Bioinformatics & Biology

GATK

GATK is a software package for analysis of high-throughput sequencing data. The toolkit offers a wide variety of tools, with a primary focus on variant discovery and genotyping as well as strong emphasis on data quality assurance.

Availability and Restrictions

Versions

The following versions of GATK are available on OSC clusters:

BWA

BWA is a software package for mapping low-divergent sequences against a large reference genome, such as the human genome. It consists of three algorithms: BWA-backtrack, BWA-SW and BWA-MEM.

Availability and Restrictions

Versions

The following versions of BWA are available on OSC clusters:

Bowtie1

Bowtie1 is an ultrafast, memory-efficient short read aligner. It aligns short DNA sequences (reads) to the human genome at a rate of over 25 million 35-bp reads per hour. Bowtie indexes the genome with a Burrows-Wheeler index to keep its memory footprint small: typically about 2.2 GB for the human genome (2.9 GB for paired-end).

Availability and Restrictions

Versions

The following versions of Bowtie1 are available on OSC clusters:

bedtools

Collectively, the bedtools utilities are a swiss-army knife of tools for a wide-range of genomics analysis tasks. The most widely-used tools enable genome arithmetic: that is, set theory on the genome. While each individual tool is designed to do a relatively simple task, quite sophisticated analyses can be conducted by combining multiple bedtools operations on the UNIX command line.

Availability and Restrictions

Versions

The following versions of bedtools are available on OSC clusters:

Schrodinger

The Schrodinger molecular modeling software suite includes a number of popular programs focused on drug design and materials science but of general applicability, for example Glide, Jaguar, and MacroModel.  Maestro is the graphical user interface for the suite.  It allows the user to construct and graphically manipulate both simple and complex chemical structures, to apply molecular mechanics and dynamics techniques to evaluate the energies and geometries of molecules in vacuo or in solution, and to display and examine graphically the results of the modeling calculations.

Updates to Oakley Application Software - September 2015

OSC is refreshing the software stack on Oakley on September 15, 2015 (during the scheduled downtime); something we have not done since Oakley entered service in 2012. During the software refresh, some default versions are updated to be more up-to-date and some older versions are removed. Information about the old and new default versions, as well as all available versions of each software package will be included on the corresponding OSC software webpage. See https://www.osc.edu/supercomputing/software-list.

SIESTA

SIESTA is both a method and its computer program implementation, to perform efficient electronic structure calculations and ab initio molecular dynamics simulations of molecules and solids. More information can be found from here.

LS-DYNA

LS-DYNA will be fully migrated from the Owens cluster to the Cardinal cluster on December 17, 2024. After this date, LS-DYNA will no longer be accessible on Owens.

LS-DYNA is a general purpose finite element code for simulating complex structural problems, specializing in nonlinear, transient dynamic problems using explicit integration. LS-DYNA is one of the codes developed at Livermore Software Technology Corporation (LSTC).

BLAST

The BLAST programs are widely used tools for searching DNA and protein databases for sequence similarity to identify homologs to a query sequence. While often referred to as just "BLAST", this can really be thought of as a set of programs: blastp, blastn, blastx, tblastn, and tblastx.

AMBER

The Assisted Model Building with Energy Refinement (AMBER) package, which includes AmberTools, contains many molecular simulation programs targeted at biomolecular systems. A wide variety of modelling techniques are available. It generally scales well on modest numbers of processors, and the GPU enabled CUDA programs are very efficient.

Pages