
A Parallel I/O Mechanism
for Distributed Systems

Troy Baer and Pete Wyckoff

Ohio Supercomputer Center

1224 Kinnear Road

Columbus, OH 43212
{troy,pw}@osc.edu

Overview
• Motivation

• Goals

• Design Issues

• Implementation Issues and Limitations

• Performance Results

• Conclusions

Motivation
• OSC has a diverse collection of computing and storage resources

around the state of Ohio:
– Central facility in Columbus with 2 large production clusters (300-500

CPUs each), 2 smaller research clusters, several SMPs, a vector
mainframe, and ~450 TB of storage.

– New satellite facility in Springfield with 2 smaller research clusters, a
vector mainframe, and ~20 TB of storage.

– ~15 smaller clusters at colleges and universities throughout Ohio,
granted through OSC's Cluster Ohio program.

• Non-uniform userid management:
– OSC central and Springfield facilities share a userid DB.
– Each Cluster Ohio site has locally administered accounts.
– Globus certificates used for cross-site authentication.

Motivation (con't.)
• Interest in distributed access to storage resources:

– Data-intensive computing on remote data.
– Loosely-coupled parallel simulations with remote data and/or output.

Motivation (con't.)
• For parallel simulations, the most widely used interface for doing I/O

on shared files is the MPI-I/O part of the MPI-2 standard:
– Blocking or non-blocking
– Individual and collective operations
– Basis for higher-level parallel I/O APIs

• HDF5

• Parallel NetCDF

• ROMIO, the reference implementation of MPI-I/O, has a modular
driver interface called ADIO:
– Numerous file system drivers:

• UNIX FS

• NFS

• PVFS

• Others
– However, there is currently no grid-enabled file system driver.

Motivation (con't.)
• As of mid-2003 (when this project started), there was no widely

available implementation of MPI-I/O for a Globus-based grid I/O
protocol:
– RIO (“Remote I/O”) is described in papers from the 1996-1997 time

frame, but is not included in the current ROMIO source.
– Private communications with the ROMIO developers indicated that

they had no plans for a Globus-based protocol driver at that time.

• The GridFTP protocol is a logical choice as an application-level I/O
API:
– Widely used as part of Globus software stack.
– Has most of the functionality needed to implement MPI-I/O.

Goals
• Implement a ROMIO ADIO driver for the GridFTP protocol:

– URI-based namespace.
– Let Globus layers underneath GridFTP handle authentication and

authorization.

• Support as much of MPI-I/O as possible, as simply as possible:
– Blocking operations by default.
– Use ADIO layer functionality as much as possible.
– No shared file pointers or atomic operations.
– Characterize and work around limitations of GridFTP protocol where

possible.

• Measure performance using MPI-I/O applications:
– ROMIO perf.
– ASCI Flash using Parallel NetCDF.

Design Issues
• File namespace is URI-based:

– ftp://host/path/to/file

– gsiftp://host/path/to/file

• Like FTP, GridFTP has separate control and data channels which
can be operating simultaneously.

• The GridFTP API is asychronous with callbacks by design; a
blocking read or write operation works as follows:
– Initiate I/O transaction on control channel
– Initiate one or more data transfers on data channel
– Acquire lock
– Wait for control transaction to complete (which implies completion of

data transfers)
– Release lock

Design Issues (con't.)
• Semantic mismatch for asynchronous calls:

– While the GridFTP API is asynchronous, it only allows one control
channel transaction at a time on a given file handle.

– MPI-I/O semantics allow for multiple non-blocking operations on the
same file, so the non-blocking operations must either silently block or
be handled with a FIFO operation queue.

– Currently, non-blocking operations block silently.

• The GridFTP data channel read operation has no offset argument,
making reads on non-contiguous regions more complex.
– Entire region read into memory.
– Relavant sections copied into output buffer.
– Obviously does not scale for very large, sparse regions.

• GridFTP has no concept of access modes at the API level, so these
must be enforced at the ADIO level.

• GridFTP has no equivalent to creat(), fseek(),or fsync().

Implementation Issues
• GridFTP does not like to operate through NAT firewalls:

– GridFTP clients go into passive mode during writes.
– Observed symptom is that reads work, but writes fail.
– Significant problem for any site that puts compute systems on non-

routable or otherwise private networks.
– Workaround is to map a range of TCP ports to each compute node at

the firewall, which does not scale well beyond a few tens of nodes.

• Limitations to MPI-I/O functionality:
– No atomic operations (i.e. MPI_File_set_atomic()).
– No shared file pointers.
– MPI_File_sync() is effective a no-op.

Hints for GridFTP files in ROMIO
• (keyword,value) pairs stores in an MPI_Info object

• Used to tune driver-specific parameters

• Hints implemented for GridFTP
– ftp_control_mode={extended,stream}

– parallelism=(integer number of threads connecting to ftp server)
– striped_ftp={true,false}

– tcp_buffer=(integer size in bytes)
– transfer_type={ascii,binary}

• Defaults are:
– ftp_control_mode=extended

– parallelism=1
– striped_ftp=false

– tcp_buffer=16384
– transfer_type=binary

Performance Results
• Developed and tested on OSC's BALE research cluster:

– 1 file server node
– 50 compute nodes
– Myrinet and 100Mbit/s Ethernet
– Tests compare GridFTP vs. NFS over Ethernet

• Performance tests:
– ROMIO perf example program, modified to run multiple times and

compute average and standard deviation.
– ASCI Flash I/O benchmark, using Parallel NetCDF backend from

Argonne Nat'l Lab and Northwestern University.

Performance: ROMIO perf (Read)

Performance: ROMIO perf (Write)

Performance: ASCI Flash using PNCDF

Parallel I/O in a Grid Environment
• Because of the passive writer problem mentioned earlier, MPI-I/O

over GridFTP is effectively read-only for systems behind NAT
firewalls. However, it still has significant uses.

• For instance, OSC has used MPI-I/O over GridFTP to distribute
bioinformatics database files to Cluster Ohio sites for use by an
MPICH/G2 based implementation of BLAST:
– No file prestaging required.
– Each MPI process uses MPI-I/O over GridFTP to retrieve the

necessary files if they are not already locally accessible.

Conclusions
• GridFTP can be used to implement almost all of MPI-I/O's

functionality:
– Missing functionality is also missing on numerous other parallel file

systems (eg. PFS and PVFS).
– Allows MPI-I/O applications to be seamlessly transitioned onto the

grid in many cases.

• Performance roughly comparable than NFS over same network:
– Reads almost always slower.
– Writes sometimes equal or faster.
– Much more secure over wide area networks thanks to Globus PKI

infrastructure.

• Patch including GridFTP driver for ROMIO has been submitted to
the ROMIO developers.

• In production on OSC production cluster systems and Cluster Ohio
rev. 2 & 3 sites.

Future Work
• Better support for doing strided reads:

– Current implementation reads entire region and copies out desired
pieces – clearly does not scale to sparse collections of data in very large
(GB-TB range) files.

– Add a hint to allow user to select a size or sparsity threshold, beyond
which each portion of data would be read directly.

• Better non-blocking support:
– Initiating a non-blocking operation would cause that operation to be

added to an operation queue.
– When one operation ends, it would automatically start the next operation

in the queue.
– Blocking operations could then be implemented in terms of a non-

blocking operation plus a wait.

• Other MPI-I/O functionality?
– Shared file pointers?
– GridFTP operations unlikely to be made any more atomic than they

already are.

Availability
• Patch, slides and paper available at

http://www.osc.edu/~troy/romio-gridftp/.

• Patch has been also submitted to ROMIO developers.

