August 6, 2014

RMACC Symposium

Computational Thinking and the Curriculum

Extreme Science and Engineering Discovery Environment

Install The Software Linked Here

https://www.osc.edu/~sgordon/RMACC

Why Computational Science?

- How science and engineering is done while emerging efforts in social sciences and humanities
 - Models allow insights when systems are too large, too small, or too complex to fully understand through experimentation
 - Reduces time to solution for many types of research and design
 - Can explore virtual environments of past and present
 - Allows exploration of wide variety of digital media
 - Facilitates research that could not be done in any other way

Computational Science Skills

- Computational science provides skills needed in the present and future workforce
 - Understanding of modeling techniques that are used in research and business
 - Analytical skills
 - Teamwork skills
 - Communications skills
- Inquiry-based education approach engages students in learning

Benefits to Students

- Inquiry-based learning is more effective than traditional lecture oriented instruction
 - Students are actively engaged in the learning process
 - Students gain deeper insights and have higher retention rates for the information
 - Facilitates the integration of information across academic disciplines – math, science, engineering, computer science

Goals for the Sessions Today

- Demonstrate the pedagogy for computational science education
- Introduce materials and models that can be incorporated for classroom use
- Introduce simple tools that can be used to build and demonstrate modeling techniques

• Discuss approaches to incorporating computational science in the curriculum

Outline for Session 1

• Using existing models to introduce modeling and science concepts

Sede

- Collections of models for educational use
- Introducing modeling tools
 - Excel
 - Vensim

Getting Started

8

• Point your browser here and bookmark:

- https://www.osc.edu/~sgordon
 - -Choose Workshop Materials
 - -Then Links to other materials
 - <u>https://www.osc.edu/~sgordon/works</u>
 <u>hop/materials</u>

Outline for Session 2

- More on building systems models with Vensim
- Agent based modeling
 - Overview and examples
 - Using AgentSheets
- Combining introductory programming with modeling

Building a Simple Model

- Let's now build a simple model of a rabbit population
- From the Start Menu, choose Vensim
 - Choose File New from the menu, 30 for final timestep, 0.125 as the increment, Year for time units
- We are going to add items to the sketch that represent different components of the a simple population model

SEI

Some Sketch Tools

Auxiliary Variable (constant)

Box Variable (Level)

Arrow (connects cause and effect)

Add to Your Sketch

- Box variable label as Rabbit Population
 - Click on the tool, drag it to the open area and drop it
- Rate variable
 - Click on tool; click 2 inches to the left of Rabbit Population then click inside of the Box; name it Births
 - Click in the box and then 2 inches to the left name it deaths
- Note that the diagram represents adding to the population with births and decreasing the population with deaths

5 2 1

More to Add

- Auxiliary variable
 - birth rate (under births)
 - Average lifetime (under deaths)
- Connect the components with the arrow tool
 - Birth rate to births
 - Average lifetime to deaths
 - Population to births
 - Population to deaths
- Make pull on the circle in the last two to get a curved arrow just for aesthetics
- Save it

The Sketch and the Model

- The logic of the model is in the sketch
 - What does it show?
 - What is left out?
- Now must enter the equations
 - Click on the equations tool (second from right)
 - Unidentified items turn black
- Click on Births
 - Fill in by clicking on the variables and operators
 - Births*Rabbit Population
 - Units type in rabbits/year

More Model

- Rabbit Population
 - Births deaths (unit rabbits)
 - Initial value 1000
- Rest
 - Average lifetime = 8 (years)
 - Birth rate = 0.125 (fraction/year)
- Check the model
 - Model Check Model
 - Model Check Units
- Deaths
 - Rabbits/Average Lifetime (rabbits/year)

Run the Model

- Create the label for the run equilibrium
- Hit enter or click on the first runner
- To see outcomes
 - Click on a variable then a tool on the side
 - Try it with the graph for Rabbit Population
 - Why did it come out as a constant?
- Change the model
 - Title to Exponential Growth
 - Click on SyntheSim (second runner)
 - Drag birth rate to 0.2
 - Click stop
 - Look at graph

Other Alternatives

- Change the constant from the sketch view
- Create an interface to play with the parameters
- Save your model

Agent Based Modeling

- Telling a story
 - The actors or agents are nouns
 - Their actions are verbs
 - Conditions are adjectives
- Simple Sick Model

18

• Building a model with AgentSheets

SEI

Large Scale Agent Models

- A few open source tools
 - Repast
 - Link to primer
- Very large scale models use custom programming

Other Options

- Modeling and simulation course using a high level language
 - Matlab modeling course example

Outline for Part 3

- XSEDE Resources for Education and Training
- Developing a computational science curriculum
- Other education related opportunities

Our reach will forever exceed our grasp, but, in stretching our horizon, we forever improve our world.

Extreme Science and Engineering Discovery Environment