshold, but occurs at the instant the ripcord is pulled. To obtaina smooth jerk kd must be selected so that the derivatives at t = td and t = td + �dboth vanish. A cubic function can easily be �t to these conditions; the resultingmotion is displayed in Figure 3.2. Note that this motion is consistent with all of thecharacteristics found in the Air Force Academy Training Manual [8]: snatch force issmooth and well below the 3 G threshold; deployment begins at an altitude of 928 m(30450 ) AGL; an additional 3 seconds of free-fall brings the altitude to �25000 |thus the strict penalty for free-falls longer than 13 seconds. The complete jump lastsa little more than three minutes (196 seconds) with a landing velocity of 4.6 m/s(15.1 ft/sec).



6 D. B. MEADE4. Conclusion. This note identi�es a number of concerns about the parachuteproblem as it appears in several ODE texts. Real-life data is presented and used tocreate an improved model that can be analyzed using similar methods. The predic-tions obtained from the new model are consistent with the physics of skydiving. Themodi�ed model is still relatively simple. For example, while the true motion is three-dimensional, the current models consider only the vertical component of the motion.Further extensions of the model make good project assignments.For jumps that begin at altitudes higher than 25,0000 above sea level it beginsto be reasonable to consider including the altitude dependence of the air density,air pressure, and gravitational constant in the model. A simple investigation of thesensitivity of the solution to the di�erent parameters is useful when deciding which(if any) of the parameters should be allowed to be altitude dependent (see [5]).Another extension of the problem is to consider models with nonlinear (quadratic)air resistance during one or more of the three stages of the jump. While the numericaland graphical analysis can proceed virtually unchanged, explicit solutions can be moredi�cult to obtain (manually) since the individual IVPs become (nonlinear) Bernoulliequations.The list of physically interesting situations that can be analyzed is almost endless.One obvious example is to formulate a model consistent with the information aboutthe reserve chute and to check that the stated constraints can be satis�ed. (Whatparameters are appropriate for descent under the reserve chute? How smooth isthe jerk? Can the cubic model for kd be used?) Other sets of problems can beconstructed around di�erent criteria for chute deployment: e.g., at a speci�ed velocityor altitude. Two control problems that can be particularly instructive are: Given adesired duration of the jump, when should the ripcord be pulled so that the landingoccurs at the desired time? and What is the latest time the ripcord can be pulled sothat the landing velocity is below a given threshold?The computations and graphs in this paper were prepared using Maple. Fulldetails, including solutions to some of the problems posed above, can be found in [5].Acknowledgments. The author would like to thank Professors Eric Kostelich,Dieter Armbruster, and David Rocheleau for the discussions which motivated andimproved this paper. REFERENCES[1] M. L. Abell and J. P. Braselton, Modern Di�erential Equations: Theory, Applications,Technology, Harcourt Brace College Publishers, 1995.[2] J. Drucker, Minimal time of descent, The College Mathematics Journal, 26 (1995), pp. 232{235.[3] C. H. Edwards, Jr. and D. E. Penney, Di�erential Equations and Boundary Value Problems:Computing and Modeling, Prentice Hall, 1996.[4] E. J. Kostelich and D. Armbruster, Introductory Di�erential Equations: From Linearityto Chaos, Addison{Wesley, 1996.[5] D. B. Meade, Maple and the parachute problem: modelling with an impact, MapleTech, (inpress).[6] R. Melka and D. Farrior, Exploration of the parachute problem with STELLA, Newsletterfor the Consortium for Ordinary Di�erential Equations Experiments, Summer{Fall 1995,pp. 5{6.[7] R. K. Nagle and E. B. Saff, Fundamentals of Di�erential Equations, Fourth Edition,Addison{Wesley, 1996.[8] Student Handbook for Airmanship 490: Basic Free Fall Parachuting, USAF Academy, May1990.[9] H. S. Zim, Parachutes, Harcourt, Brace and Company, 1942.


