
pbsacct: A Workload
Analysis System for
PBS-Based HPC
Systems

Troy Baer
Senior HPC System Administrator

National Institute for Computational Sciences
University of Tennessee

Doug Johnson
Chief Systems Architect

Ohio Supercomputer Center

Overview

• Introduction to pbsacct

• Technical Overview
– Database Structure
– Data Ingestion
– User Interfaces

• Example Deployments

• Workload Analysis
– NICS Kraken historical retrospective
– OSC Oakley

• Conclusions and Future Work

Introduction to pbsacct
• pbsacct started at Ohio Supercomputer Center in

2005:
– Grew from need to do workload analysis from PBS/TORQUE

accounting logs.
– Stores job scripts as well as accounting log data.
– Ability to do on-demand queries on jobs across multiple systems

and arbitrary date ranges.
– Despite the name, not an allocation/charging system!
– Open source (GPLv2)

• Structure:
– Data sources
– Database (MySQL)
– User interfaces

• Development moved to NICS in 2008.
– Available at
http://www.nics.tennessee.edu/~troy/pbstools/

http://www.nics.tennessee.edu/~troy/pbstools/

pbsacct Architecture

Database Structure

• Accounting data and scripts are stored in a
MySQL database

• Two tables:
– Jobs

• Job accounting data and scripts
• Used by just about everything
• Indexed by system, username, groupname, account,
queue, submit_date, start_date, and end_date to
accelerate queries

– Config
• Used to track system changes WRT core count
• Mainly used by web interface to compute utilization

Data Ingestion
• Accounting data comes in from hosts that run
pbs_server:
– A Perl script called jobdbupdate parses the accounting

logs in $PBS_HOME/server_priv/accounting and inserts
the results into the database.

– Typically run out of a cron job (hourly, daily, etc.).

• Job scripts can also be captured on hosts that run
pbs_server:
– dnotify- or inotify-based daemon watches for new files

created in $PBS_HOME/server_priv/jobs.
– When new .SC files are created in the jobs directory, daemon

launches a Perl script called spooljobscripts.
– spooljobscripts copies the .SC files to a temp directory

and launches another Perl script called jobscripttodb,
which inserts the scripts into the database.

– This is done to be able to keep up with high throughput
situations where there may be thousands of short-running
jobs in flight and the database might not be able to keep up.

User Interfaces

• Command line
– js – Look up job script by jobid.
– Want to develop more, but need to figure out a workable security

model.

• Web
– PHP based, using several add-ons

• PEAR DB
• PEAR Excel
• OpenOffice spreadsheet writer
• jQuery

– Lots of premade reports
• Individual jobs, software usage, utilization summaries...
• Site-specific rules to map job script patterns to applications

– Meant to be put behind HTTPS

Web Interface Example

Example Deployments

• OSC
– ~14.9M job records (~13.4M with job scripts)
– ~30GB database size
– Web interface accessed over HTTPS with HTTP Basic

authentication against LDAP

• NICS
– ~5.4M job records (~5.0M with job scripts)
– ~13.1GB database size, growth rate of ~600MB/month
– Web interface accessed over HTTPS with RSA Securid one-

time password authentication

Workload Analysis: NICS Kraken
Historical Retrospective
• NICS Kraken

– Cray XT5 system with 9,408 dual-Opteron compute nodes
– Operated in production for NSF from February 4, 2008, to April

30, 2014
– Batch environment is TORQUE, Cray ALPS, and Moab
– Queue structure:

•batch (routing queue)
–small (0-512 cores, up to 24 hours)
–longsmall (0-256 cores, up to 60 hours)
–medium (513-8192 cores, up to 24 hours)
–large (8193-49536 cores, up to 24 hours)
–capability (49537-98352 cores, up to 48 hours)
–dedicated (98353-112896 cores, up to 48 hours)

•hpss (0 cores, up to 24 hours)

Kraken Workload Analysis
2009-02-04 to 2014-04-30

Overall

• 4.14M jobs

• 4.08B core-hours

• 2,657 users

• 1,119 projects

85.6% average utilization (not compensated for
downtime)

NSF Teragrid/XSEDE

• 3.84M jobs

• 3.85B core-hours

• 2,252 users

• 793 projects

Kraken Workload Analysis by Queue
2009-02-04 to 2014-04-30

QUEUE JOBS CORE HOURS USERS PROJECTS

small
3,576,368 768,687,441 2,602 1,090

longsmall
3,570 2,782,681 169 122

medium
488,006 2,003,837,680 1,447 718

large
27,908 983,795,230 521 301

capability
2,807 306,724,698 117 73

dedicated
338 11,765,421 17 7

hpss
36,462 53,285 184 123

TOTAL 4,136,759 4,077,647,799 2,657 1,119

Kraken Workload Analysis by Queue
2009-02-04 to 2014-04-30

Kraken Job Count By Queue

small

longsmall

medium

large

capability

dedicated

hpss

Kraken Core-Hours By Queue

small

longsmall

medium

large

capability

dedicated

hpss

Kraken Top 10 Applications by Core Hours
2009-02-04 to 2014-04-30

APP JOBS CORE HOURS USERS PROJECTS

namd 347,535 421,255,609 358 164

chroma 38,872 178,790,933 17 10

res 58,630 161,570,056 268 190

milc 22,079 146,442,361 37 21

gadget 6,572 131,818,157 29 21

cam 66,267 124,427,700 88 68

enzo 15,077 112,704,917 54 37

amber 103,710 110,938,365 208 120

vasp 148,686 94,872,455 147 85

lammps 137,048 94,398,544 187 127

Workload Analysis: OSC Oakley
• OSC Oakley

– HP Xeon cluster with 693 compute nodes
● Most nodes are dual-Xeon with 12 cores
● One node is quad-Xeon with 32 cores and 1TB RAM
● 64 nodes have 2 Nvidia M2070 GPUs each

– Operated in production since March 19, 2012
– Batch environment is TORQUE and Moab
– Queue structure:

•batch (routing queue)
–serial (1-12 cores, up to 168 hours)
–parallel (13-2040 cores, up to 96 hours)
–longserial (1-12 cores, up to 336 hours)
–longparallel (13-2040 cores, up to 250 hours)
–dedicated (2041-8336 cores, up to 48 hours)
–hugemem (32 cores, up to 1 TB mem, up to 48 hours)

Oakley Workload Analysis
2012-03-19 to 2014-03-14

Overall

• 2.12M jobs

• 112M core-hours

• 1,147 users

• 403 projects

77.6% average utilization (not compensated for
downtime)

Oakley Workload Analysis by Queue
2012-03-19 to 2014-03-14

QUEUE JOBS CORE HOURS USERS PROJECTS

serial 1,799,890 32,938,880 1,088 387

parallel 324,848 77,614,464 595 256

longserial 36 58,456 5 5

longparallel 158 1,574,567 5 3

hugemem 299 54,466 28 23

TOTAL 2,125,231 112,240,833 1,147 403

Conclusions and Future Work

• pbsacct is feature rich and extensible
– Written in Perl and PHP
– Support for site-specific code
– Scales to millions of jobs across tens of machines

• Future work

– Better packaging to ease installation – RPMs?

– Port to another DBMS (e.g. PostGreSQL)?

– Speed up full text job script searches with
external indices (e.g. Apache Lucene Solr)?

– Interface with other RMs (Grid Engine, SLURM)?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18

