Owens cluster will be decommissioned on February 3, 2025. Some pages may still reference Owens after Owens is decommissioned , and we are in the process of gradually updating the content. Thank you for your patience during this transition
Desmond is a software package that perform high-speed molecular dynamics simulations of biological systems on conventional commodity clusters, general-purpose supercomputers, and GPUs. The code uses novel parallel algorithms and numerical techniques to achieve high performance and accuracy on platforms containing a large number of processors, but may also be executed on a single computer. Desmond includes code optimized for machines with an NVIDIA GPU.
OSC is refreshing the software stack for Owens and Ruby on September 4, 2018. This will be done by a rolling reboot. During the software refresh, some default versions are updated to be more up-to-date. Information about the old and new default versions, as well as all available versions of each software package will be included on the corresponding OSC software webpage. See https://www.osc.edu/supercomputing/software-list.
OSC is refreshing the software stack for Oakley and Ruby on February 22, 2017 (during the scheduled downtime). During the software refresh, some default versions are updated to be more up-to-date and some older versions are removed. Information about the old and new default versions, as well as all available versions of each software package will be included on the corresponding OSC software webpage. See https://www.osc.edu/supercomputing/software-list.
NWChem aims to provide its users with computational chemistry tools that are scalable both in their ability to treat large scientific computational chemistry problems efficiently, and in their use of available parallel computing resources from high-performance parallel supercomputers to conventional workstation clusters.
Availability and Restrictions
Versions
The following versions of NWChem are available on OSC clusters:
The Schrodinger molecular modeling software suite includes a number of popular programs focused on drug design and materials science but of general applicability, for example Glide, Jaguar, and MacroModel. Maestro is the graphical user interface for the suite. It allows the user to construct and graphically manipulate both simple and complex chemical structures, to apply molecular mechanics and dynamics techniques to evaluate the energies and geometries of molecules in vacuo or in solution, and to display and examine graphically the results of the modeling calculations.
ANSYS Workbench platform is the backbone for delivering a comprehensive and integrated simulation system to users. See ANSYS Workbench platform for more information.
Availability and Restrictions
ANSYS Workbench is available on Cardinal Cluster. You can see the currently available versions in the table on the main Ansys page here.
OSC is refreshing the software stack on Oakley on September 15, 2015 (during the scheduled downtime); something we have not done since Oakley entered service in 2012. During the software refresh, some default versions are updated to be more up-to-date and some older versions are removed. Information about the old and new default versions, as well as all available versions of each software package will be included on the corresponding OSC software webpage. See https://www.osc.edu/supercomputing/software-list.
Q-Chem is a general purpose ab initio electronic structure program. Its latest version emphasizes Self-Consistent Field, especially Density Functional Theory, post Hartree-Fock, and innovative algorithms for fast performance and reduced scaling calculations. Geometry optimizations, vibrational frequencies, thermodynamic properties, and solution modeling are available.
The General Atomic and Molecular Electronic Structure System (GAMESS) is a flexible ab initio electronic structure program. Its latest version can perform general valence bond, multiconfiguration self-consistent field, Möller-Plesset, coupled-cluster, and configuration interaction calculations. Geometry optimizations, vibrational frequencies, thermodynamic properties, and solution modeling are available. It performs well on open shell and excited state systems and can model relativistic effects.