
Scheduling Diverse
High Performance
Computing Systems
with the Goal of
Maximizing Utilization

Troy Baer
Senior HPC System Administrator
National Institute for Computational Sciences
University of Tennessee

National Institute for
Computational Sciences
University of Tennessee & ORNL partnership
• NICS is a NSF HPC center

– Operated by UT, located at ORNL
– XSEDE (formerly Teragrid) Service Provider

• Current Systems

– Kraken (Cray XT5, 112,984 cores)

– Nautilus (SGI UV, 1,024 cores)

– Keeneland initial delivery system (HP GPU cluster,
1,440 cores + 360 GPUs) in conjunction with Georgia
Tech

Overview

• Introduction to NICS
• Scheduling on Kraken

– Scheduling Overview
– Need for bimodal scheduling
– Capability Scheduling using Fence Reservations
– Capability Scheduling using Triggers

• Scheduling on Keeneland
– Scheduling Overview

• Future Work

Goal of a HPC Service Provider

High levels of
resource
utilization

Reasonable
throughput to

jobs

Kraken XT5 Specifications

Compute processor type AMD 2.6 GHz Istanbul-6

Compute cores 112,896

Compute sockets 18,816 six-core

Compute nodes 9,408

Memory per node 16 GB

Total memory 147 TB

Peak system performance 1.17 PF

Interconnect topology 22 x 16 x 24 Torus/Seastar2+

Parallel file system space 3.3 PB (raw) 2.4 PB (usable)

Parallel file system peak performance 30 GB/s

Job Mix on Kraken During 2011

CPU Hours Consumed on Kraken in 2011

by queue

Jobs Run on Kraken in 2011

by queue

small
longsmall
medium
large
capability
dedicated
hpss

Need for Bimodal Scheduling

• Prior to January 2010 scheduling was on a
strictly priority basis

• Peak and valley problem in utilization

Need for Bimodal Scheduling

• Capability users had to wait a long time
before their jobs could run

• Capability jobs often did not manage I/O
properly, leading to frequent Lustre problems

• This led to a need for a stable and more
predictable scheduling system

Initial attempt at Bimodal Scheduling

● Friendly user period after Istanbul upgrade on
Kraken

● Largely manual scheduling – inspecting the queued jobs
and adjusting priorities or running jobs manually

● Resulted in ~20% increase in utilization

● Efforts to reduce the amount of manual
intervention required

● Removal of expansion factor priority
component

● Caused priorities to change in ways that were difficult to
explain to users

● Remaining priority components were number of cores
request and queue wait time

Problems Running Dedicated jobs

• Initially run manually with scheduling paused
• Disadvantage of this approach:

– On call sys admin had to start next dedicated job
(Runs usually lasted 24 – 48 hours)

– Every person involved with job had to stay up to
monitor progress

– Backfill jobs had to be run manually as well

The Moab/ALPS disconnect
• Moab/ALPS disconnect

– ALPS node health checker runs after every job
– Moab assumed nodes were ready as soon as job was ended,

ignoring ALPS health checker
– ALPS reported the nodes were not available immediately
– Jobs would be requeued after failing to acquire nodes until

health checker completed
– In some cases, this led to non-capability jobs running while there

were capability jobs left in queue

• Human errors also led to premature termination of
capability jobs

• By end of 2010, through trial and error, an acceptable
level of reliability was achieved but process was still
heavily manual

Capability Scheduling Using Fence
Reservations

• Fence reservations: Standing reservations set
up on Kraken with a granularity of 1 day

• Reservation controlled by an ACL which
specified which queues could run on the
machine

Small Queue

Medium Queue

Large Queue

HPSS Queue

Kraken

Fence Reservation

Capacity Jobs

Capability Queue Kraken

Capability Reservation

Capability Jobs

Drawbacks of Capability Scheduling
Using Fence Reservations

• Fence reservation had to replace capability
reservation as soon as last capability job was
done, else machine would idle

• Too many reservations in flight

Capability Scheduling Using Triggers
• Moab version 5.4 changed the way

reservations were handled
• From version 5.2, Moab could launch triggers
• Triggers enable actions when certain events,

offset or threshold criteria are satisfied

Small Queue

Medium Queue

Large Queue

HPSS Queue

Kraken

Capability Queue

Jobs

Jobs

Jobs

Jobs

Jobs Start flag set to false until
sufficient jobs are in queue

Running Capability Jobs Using Triggers

● Minimal level of human intervention
● Reservation profile used to simplify reservation creation
● Capability queue off by default, turned on and off by triggers

● Allows capability users to debug and
resubmit jobs within the capability window

● Turnaround time for capacity users
unaffected

Sufficient Jobs in
Capability Queue

• Capability reservation drains
the machine

• Trigger associated with
capability reservation starts
capability queue

Last Capability
Job

Associated trigger
runs a script that

drops the capability
reservation and

changes the start
flag of the capability

queue to false

Current Scheduling on Kraken

• Capacity Jobs – use <= 49,536 cores
● Run most of the time

• Capability Jobs – use between 49,537-98,352
cores

● Run after maintenance windows or
crashes

• Dedicated Jobs – use > 98,352 cores
● Extremely I/O intensive
● Scheduled roughly once every quarter
● Dedicated jobs with wallclock requests <=

1 hour may run just after a PM or crash

Overall Utilization on Kraken

Scheduling on Keeneland

Keeneland - Initial Delivery (KID)

•
CPU 2 x Intel Xeon X5660 2.80 Ghz (Westmere)

GPU 3 x Nvidia Tesla M2070 6GB (Fermi)

Interconnect Infiniband QDR (single rail)

Compute Nodes 120

Total CPU cores 1,440

Total GPUs / cores 360 / 161,280

Login Nodes 4

Management
Nodes

2

Scheduling on Keeneland

● Keeneland is currently a development system
open to friendly users

● Fairshare Policy:
● Each project have a default fairshare target of 10%
● To prevent users from “hogging” the machine:

– Maximum eligible jobs per user (at a time): 5
– Maximum eligible jobs per project (at a time): 10

● Capability reservations using triggers similar
to what's done on Kraken

● Bug in Moab 6.1.x where reservations created using a profile
don't get the profile's CLASSLIST ACL – have to add by
hand

● This problem now affects Kraken as well after CLE 3.1
upgrade

Future Work

• On Kraken, no way currently to distinguish
between jobs submitted to capability queue at
the start of the reservation and jobs
submitted after the reservation was open

– Problem of determining last job to attach trigger to
– Attach higher priority to jobs submitted before

capability queue was open
– Alternatively, hold capability jobs by default and

release eligible jobs at the start of the capability
window

• Freeing up cores as capability run progresses

Questions

Appendix A: Anatomy of a Fence Reservation

SRCFG[fence] COMMENT='fence in capability jobs to
run only on certain days'

SRCFG[fence] PARTITION=xt5 TASKCOUNT=8256

SRCFG[fence] PERIOD=DAY DEPTH=7
DAYS=Mon,Tue,Thu,Fri,Sat,Sun

SRCFG[fence] STARTTIME=00:00:01 ENDTIME=23:59:59

SRCFG[fence]
CLASSLIST=small,longsmall,medium,large,dmover,hpss

SRCFG[fence] FLAGS=SPACEFLEX

Appendix B: Anatomy of a Trigger-Based
Capability Reservation

RSVPROFILE[capability]
TRIGGER=AType=exec,EType=start,Action="/var/control_capability
start $OID"

RSVPROFILE[capability]
TRIGGER=AType=exec,EType=end,Action="/var/control_capability
end $OID"

RSVPROFILE[capability]
TRIGGER=AType=exec,EType=cancel,Action="/var/control_capability
cancel $OID"

RSVPROFILE[capability] CLASSLIST=capability,dedicated

RSVPROFILE[capability] FLAGS=DEDICATEDRESOURCE

	Slide 1
	Slide 2
		Highlights of this presentation
	Goal of a HPC Service Provider
	Kraken XT5 Specifications
	Job Mix on Kraken between January 2011 and June 2011
	Need for Bimodal Scheduling
	Need for Bimodal Scheduling
	Slide 9
	Problems while running Dedicated jobs
	The Moab – ALPS disconnect
	Using Fence Reservations	
	Drawbacks of Using Fence Reservations
	Using Moab Triggers	
	Running Capability Jobs Using Moab Triggers		
	Dedicated Jobs	
	Overall Utilization on Kraken
	Scheduling on Keeneland
	Slide 19
	Scheduling on Keeneland
	Future Work
	Questions
	Slide 23
	Slide 24

