Preparing the Future Workforce for Careers in Science and Engineering

> Steven I. Gordon sgordon@osc.edu

XSEDE

Agenda for the Morning

- 9:00 10:00 AM
 - Opportunities and Challenges for Curriculum Change
 - Review of Competencies
- 10:00 10:30 Break
- 10:30 11:30 Industry Panel
- 11:30 Noon
 - Worksheet to create a program
 - Program examples

Opportunities and Challenges

- Workforce needs in computational science
 - How science and engineering (and social science and humanities) research is done

- Prepare students for work in private sector, in research, and for graduate school
- Changing how we teach
- Barriers to program implementation

Preparing Students

- Need for a workforce which understands both modeling and simulation principles and applications of models and data analysis at large scale
 - Requirements for high fidelity models of complex systems
 - Managing and understand large datasets data science
 - Applications across a wide range of science, social science, and increasingly humanities

Crucial Tools for Manufacturing

- At Ford, HPC ...allows us to build an environment that continuously improves the product development process, speeds up time-to-market and lowers costs.
- The ongoing use of modeling and simulation resulted in new packaging and product design that propelled the brand to a leading market position over a several-year period.

Ford EcoBoost Technology

Durable coffee package for P&G

SE

Myriad of Examples

- Behavior of new and existing materials at multiple scales
- Climate change and its potential social and economic impacts
- Concentration of environmental contaminants and their impacts on ecosystems and human health
- Genetic markers and disease
- Analysis of huge datasets
 - Market and customer behavior
 - Genomic data
 - Social media

Changing How We Teach

- Getting students actively involved in learning
 - Reducing traditional lectures
 - Increasing inquiry-based learning
- Ideally suited to instruction in computational science
 - Students need technical and analytical skills to create and test models and analyze data
 - Students enhance "soft" skills in teamwork and written and oral communication

Benefits to Students

- Inquiry-based learning is more effective than traditional lecture oriented instruction
 - Students are actively engaged in the learning process
 - Students gain deeper insights and have higher retention rates for the information
 - Facilitates the integration of information across academic disciplines – math, science, engineering, computer science

Challenges to Changing the Curriculum

- We tend to teach in the way we were taught
- Computational science is interdisciplinary
 - Faculty workloads fixed on disciplinary responsibilities
 - Coordination across departments is superficial
 - Expertise at universities is spotty
- Major time commitments are required to negotiate new programs and develop materials
- Curriculum requirements for related fields leave little room for new electives

• Change is hard

Barriers to Program Implementation

- Limited resources and strained workloads
- All of our colleagues don't see the light
- Access to example materials and datasets
- Access to appropriate infrastructure and technology
- Limits to faculty expertise

Overcoming the Barriers

• Availability of external resources and materials

SFI

- Making incremental changes
- Involving potential employers
- Marketing to administrators, faculty, and students
- Inter-institutional collaboration

Sources of Information

- Course syllabi from existing courses
 - Some available through XSEDE
 - Sharing of syllabi with collaborating institutions
- Digital resources on variety of fields
 - NSF digital libraries
 - Collaboratories
 - Consortia
 - Examples: See

https://www.osc.edu/~sgordon/workshop/materials

Collaborative Online Materials

- Collaborative courses at XSEDE and Blue Waters
 - Online lectures by central instructor
 - Computer exercises, quizzes
 - Local instructor to advise and grade
- XSEDE Examples
 - <u>Engineering parallel software</u>
 - Applications of Parallel Computers
- Blue Waters Examples
 - High Performance Visualization for Large-Scale Scientific Data Analytics
 - <u>Designing and Building Appliations for Extreme-Scale Systems</u>

Other Resources

- Technical training materials on XSEDE and other sites
- HPCUniversity Resources
- Journals
 - Journal of Computational Science Education

SEL

- Computers in Education
- Other domain educational journals

Other Materials and Certificates

- XSEDE training materials
 - Online and webcast workshops
 - Future addition of certificates
- <u>Software carpentry</u>
- HPC University
- Links to a variety of sources

SEDE

Opportunities for Students

- Blue Waters Graduate Fellowship
- XSEDE Scholars
- XSEDE Summer Internships
- Internships with national labs
- See

http://hpcuniversity.org/students/opportuniti es/

SEDE

Starting a Program

- What do students need to know?
 - Competencies for undergraduate and graduate programs developed as part of several NSF grants and the XSEDE project

SEL

- <u>Review of competencies</u>

Questions and Discussion

