
pbsacct: A Workload Analysis System for PBS-Based HPC
Systems

Troy Baer
National Institute for Computational Sciences

University of Tennessee
Oak Ridge, Tennessee, USA

tbaer@utk.edu

Doug Johnson
Ohio Supercomputer Center

Columbus, Ohio, USA
djohnson@osc.edu

ABSTRACT
The PBS family of resource management systems have his-
torically not included workload analysis tools, and the cur-
rently available third-party workload analysis packages have
often not had a way to identify the applications being run
through the batch environment. This paper introduces the
pbsacct system, which solves the application identification
problem by storing job scripts with accounting information
and allowing the development of site-specific heuristics to
map job script patterns to applications. The system con-
sists of a database, data ingestion tools, and command-line
and web-based user interfaces. The paper will discuss the
pbsacct system and deployments at two sites, the National
Institute for Computational Sciences and the Ohio Super-
computer Center. Workload analyses for systems at each
site are also discussed.

Categories and Subject Descriptors
D.4.7 [Organization and Design]: Batch processing sys-
tems; K.6.2 [Installation Management]: Performance and
usage measurement

Keywords
batch processing, NICS, OSC, PBS, TORQUE, workload
analysis

1. INTRODUCTION
Most high performance computing (HPC) systems include
a batch processing or resource management system as part
of their user environment. One of the most commonly used
types of HPC batch system is the Portable Batch System
(PBS) family, consisting of three code bases – OpenPBS [12],
PBS Pro [1], and TORQUE [3] – derived from the original
Portable Batch System developed at NASA Ames Research
Center in the 1990s [10]. As the name implies, the PBS
family are modular and portable to a wide variety of plat-
forms, including most proprietary and open source UNIX
variants as well as Linux. The PBS family of batch systems

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
XSEDE ’14 July 13 - 18 2014, Atlanta, GA, USA
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2893-7/14/07 ...$15.00.
http://dx.doi.org/10.1145/2616498.2616539

MySQL ServerWeb Server HPC System
Accounting Data Source

HPC System
Accounting Data Source

HPC System
Accounting Data Source

Remote Users

Figure 1: pbsacct Components

share a common user interface – the IEEE POSIX.2d batch
environment standard [4] – and a largely similar account-
ing log format. However, the PBS family have historically
not included tools for doing statistical analyses or allocation
management with the resulting accounting logs, on the the-
ory that this is a site problem and every site would want to
do it differently.

A number of third-party batch accounting and statistics
packages have subsequently appeared, such as Gold [11] and
Job Monarch [9]. However, few of them offer insight into
what users are doing with the systems in terms of applica-
tions being run. Because of this, in 2005 staff at the Ohio
Supercomputer Center (OSC) began developing a system
called pbsacct; in 2008, the project relocated to the Na-
tional Institute for Computational Sciences (NICS) at the
University of Tennessee. Despite the name, pbsacct is in-
tended primarily as an analysis tool, with allocation man-
agement and charging functions better handled by a separate
system such as Gold.

The pbsacct system consists of a database, data ingestion
tools, and command-line and web-based user interfaces, as
shown in Figure 1. The data ingestion tools include both
traditional accounting log processing as well as methods to
capture users’ job scripts as submitted. The command line
and web interfaces provide a number of ways to access the
resulting data set. The system has been designed to be
able to handle multiple systems of various types (including
clusters, MPPs, NUMA systems, and vector systems) that
come and go over time.



CREATE TABLE Jobs (

jobid VARCHAR(32) PRIMARY KEY,

system VARCHAR(8),

username VARCHAR(9),

groupname VARCHAR(9),

account VARCHAR(32),

submithost VARCHAR(32),

jobname TINYTEXT,

nproc INT UNSIGNED DEFAULT 1,

mppe INT UNSIGNED,

mppssp INT UNSIGNED,

nodes TEXT,

nodect INT UNSIGNED DEFAULT 0,

feature TINYTEXT,

gres TINYTEXT,

queue TINYTEXT,

qos TINYTEXT,

submit_ts INT,

submit_date DATE,

start_ts INT,

start_date DATE,

end_ts INT,

end_date DATE,

cput_req TIME DEFAULT ’00:00:00’,

cput TIME DEFAULT ’00:00:00’,

walltime_req TIME DEFAULT ’00:00:00’,

walltime TIME DEFAULT ’00:00:00’,

mem_req TINYTEXT,

mem_kb INT UNSIGNED,

vmem_req TINYTEXT,

vmem_kb INT UNSIGNED,

software TINYTEXT,

hostlist TEXT,

exit_status INT,

script MEDIUMTEXT,

contact TINYTEXT

);

Figure 2: pbsacct Jobs Table Schema

2. DATABASE STRUCTURE
The pbsacct system stores its information in a MySQL
database, also named pbsacct. This database consists of
two tables, Jobs and Config. As the name implies, the Jobs

table stores job information for one or more systems. The
current schema for the Jobs table is shown in Figure 2.

Most of the columns in the Jobs correspond to fields in
the PBS accounting logs, with the exceptions of system (a
mnemonic identifier for the system in case the host running
pbs_server changes), script (for the job script, if available)
and contact (a site-specific field implemented for OSC). The
Jobs table is indexed on the system, username, groupname,
account, queue, submit_date, start_date, and end_date

columns to speed up query performance.

The Config table is used for tracking core-count changes
in compute systems over time. This is used primarily by
the web interface when calculating utilization. The current
schema for the Config table is shown in Figure 3.

CREATE TABLE Config (

row_number SERIAL PRIMARY KEY,

system VARCHAR(8),

nproc INT UNSIGNED DEFAULT 0,

start DATE DEFAULT NULL,

end DATE DEFAULT NULL

);

Figure 3: pbsacct Config Table Schema

3. DATA INGESTION
3.1 Accounting Log Ingestion
Ingestion of accounting log data into pbsacct is done by
a Perl script called job-db-update. This script parses the
accounting records found in the $PBS_HOME/server_priv/

accounting log directory on the host running the pbs_ser-

ver daemon. There are two types of records processed: “S”
records, emitted at the starts of jobs; and “E” records, emit-
ted at the ends of jobs. For each record found, the script
will parse the record, determine if the jobid already exists in
the Jobs table or not, and then, depending on the previous
existence of the job in the database, either update or insert
the corresponding record in the Jobs table with the fields
from the accounting log record.

The job-db-update is typically run at regular intervals, such
as hourly or nightly, using the standard cron service. Ex-
ample cron job entries can be found in the source code dis-
tribution.

3.2 Job Script Capture
Capturing and storing job scripts in pbsacct is handled
by a daemon that watches the $PBS_HOME/server_priv/

jobs spool directory where job scripts are stored by the
pbs_server daemon. On Linux systems, this daemon can be
either the now-deprecated dnotify or a Perl program called
jobscript_watcher that uses inotify_wait internally. In
either case, when a job script file appears in the spool direc-
tory, the watcher daemon will launch a script called spool-

jobscripts that copies the script to a temporary location
and then forks a second program called jobscript-to-db

that inserts the copy into the pbsacct database. This ar-
rangement is somewhat complex, but it was selected to be
able to handle high throughput situations where the job
scripts might only be present on the pbs_server host for
a matter of seconds.

Like most modern batch systems, the PBS family supports
the concept of an interactive job, which is a job that is driven
by an interactive shell rather than a shell script. Unfortu-
nately, none of the PBS family record the sequence of com-
mands run by an interactive job, so there is no equivalent to
job script to store in the database. As a result, interactive
jobs appear in pbsacct as jobs with NULL job scripts.

4. USER INTERFACES
4.1 Command Line Interface
The main command line interface for pbsacct is a Perl script
called js, which allows the user to look up job scripts by
jobid. The current version of this script will allow the user
to look up the job script of any job owned by any user, so it



is strongly encouraged that it be installed with permissions
such that it can only be run by admin and support staff.

Work is in progress on another Perl script called jobinfo,
which would allow full access to the various accounting de-
tails of their jobs, as users have often expressed interest in
the ability to review job information without the interven-
tion of support staff. However, addressing the issue of how
to prevent a user from looking at the jobs of another, com-
pletely unrelated user has slowed development.

4.2 Web Interface
Most of the user interface work in pbsacct has gone into
the web interface. This interface is written in PHP using
the PEAR DB and Excel writer modules [5, 7], a PHP class
for generating OpenOffice spreadsheets [2], and the jQuery
Javascript library [8]. The web interface includes reports for
individual jobs, job statistics broken out in a wide variety
of ways (e.g. by core count, by job class/queue, by user,
by account, etc.), software usage statistics, and numerous
others. These reports all support querying jobs on one or
more systems over arbitrary date ranges.

The pbsacct web interface is designed to be extensible and
adaptable to sites’ needs. The overall look of the interface is
controlled by a master page layout file (page-layout.php)
and a default CSS file (default.css). The majority of the
query, metric generation, and output logic is in functions in
metrics.php. However, site-specific logic for the calculation
of CPU hours and charges, sorting criteria, statistical buck-
eting, and heuristics for identifying software usage from pat-
terns in job scripts are in functions in site-specific.php.
(In particular, the application identification heuristics can
be rather complex and site specific; examples can be found at
http://svn.nics.tennessee.edu/repos/pbstools/trunk/

web/site-specific.php in the software_match_list func-
tion.) Additionally, reports may implement their own quer-
ies and output methods, such as those found in joblist.php

and usage-summary.php.

Software usage reports are involving multiple packages are
typcially done as UNION SELECT queries using the site-specific
application identification heuristics mentioned above. These
are full-text searches that cannot be easily indexed a priori,
as the heuristics tend to evolve over time to exclude false
positives. As a result, the software usage reports tend to be
much more time consuming than the other reports available.

5. EXAMPLE DEPLOYMENTS
5.1 Ohio Supercomputer Center
The pbsacct deployment at OSC has been in service since
the creation of the software in August 2005. It includes job
records from a total of ten different HPC systems, some of
which were in service before the pbsacct software was cre-
ated. At the time of this writing (March 2014), the database
contains 14,865,384 job records, 13,410,843 of which include
job scripts. The current database size is approximately 30.0
GB.

The OSC pbsacct instance consists of a web server running
the web application, a database server running MySQL, and
data sources on the batch nodes of each currently operating

HPC system. The database server is shared with a num-
ber of other services. The web application is accessed solely
through HTTPS; authentication is done via HTTP basic au-
thentication against an LDAP database, with authorization
by membership in a specific LDAP group.

5.2 National Institute for Computational Sci-
ences

The pbsacct deployment at NICS has been in service since
September 2008 and includes job records from each of the
eleven HPC systems that NICS has fielded. At the time
of this writing, the database contains 5,452,959 job records,
5,043,031 of which include job scripts. The current database
size is approximately 13.1 GB, with a growth rate of approx-
imately 600 MB/month.

The NICS pbsacct instance consists of a web server run-
ning the web application, a database server running MySQL,
and data sources on the batch nodes of each currently op-
erating HPC system. The database server is shared with
a number of other services, including the RT ticket system
and multiple wikis. The web application is accessed solely
through HTTPS; authentication is done via NICS’ RSA Se-
curId one-time password infrastructure, and authorization
by membership in a specific LDAP group.

6. EXAMPLE WORKLOAD ANALYSES
The following workload analyses was done using existing
functionality in pbsacct.

6.1 NICS Kraken
The Kraken system at NICS was a 100-cabinet Cray XT5
system with 9,408 dual-Opteron compute nodes (12 cores
per node) and 96 service nodes. It was operated by NICS in
production from February 4, 2009 to April 30, 2014. Alloca-
tions on the system were primarily made through the NSF’s
Teragrid and XSEDE projects’ allocation processes.

Kraken’s resource management and scheduling software con-
sisted of TORQUE, Moab, and Cray’s Application Level
Placement Scheduler (ALPS) software, with Moab commu-
nicating with both TORQUE and ALPS through Moab’s
native resource manager interface. In TORQUE, the de-
fault queue was a routing queue called batch that routed
jobs based on core count to a set of execution queues called
small, medium, large, capability, and dedicated. For a
time, there was a longsmall queue for small, long running
jobs, but that was eventually disabled. There was also an
hpss queue for scheduled data transfers to the NICS HPSS
enclave. Limits for these queues can be found in Table 1.

Between February 4, 2009 and April 30, 2014, the Kraken
XT5 system ran 4.14 million jobs consuming over 4.08 bil-
lion core-hours on behalf of 2,657 users in 1,119 project al-
locations, resulting in an average utilization of 85.6% (with-
out compensating for downtime). Of these, 3.84 million of
the jobs, 3.85 billion of the core hours, 2,252 of the users,
and 793 of the project allocations came through the Tera-
grid and XSEDE allocation processes, with the rest coming
from director-discretionary allocations. Breakdowns on a
per-queue basis can be found in Table 2.



Queue Min Max Max
Core Core Wallclock

Count Count Time

small 0 512 24:00:00
longsmall 0 256 60:00:00
medium 513 8,192 24:00:00
large 8,193 49,536 24:00:00

capability 49,537 98,352 48:00:00
dedicated 98,353 112,896 48:00:00

hpss 0 0 24:00:00

Table 1: Kraken Queue Limits

Queue Jobs Core Users Proj
Hours

small 3,576,368 768,687,441 2,602 1,090
longsmall 3,570 2,782,681 169 122
medium 488,006 2,003,837,680 1,447 718
large 27,908 983,795,230 521 301

capability 2,807 306,724,698 117 73
dedicated 338 11,765,421 17 7

hpss 36,462 53,285 184 123

TOTAL 4,136,759 4,077,647,799 2,657 1,119

Table 2: Kraken Workload Breakdown By Queue

Jobs submitted by projects with negative balances were tag-
ged in the submit filter with a negative balance quality of ser-
vice (QOS) marker called negbal that decreased their prior-
ity to the point where they would run only when nothing else
could. Jobs from allocations with negative balances made up
7.1% of the workload in terms of job count and 9.3% of the
workload in terms of core hours consumed. The negative bal-
ance QOS had a sigificant impact on jobs’ turnaround time;
whereas jobs from projects with positive balances waited an
average of 5.76 hours to run, jobs from projects with nega-
tive allocations waited an average of 17.7 hours. While other
QOS markers were used on the system, they were used so
infrequently that their effects were statistically insignificant,
as seen in Table 3.

Almost 400 different applications were identified in Kraken’s
workload, ranging from those run hundreds of thousands of
times by hundreds of users to those run a handful of times
by one or two users. The top ten applications on Kraken in
terms of job count and core hours consumed are shown in
Tables 4 and 5, respectively.

QOS Jobs Core Hours Mean
Queue
Time

Default 3,841,103 3,691,660,723 05:45:21
negbal 293,095 379,947,239 17:44:43

All others 2,561 6,039,837 N/A

Table 3: Kraken Workload Breakdown By QOS

App Jobs Core Hours Users Proj

arps 639,698 71,385,589 53 11
enkf 524,417 27,639,349 27 6
namd 347,535 421,255,609 358 164
calc1 197,542 3,925,921 9 6
wrf 152,544 7,133,848 74 38
vasp 148,188 94,872,455 147 85
lammps 137,048 94,398,554 187 127
myq 130,782 1,086,752 4 4
gromacs 115,589 89,794,782 159 105
amber 103,710 110,938,365 208 120

Table 4: Kraken Top 10 Applications By Job Count

App Jobs Core Hours Users Proj

namd 347,535 421,255,609 358 164
chroma 38,872 178,790,933 17 10
res 58,630 161,570,056 268 190
milc 22,079 146,442,361 37 21
gadget 6,572 131,818,157 29 21
cam 66,267 124,427,700 88 68
enzo 15,077 112,704,917 54 37
amber 103,710 110,938,365 208 120
vasp 148,686 94,872,455 147 85
lammps 137,048 94,398,554 187 127

Table 5: Kraken Top 10 Applications By Core Hours

6.2 OSC Oakley
The Oakley cluster at OSC is a HP cluster based on Intel
Xeon processors. The system has a total of 693 compute
nodes; of those, 692 compute nodes have 12 cores each, and
64 of those have dual NVIDIA M2070 GPUs. Additionally,
1 node has 32 cores and 1 TB of memory. The system has
been in production since March 19, 2012. Allocations for
the system are made to Ohio’s academic user community
and industrial users.

The resource management and scheduling for Oakley are
provided by TORQUE and Moab respectively. A default
queue named batch routes jobs to a set of execution queues
named serial, parallel, longserial, longparallel, de-
dicated, and hugemem. Limits for the different queues can
be found in Table 6.

Queue Min Max Max
Core Core Wallclock

Count Count Time

serial 1 12 168:00:00
parallel 13 2,040 96:00:00
longserial 1 12 336:00:00
longparallel 13 2,040 250:00:00
dedicated 2,041 8,336 48:00:00
hugemem 32 32 48:00:00

Table 6: Oakley Queue Limits



Queue Jobs Core Users Proj
Hours

serial 1,799,890 32,938,880 1,088 387
parallel 324,848 77,614,464 595 256
longserial 36 58,456 5 5
longparallel 158 1,574,567 5 3

hugemem 299 54,466 28 23

TOTAL 2,125,231 112,240,833 1,147 403

Table 7: Oakley Workload Breakdown By Queue

Queue Jobs Mean Mean
Queue Job
Time Wall Time

serial 1,799,890 2:29:18 2:57:05
parallel 324,848 3:47:41 3:02:06
longserial 36 18:53:48 135:18:56
longparallel 158 6:09:23 6:04:38

hugemem 299 2:30:52 5:41:44

Table 8: Oakley Queue Wait Time

Between March 19, 2012 and March 14, 2014, the Oakley
system ran 2.1 million jobs consuming over 112 million core-
hours on behalf of 1,147 users in 403 projects, resulting in
an average utilization of 77.6%. Breakdowns of utilization
on a per-queue basis can be found in Table 7.

In contrast to Kraken, the QOS for projects with negative
allocations on Oakley are applied through Moab. While
OSC has a similar negbal QOS, jobs that have this QOS are
not identified by pbsacct because the QOS does not appear
in the PBS accounting logs. Average queue wait times, and
job run time for the different Oakley queues can be found in
Table 8. The average queue wait time for the longserial

queue is high due to the relatively small number of jobs in
this class, and the very long queue time of a small number
of these jobs.

The top ten applications by core hours consumed on the
Oakley cluster are shown in Table 9.

App Jobs Core Users Projects
Hours

vasp 109,302 16,777,905 45 13
wrf 58,606 8,327,638 14 9
qchem 347,729 8,008,378 59 13
OpenFOAM 9,838 5,654,152 48 26
gaussian 163,173 4,782,065 110 51
gromacs 147,754 3,954,489 57 18
lammps 19,990 3,782,372 26 17
matlab 98,785 3,722,044 89 63
amber 264,191 2,902,836 33 20
namd 2,357 1,495,582 9 9

Table 9: Oakley Top 10 Applications By Core Hours

7. CONCLUSIONS
pbsacct is a feature rich and easily extensible system for
workload analysis on PBS-based HPC systems. It scales to
millions of job records across tens of systems with relatively
modest resource requirements, with system sizes ranging
from small clusters to petaflop scale systems. It is currently
a bit labor intensive to deploy; however, most of that labor
is in implementing job script capture functionality, which is
also where much of its power lies.

8. FUTURE WORK
While pbsacct is more or less functionally complete, there
are a number of areas where it can be improved. The most
significant area for improvement from a deployment perspec-
tive is in packaging. Currently, deploying an instance of
pbsacct or adding a new system to an existing instance re-
quires a fair amount of hand configuration, particularly with
regard to script capture. However, efforts to simplify this by
distributing the software in native packaging formats such
as RPMs have recently begun. Any person who is interested
in helping with these efforts should contact the authors.

Another area where pbsacct could be improved is in its
database back end. MySQL has a number of limitations
that are not present in other open source databases such
as PostgreSQL. For instance, MySQL does not support a
statistical median operation, which would be useful for the
sorts of distributions typically present in batch accounting
data. Conversely, some of the queries used by pbsacct make
use of MySQL idioms and functions not supported by other
open source databases. The developers have discussed port-
ing pbsacct to PostgreSQL or Oracle, but the level of effort
required is daunting. Again, potential collaborators in these
efforts are encouraged to contact the authors.

When the pbsacct MySQL DB contains large numbers of
jobs, full text searches of job scripts can take considerable
time. Furthermore, the flexibility of search patterns are
limited. It would be productive to investigate alternative
schemes for indexing the contents of the script field to
allow for higher performance text searches of job scripts,
searches for ad-hoc patterns, and the use of regular expres-
sions in searches. The Apache Lucene project’s Solr search
server [6] or similar tools bear investigation. However, ex-
ternal indexes would add complexity to queries of the data,
need to be frequently updated, and relies on an a set of
services not typically available at HPC centers.

Finally, the ability to interface pbsacct to non-PBS systems
such as Grid Engine or SLURM has come up from time to
time. As with porting to another database engine, the level
of effort required for this is daunting, but interested parties
should contact the authors.

9. ACKNOWLEDGMENTS
This material is based in part upon work supported by the
National Science Foundation under Grant numbers 0711134,
0933959, 1041709, and 1041710 and the University of Ten-
nessee through the use of the Kraken computing resource
at the National Institute for Computational Sciences (http:
//www.nics.tennessee.edu/). Additionally, this material
was also supported by resources at the Ohio Supercom-
puter Center (http://www.osc.edu/). Any opinions, find-



ings, and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily
reflect the views of the National Science Foundation, the
University of Tennessee, or the Ohio Supercomputer Cen-
ter.

The authors would like to acknowledge the assistance of
NICS and OSC staff in the preparation of this document, in
particular Vince Betro, Stephen McNally, Rick Mohr, and
Benny Sparks from NICS.

10. REFERENCES
[1] PBS Professional: Job scheduling and

commercial-grade HPC workload management.
http://www.pbsworks.com/Product.aspx?id=1.

[2] PHP classes – OpenOffice spreadsheet generation:
Generate of OpenOffice spreadsheet documents.
http://www.phpclasses.org/package/2858-PHP-

Generate-of-OpenOffice-spreadsheet-

documents.html.

[3] TORQUE resource manager.
http://www.adaptivecomputing.com/products/

open-source/torque/.

[4] Draft standard for information technology – portable
operating system interface (POSIX R©) draft technical
standard: Base specifications, issue 7. 2008.

[5] PEAR – database abstraction layer, 2011.
http://pear.php.net/package/DB.

[6] Apache Lucene. 2012. http://lucene.apache.org/.

[7] PEAR – package for generating Excel spreadsheets,
2012. http://pear.php.net/package/Spreadsheet_
Excel_Writer.

[8] jQuery, 2014. http://jquery.com/.

[9] Ramon Bastiaans. Job Monarch.
https://oss.trac.surfsara.nl/jobmonarch.

[10] Robert L Henderson. Job scheduling under the
Portable Batch System. In Job scheduling strategies
for parallel processing, pages 279–294. Springer, 1995.

[11] Scott Jackson. The Gold accounting and allocation
manager, 2004.
http://www.emsl.pnl.gov/docs/mscf/gold.

[12] OpenPBS Team. A batching queuing system.
http://www.openpbs.org/.


