Advanced Materials

Advanced Materials icon

Ohio researchers are conducting groundbreaking studies of various advanced materials. The creation and testing of computational models through Ohio Supercomputer Center systems continues to set the bar high for materials science research in Ohio.

Accelerating Computer Communication

Computer cluster

Modern high performance computing systems allow scientists and engineers to tackle grand challenge problems in numerous fields, such as astrophysics, earthquake analysis, weather prediction, nanoscience modeling and biological computations. In concert with the many use cases, the field of computer architecture, interconnection networks and system design is undergoing rapid change.

Enhancing Pavement Engineering

Simulation of cracking concrete slabs

Most American highways are constructed as a Portland cement concrete (PCC) slabs that are poured and finished on a layered roadbed. Such pavement structures are subjected to millions of applications of traffic wheel-loads, as well as numerous cycles of temperature and moisture variations, and eventually succumb to cracking. 

Investigating Nematic Vesicles

Simulation of two vesicles in equilibrium with surfactant molecules in solution

Liquid crystals are at the heart of the technology inside most computer, tablet and smartphone displays today, and researchers are finding more applications for liquid crystals every day – in fields, such as advanced photonics, sensors, bio- and medical molecular devices, and smart materials for new energy applications. 

Evaluating Silica Nanochannels

The amorphous silica nanochannel (red and yellow) confining a stream (red and white) of electrolyte-water solution

Microdevices, such as Labs-On-a-Chip (LOC) systems, are used for biomolecular detection and custom chemical synthesis, among other applications. Over the last decade, LOC systems have evolved from a single channel to systems capable of integrating thousands of reaction vessels, conduits and valves. 

Elastomeric Space Seals

A University of Akron researcher is designing computer prediction models to test potential new docking seals that will better preserve breathable cabin air for astronauts living aboard the International Space Station and other NASA spacecraft.

Pages