
Using Quality of Service for Scheduling on Cray XT Systems

Troy Baer, National Institute for Computational Sciences

ABSTRACT:  The  University  of  Tennessee's  National  Institute  for  Computational  
Sciences (NICS) operates two Cray XT systems for the U.S. National Science Foundation  
(NSF): Kraken, an 88-cabinet XT5 system, and Athena, a 48-cabinet XT4 system. Access  
to Kraken is allocated through the NSF's Teragrid allocations process, while Athena is  
currently being dedicated to individual projects on a quarterly basis; as a result, the two  
systems  have  somewhat  different  scheduling  goals.  However,  user  projects  on  both  
systems have sometimes required the use of quality of service (QoS) levels for scheduling  
of certain sets of jobs. We will present case studies of three situations where QoS levels  
were used to fulfill specific requirements: two on Kraken in fully allocated production  
service, and one on Athena while dedicated to an individual project. These case studies  
will include lessons learned about impact on other users and unintended side effects.

KEYWORDS: XT4, XT5, scheduling, quality of service, QoS

1. Introduction

The  University  of  Tennessee's  National  Institute  for 
Computational  Sciences  (NICS)  operates  two  Cray  XT 
systems  for  the  U.S.  National  Science  Foundation  (NSF): 
Kraken, an 88-cabinet XT5 system, and Athena, a 40-cabinet 
XT4 system. Access to Kraken is allocated through the NSF's 
Teragrid allocations process, while Athena is currently being 
dedicated to  individual  projects  on a quarterly basis.   The 
details of the two systems are shown below.

System Kraken Athena

Cabinets 88 48

Compute Nodes 8,256 4,512

Processor AMD Opteron
2.6 GHz hex-

core

AMD Opteron
2.3 GHz quad-

core

Total Cores 99,072 18,048

Peak 
Performance 

(TFLOP/s)

1,030.3 165.9

Memory (TB) 129.0 17.6

Disk (TB) 2,400.0 85.0

Disk Bandwidth
(GB/s)

30.0 12.0

2. Scheduling on XT Systems with TORQUE 
and Moab

Like many large XT systems, Kraken and Athena use the 
TORQUE batch environment.  TORQUE [2] is an open 
source resource management software package with a 
long and venerable history, being derived from PBS and 
used on a large number of high performance computing 
systems over the years.  Like all PBS variants, TORQUE 
is modular, consisting of three components:  a queue 
server  daemon (pbs_server), a scheduler daemon, and 
a “machine-oriented mini-server” daemon (pbs_mom).  A 
typical  TORQUE installation has one pbs_server 
instance, one scheduler instance, and as many pbs_moms 
as there are compute nodes.  However, this arrangement 
changes slightly on Cray XT systems, as it is impractical 
to run a pbs_mom on every XT compute node; instead, 
pbs_moms run on a small set of dedicated service nodes, 
and jobs run on these service nodes spawn processes on 
the XT compute nodes by invoking the aprun command 
of the Cray Application-Level Placement Scheduler 
(ALPS) service [11].

The interface between the TORQUE pbs_server and 
scheduler is well defined, and while TORQUE includes a 
simple scheduler (pbs_sched), most sites choose to use 
one of the many available third-party schedulers.  Like 
many large XT systems, Kraken and Athena both use the 
Moab scheduler. Moab [3] is an extremely powerful and 
flexible commercial scheduler software package that 
supports a wide variety of batch environments, including 
all PBS variants, LSF, LoadLeveler, and SLURM.  Moab 
also supports a number of advanced scheduling 

Cray User Group 2010 Proceedings 1 of 7



capabilities such as advance reservations, quality of service 
(QoS) levels, consumable resource management, and a 
highly configurable priority and policy engine.  On Cray XT 
systems, Moab communicates with ALPS as well as 
TORQUE, which is accomplished by interfacing to a native 
resource manager, a set of “glue layer” scripts that sit on top 
of ALPS and TORQUE services.

2.1  Moab Scheduling Algorithm
At Moab's core is a seven-stage scheduling algorithm [6], 
which generally runs at regular intervals but can also be 
provoked by external events such as job submissions.  The 
seven steps of the Moab scheduler iteration are as follows:

1. Update status information from resource manager(s)
2. Refresh reservations
3. Start jobs with reservations (if possible)
4. Start jobs with highest priority (if possible)
5. Backfill jobs
6. Update statistics
7. Handle client requests

On Cray XT systems such as Kraken and Athena, steps 1, 3, 
4, and 5 require interactions with TORQUE and ALPS 
through the XT native resource manager interface.

2.2 Queue Structure
To  simplify  management  of  Kraken  and  Athena,  the  two 
systems share a common queue structure, which differs only 
in  core  count  ranges  between  the  two  machines.   This 
structure  is  intended  to  be  largely  invisible  to  users,  who 
generally submit jobs to one of two routing queues (batch 
and  debug) that filter jobs into the actual queue based on 
size and time requests.

Queue Max. 
Walltime

Max. Cores 
(Athena)

Max. Cores 
(Kraken)

small 24 hours 512 512

longsmall 60 hours 512 256

medium 24 hours 2,048 8,192

large 24 hours 8,192 49,536

capability 24 hours 18,048 99,072

dmover 24 hours 0 0

hpss 24 hours 0 0

The  dmover and  hpss queues  are  present  to  facilitate 
scheduled  data  transfers  using  GridFTP  and  HPSS, 
respectively.

2.3 Job Priorization
As  with  the  queue  structure,  Kraken  and  Athena  share  a 
common job prioritization model  to  simplify management. 
Job priorities on Kraken and Athena are based primarily on 

the number of cores requested.  Secondary factors used in 
the priority calculation include the job’s queue time and 
its  expansion factor [10], although recently the latter has 
been removed because it often caused unexpected effects.

2.4 Quality of Service Levels
In Moab, a quality of service level is an object enabling a 
job  to  request  special  scheduling  considerations,  which 
may  include  modified  priority  or  throttling  policies, 
different behavior with respect to reservations or backfill, 
and the ability to preempt or be preempted by other users' 
jobs [8].  A QOS level may be applied to a job in one of 
two ways, either by automatic assignment by Moab or by 
an explicit request as part of the batch job (e.g. qsub -l 
qos=foo in TORQUE).  In either case, some credential 
associated with the job must be able to access a QOS level 
in  order  for  the  job  to  use  that  QOS;  these  credentials 
include  users,  groups,  accounts/projects,  and 
queues/classes.

In normal  operation on Kraken and Athena,  there  were 
originally only two non-default QOS levels in use, which 
all users and projects were (and are) able to access.  One 
of these QOS levels,  sizezero, is applied at the Moab 
level using a job template and is rarely (if ever) explicitly 
requested  by  users.   The  sizezero QOS  causes 
size=0 jobs,  which  use  no  compute  nodes  and  are 
typically data movement jobs in the  dmover and  hpss 
queues, to run in a timely manner despite their relatively 
low priority by applying the  RUNNOW flag to them.  The 
sizezero QOS also limits how many size=0 jobs can 
run concurrently, to try to avoid overwhelming the aprun 
and login nodes where these jobs run.  The second QOS 
level used in normal Kraken operations is negbal, which 
is applied automatically by the TORQUE submit filter to 
jobs  from  projects  whose  allocations  have  negative 
balances.   The  negbal QOS applies  a  large  negative 
priority modifier to jobs which request it, so that jobs from 
projects  with negative balances do not  run unless those 
cycles would otherwise go unused.  However, as will be 
seen below, a number of  other  QOS levels were added 
over time to deal with various situations and requirements.

3. Case Studies

3.1 Normal Operation on Kraken
To  establish  a  baseline  case,  the  following  table 
summarizes the queue times observed over a roughly six-
month period of Kraken's production lifetime from 5 Oct 
2009 to 31 Mar 2010, during which the overall  system 
utilization was 65.62%:

Cray User Group 2010 Proceedings 2 of 7



QOS Jobs CPU 
Hours

Min 
Queue 
Time

Max 
Queue 
Time

Mean 
Queue 
Time

default 220,197 241.7M 00:00:03 858:59:59 03:59:26

negbal 13,137 39.5M 00:00:04 398:04:00 08:51:31

sizezero 2,231 0.0M 00:00:05 262:51:39 04:11:42

Unsurprisingly,  jobs  with  the  negbal QOS  wait 
considerably  longer  between  job  submission  and  job  start 
than  jobs  with  other  QOSes.   However,  jobs  with  the 
sizezero QOS have slightly worse queue wait times than 
those with the default QOS.  This is likely due to the fact that 
the  sizezero QOS did not initially include the  RUNNOW 
flag; this was a later addition in response to sizezero jobs 
waiting longer than desired without that flag's use.

3.2 Nightly Weather Forecasting on Kraken
The  Oklahoma  University's  Center  for  the  Analysis  and 
Prediction  of  Storms  (CAPS)  was  given  a  Teragrid 
allocation  on  Kraken  to  run  part  of  their  2009  Spring 
Forecast Experiment, which ran from 16 Apr 2009 to 12 June 
2009  [1].   This  required  nightly  standing  reservations  on 
Kraken of approximately 10,000 cores for 8 hours on five 
days per week, Sunday through Thursday.  Of those 10,000 
cores,  9,600  cores  were  used  for  a  WRF-based  forecast 
simulation  [9],  320  cores  were  used  for  post-processing 
analyses that ran concurrently to the forecast, and 80 cores 
were held in reserve in case node failures forced a forecast to 
be restarted.  These reservations started at 10:30pm at night 
and went until 6:30am the following morning.  The forecast 
and  post-processing  reservations were  managed separately, 
as the post-processing jobs did not start until about half an 
hour after the forecast job started and sometimes continued 
for  an hour or more after the forecast  job ended.  Further 
complicating this was the fact that Moab does not currently 
support standing reservations with periodicity of a day that 
start on one day and end on another, so each “reservation” 
actually consisted of two separate component reservations, a 
PM component running from 10:30PM to midnight and an 
AM component running from midnight to 6:30AM.  Access 
to these reservations were managed by requesting one of two 
QOS levels, capsforecast and capspostproc, which 
could only be accessed by members  of  the CAPS project. 
These QOSes also had increased priority so that they would 
start as soon as possible when the reserved resources were 
available.

The following table summarizes  the queue times observed 
during the period of the CAPS Spring Experiment's use of 
Kraken from 16 April 2009 to 12 May 2009, during which 
the overall system utilization was 66.02%:

QOS Jobs CPU 
Hours

Min 
Queue 
Time

Max 
Queue 
Time

Mean 
Queue 
Time

default 35,257 55.6M 00:00:02 466:24:39 03:51:50

negbal 2,692 3.0M 00:00:04 146:53:14 02:15:37

sizezero 611 0.0M 00:00:03 132:26:36 01:04:35

capsfore
cast

68 3.0M 00:00:05 42:01:04 01:48:31

capspost
proc

2,155 0.1M 00:00:03 26:42:12 00:02:49

As can be seen above, CAPS jobs were run considerably 
more  quickly  than  regular  jobs;  in  fact,  the  largest 
component of queue time for CAPS forecasting jobs was 
that  they  were  generally  submitted  around 9PM with  a 
flag that prevented them from being eligible to run before 
10:30PM.   Surprisingly,  jobs  with  the  negbal QOS 
actually  received better  service than regular  jobs did in 
terms of queue time, as these jobs are tend to be small and 
short,  making  them  easy  to  backfill  around  the 
reservations required by the CAPS project.

However, service improvements for the CAPS

 project  came  at  a  cost  in  service  to  other  users, 
particularly  those  who  had  large  or  long  running  jobs. 
Jobs  in  the  longsmall queue  saw an  average  queue 
time  of  over  96.5  hours,  whereas  during  the  period 
previously discussed, similar jobs saw an average queue 
time  of  slightly  less  than  52  hours.   Users  with 
capability jobs were even more drastically impacted, 
as  the  nightly reservations  limited  the  length of  time a 
full-system  job  could  run  to  16  hours  under  ideal 
circumstances and considerably less than that in practice. 
This was exacerbated by the additional priority given to 
the CAPS jobs, which caused “near-miss” behavior where 
a  capability job would have a reservation set due to 
being the highest priority until a CAPS job came along 
and caused  the  reservation  to  be  lost.   Because  of  this 
behavior, a bigjob QOS level was created and assigned 
to the capability queue.  This new QOS has its own 
pool of reservations separate from the default reservation 
pool, so that the highest priority  capability job will 
have a resource reservation even if there are other  jobs 
with  higher  priority  eligible  to  run.   This  impact  on 
capability jobs  also  led  to  significant  policy 
modifications at the center level, the most significant of 
which was that it  was decided to place the 2010 CAPS 
Spring  Experiment  onto  Athena  rather  than  Kraken,  as 
running a day or more worth of full-system jobs became a 
roughly weekly occurance on Kraken by early 2010.

Cray User Group 2010 Proceedings 3 of 7



3.3 User-Managed Scheduling on Athena
The  first  project  given  dedicated  access  to  Athena  was  a 
climate modeling project from the  Center for Ocean-Land-
Atmosphere  Studies (COLA)  at  the  Institute  of  Global 
Environment and Society (IGES) [4].  This project used two 
major applications:  IFS, an operational weather forecasting 
application  from  the  European  Center  for  Medium-range 
Wather  Forecaster  (ECMWF)  [5];  and  NICAM, a  climate 
modelling application from the University of Tokyo which 
had  previously  been  run  only  on  the  Earth  Simulator  [7]. 
Because Athena was dedicated solely to the COLA group, 
they requested that they be given ways to manage scheduling 
at  a  high  level  by  tagging  jobs  which  were  more  or  less 
important.   This  was  accomplished  by  giving  the  COLA 
users  access  to  two  new  QOS  levels,  bypass and 
bottomfeeder.   The  bypass QOS  applied  the  NTR 
(“next-to-run”)  policy  to  any  jobs  requesting  it,  allowing 
them to bypass  the normal priority  process.   On the other 
hand,  the  bottomfeeder QOS  disabled  backfill  and 
reservations for jobs that request it, causing them to run only 
when the system would otherwise sit idle.

The following table summarizes  the queue times observed 
during the period of the COLA project's dedicated access to 
Athena from 1 Oct 2009 to 31 Mar 2010, during which the 
overall system utilization was 90.51%:

QOS Jobs CPU 
Hours

Min 
Queue 
Time

Max 
Queue 
Time

Mean 
Queue 
Time

default 11,851 37.4M 00:00:02 138:33:50 01:12:50

negbal 57 0.5M 00:00:02 06:19:08 00:37:19

sizezero 4,822 0.0M 00:00:01 148:22:35 01:31:55

bypass 1,540 32.2M 00:00:02 43:32:33 01:01:22

bottomfe
eder

85 1.3M 00:00:03 137:09:04 22:27:44

Jobs  using  the  bypass QOS  saw  slightly  shorter  queue 
times  than  those  using  the  default and  sizezero 
QOSes, which in turn saw significantly shorter queue times 
than jobs using the  bottomfeeder QOS.  The  negbal 
QOS was only used by jobs over the course of two days due 
to  an  oversight  with  the  COLA  project's  allocation  on 
Athena, and its effect was minimal since the COLA project 
was  the  only group able  to  use  the  system.   Overall,  this 
arrangement was extremely successful, so much so that the 
COLA project  produced significantly  more  data  than  they 
had originally anticipated.

One  significant  issue  with  this  configuration  was  user 
confusion  over  the  effects  of  the  bottomfeeder QOS. 
After it was implemented, users complained that Moab was 

scheduling bottomfeeder jobs too aggressively.  Upon 
more  detailed  inspection,  it  was  found  that  some users 
who were running non-bottomfeeder jobs had large 
jobs that submitted size=0 analysis or data transfer jobs 
when  they  ended,  and  those  small  jobs  would  in  turn 
submit  another  large  job.   This  would  often  result  in 
situations where only bottomfeeder and size=0 jobs 
were eligible to run, whereupon Moab could and would 
run both.  After the affected users restructured their jobs to 
have large jobs submit their successor large jobs  before 
the  size=0 job rather  than  in the  size=0 job, Moab 
gave the desired behavior for bottomfeeder jobs.

4. Conclusions

The use of QOS levels has become integral to scheduling 
on  Kraken  and  Athena,  particularly  for  projects  which 
have  scheduling  needs  outside  the  norm.   They  allow 
administrators  to  implement  policy  modifications  and 
exceptions  for  individual  users,  groups,  or  accounts. 
Furthermore,  they  can  also  be  used  to  enable  users  to 
manage the scheduling of their own workflows in a fairly 
straightforward, easy-to-use fashion.

References

[1] “CAPS”, http://www.caps.ou.edu/.

[2] “Cluster resources :: Products - TORQUE Resource 
Manager”, 
http://www.clusterresources.com/pages/p
roducts/torque-resource-manager.php.

[3] “Cluster resources :: Products - Moab Workload 
Manager”, 
http://www.clusterresources.com/pages/p
roducts/moab-cluster-suite/workload-
manager.php.

[4] “COLA Home Page”, 
http://www.iges.org/cola.

[5] “ECMWF Research”, 
http://www.ecmwf.int/research/.

[6] “Job Flow”, 
http://www.clusterresources.com/product
s/mwm/moabdocs/3.3jobflow.shtml.

[7] “NICAM Page”, 
http://www.nicam.jp/hiki/.

[8] “Quality of Service (QoS) Facilities”, 
http://www.clusterresources.com/product
s/mwm/docs/7.3qos.shtml.

[9] “The Weather Research and Forecasting Model”, 
http://www.wrf-model.org/index.php.

Cray User Group 2010 Proceedings 4 of 7

http://www.caps.ou.edu/
http://www.wrf-model.org/index.php
http://www.clusterresources.com/products/mwm/docs/7.3qos.shtml
http://www.clusterresources.com/products/mwm/docs/7.3qos.shtml
http://www.nicam.jp/hiki/
http://www.clusterresources.com/products/mwm/moabdocs/3.3jobflow.shtml
http://www.clusterresources.com/products/mwm/moabdocs/3.3jobflow.shtml
http://www.ecmwf.int/research/
http://www.iges.org/cola
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/moab-cluster-suite/workload-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php
http://www.clusterresources.com/pages/products/torque-resource-manager.php


[10] T. Baer and D. Maxwell, “Comparison of Scheduling 
Policies and Workloads on the NCCS and NICS XT4 
Systems at Oak Ridge National Laboratory”, Proceedings of  
the 2009 Cray User Group Meeting, Atlanta, May 2009.

[11] M. Karo, et al.  “The Application Level Placement 
Scheduler”, Proceedings of the 2006 Cray User Group 
Meeting, Lugano, Switzerland, May 2006.

About the Author

Troy Baer is an HPC systems administrator for the 
University of Tennessee's National Institute for 
Computational Sciences at Oak Ridge National Laboratory. 
He can be reached by emailing <  tbaer@utk.edu  >  .

Cray User Group 2010 Proceedings 5 of 7

mailto:tbaer@utk.edu
mailto:tbaer@utk.edu
mailto:tbaer@utk.edu


APPENDIX:  moab.cfg Settings

### Default settings ###

# Priority settings
SERVICEWEIGHT    1
QUEUETIMEWEIGHT  1
RESWEIGHT        1
PROCWEIGHT       100
QOSWEIGHT        1000

# default QOS
QOSCFG[default]  PRIORITY=0

# negative balance QOS
QOSCFG[negbal]   PRIORITY=-100000

# size=0 QOS
QOSCFG[sizezero] QFLAGS=RUNNOW
QOSCFG[sizezero] PRIORITY=20000
QOSCFG[sizezero] QTWEIGHT=5000
QOSCFG[sizezero] QTTARGET=0:00:01
QOSCFG[sizezero] MAXPROC=0
QOSCFG[sizezero] MAXJOB=32

# job template to apply sizezero QOS
JOBCFG[sizezero.max]  TASKS=0

JOBCFG[sizezero.set]  QOS=sizezero

JOBMATCHCFG[sizezero] JMAX=sizezero.max
JOBMATCHCFG[sizezero] JSET=sizezero.set

# set default QOS list for all users
ACCOUNTCFG[DEFAULT] QDEF=default
ACCOUNTCFG[DEFAULT] QLIST=default,
negbal,sizezero
# NOTE:  The previous two lines should 
# be on a single line.

# big job QOS
QOSCFG[bigjob] QFLAGS=RESERVEALWAYS,
DEDICATEDRESOURCE
# NOTE:  The previous two lines should 
# be on a single line.

RESERVATIONDEPTH[bigjobs]   1
RESERVATIONQOSLIST[bigjobs] bigjob

# apply bigjob QOS to capability jobs
# by default
CLASSCFG[capability] QDEF=bigjob
CLASSCFG[capability] QLIST=bigjob,
default,negbal
# NOTE:  The previous two lines should 
# be on a single line.

### CAPS forecasting additions ###

# CAPS forecast QOS
QOSCFG[capsforecast] PRIORITY=50000
QOSCFG[capsforecast] QTTARGET=0:05:00
QOSCFG[capsforecast] QTWEIGHT=1000
QOSCFG[capsforecast] QFLAGS=USERESERVED

# CAPS post-processing QOS
QOSCFG[capspostproc] PRIORITY=50000
QOSCFG[capspostproc] QTTARGET=0:15:00
QOSCFG[capspostproc] QTWEIGHT=1000
QOSCFG[capspostproc] QFLAGS=USERESERVED

# allow CAPS project to access
# additional QOSes
ACCOUNTCFG[TG-MCA95C006] QLIST=default,
sizezero,negbal,capsforecast,
capspostproc
# NOTE:  The previous three lines
# should be on a single line.

# standing reservations for forecasts
SRCFG[CAPSforecast-pm] PERIOD=DAY
SRCFG[CAPSforecast-pm] DAYS=Sun,
Mon,Tue,Wed,Thu
# NOTE:  The previous two lines should 
# be on a single line.
SRCFG[CAPSforecast-pm] DEPTH=7
SRCFG[CAPSforecast-pm] STARTTIME=22:30:00
SRCFG[CAPSforecast-pm] ENDTIME=23:59:59
SRCFG[CAPSforecast-pm] TASKCOUNT=1205
SRCFG[CAPSforecast-pm] QOSLIST=capsforecast
SRCFG[CAPSforecast-pm] FLAGS=SPACEFLEX,
DEDICATEDRESOURCE
# NOTE:  The previous two lines should 
# be on a single line.

SRCFG[CAPSforecast-am] PERIOD=DAY
SRCFG[CAPSforecast-am] DAYS=Mon,
Tue,Wed,Thu,Fri
# NOTE:  The previous two lines should 
# be on a single line.
SRCFG[CAPSforecast-am] DEPTH=7
SRCFG[CAPSforecast-am] 
STARTTIME=00:00:00
SRCFG[CAPSforecast-am] ENDTIME=06:30:00
SRCFG[CAPSforecast-am] TASKCOUNT=1205
SRCFG[CAPSforecast-am] QOSLIST=capsforecast
SRCFG[CAPSforecast-am] FLAGS=SPACEFLEX,
DEDICATEDRESOURCE
# NOTE:  The previous two lines should 
# be on a single line.

Cray User Group 2010 Proceedings 6 of 7



# standing reservations for post-
# processing
SRCFG[CAPSpostproc-pm] PERIOD=DAY
SRCFG[CAPSpostproc-pm] DAYS=Sun,
Mon,Tue,Wed,Thu
# NOTE:  The previous two lines should 
# be on a single line.
SRCFG[CAPSpostproc-pm] DEPTH=7
SRCFG[CAPSpostproc-pm] STARTTIME=22:45:00
SRCFG[CAPSpostproc-pm] ENDTIME=23:59:59
SRCFG[CAPSpostproc-pm] TASKCOUNT=85
SRCFG[CAPSpostproc-pm] QOSLIST=capspostproc
SRCFG[CAPSpostproc-pm] FLAGS=SPACEFLEX,
DEDICATEDRESOURCE
# NOTE:  The previous two lines should 
# be on a single line.

SRCFG[CAPSpostproc-am] PERIOD=DAY
SRCFG[CAPSpostproc-am] DAYS=Mon,
Tue,Wed,Thu,Fri
# NOTE:  The previous two lines should 
# be on a single line.
SRCFG[CAPSpostproc-am] DEPTH=7
SRCFG[CAPSpostproc-am] STARTTIME=00:00:00
SRCFG[CAPSpostproc-am] ENDTIME=06:45:00
SRCFG[CAPSpostproc-am] TASKCOUNT=85
SRCFG[CAPSpostproc-am] QOSLIST=capspostproc
SRCFG[CAPSpostproc-am] FLAGS=SPACEFLEX,
DEDICATEDRESOURCE
# NOTE:  The previous two lines should 
# be on a single line.

### COLA dedicated additions ###

# bypass QOS
QOSCFG[bypass]       QFLAGS=NTR

# bottomfeeder QOS
QOSCFG[bottomfeeder] PRIORITY=-100000
QOSCFG[bottomfeeder] QFLAGS=NOBF,
NORESERVATION
# NOTE:  The previous two lines should 
# be on a single line.

# allow COLA project to access
# additional QOSes
ACCOUNTCFG[UT-NTNL0021] QDEF=default
ACCOUNTCFG[UT-NTNL0021] QLIST=default,
bypass,bottomfeeder,negbal,sizezero
# NOTE:  The previous two lines should 
# be on a single line.

Cray User Group 2010 Proceedings 7 of 7


	1. Introduction
	2. Scheduling on XT Systems with TORQUE and Moab
	2.1  Moab Scheduling Algorithm
	2.2 Queue Structure
	2.3 Job Priorization
	2.4 Quality of Service Levels

	3. Case Studies
	3.1 Normal Operation on Kraken
	3.2 Nightly Weather Forecasting on Kraken
	3.3 User-Managed Scheduling on Athena

	4. Conclusions
	References
	About the Author

