Pitzer

Overview of File Systems

OSC has several different file systems where you can create files and directories. The characteristics of those systems and the policies associated with them determine their suitability for any particular purpose. This section describes the characteristics and policies that you should take into consideration in selecting a file system to use.

The various file systems are described in subsequent sections.

HOWTO: Use NFSv4 ACL

This document shows you how to use the NFSv4 ACL permissions system. An ACL (access control list) is a list of permissions associated with a file or directory. These permissions allow you to restrict access to a certian file or directory by user or group. NFSv4 ACLs provide more specific options than typical POSIX read/write/execute permissions used in most systems.

These commands are useful for managing ACLs in the dir locations of /users/<project-code>.

Understanding NFSv4 ACL

This is an example of an NFSv4 ACL

HOWTO: Reduce Disk Space Usage

This HOWTO will demonstrate how to lower ones' disk space usage. The following procedures can be applied to all of OSC's file systems.

We recommend users regularly check their data usage and clean out old data that is no longer needed.

Users who need assistance lowering their data usage can contact OSC Help.

Darshan

Darshan is a lightweight "scalable HPC I/O characterization tool".  It is intended to profile I/O by emitting log files to a consistent log location for systems administrators, and also provides scripts to create summary PDFs to characterize I/O in MPI-based programs.

Availability and Restrictions

Versions

The following versions of Darshan are available on OSC clusters:

Spark

Apache Spark is an open source cluster-computing framework originally developed in the AMPLab at University of California, Berkeley but was later donated to the Apache Software Foundation where it remains today. In contrast to Hadoop's disk-based analytics paradigm, Spark has multi-stage in-memory analytics. Spark can run programs up-to 100x faster than Hadoop’s MapReduce in memory or 10x faster on disk. Spark support applications written in python, java, scala and R

WARP3D

From WARP3D's webpage:

WARP3D is under continuing development as a research code for the solution of large-scale, 3-Dsolid models subjected to static and dynamic loads. The capabilities of the code focus on 
fatigue & fracture analyses primarily in metals. WARP3D runs on laptops-to-supercomputers and can analyze models with several million nodes and elements. 

Availability and Restrictions

Versions

The following versions of WARP3D are available on OSC clusters:

R and Rstudio

R is a language and environment for statistical computing and graphics. It is an integrated suite of software facilities for data manipulation, calculation, and graphical display. It includes

  • an effective data handling and storage facility,
  • a suite of operators for calculations on arrays, in particular matrices,
  • a large, coherent, integrated collection of intermediate tools for data analysis,
  • graphical facilities for data analysis and display either on-screen or on hardcopy, and
  • a well-developed, simple and effective programming language which includes conditionals, loops, user-defined recursive functions and input, and output facilities

More information can be found here.

Bowtie2

Bowtie2 is an ultrafast and memory-efficient tool for aligning sequencing reads to long reference sequences. It is particularly good at aligning reads of about 50 up to 100s or 1,000s of characters, and particularly good at aligning to relatively long (e.g. mammalian) genomes. Bowtie 2 indexes the genome with an FM Index to keep its memory footprint small: for the human genome, its memory footprint is typically around 3.2 GB. Bowtie 2 supports gapped, local, and paired-end alignment modes.

HOWTO: Create and Manage Python Environments

While our Python installations come with many popular packages installed, you may come upon a case in which you need an additional package that is not installed. If the specific package you are looking for is available from anaconda.org (formerly binstar.org), you can easily install it and required dependencies by using the conda package manager.

Procedure

The following steps are an example of how to set up a Python environment and install packages to a local directory using conda. We use the name  local for the environment, but you may use any other name.

HOWTO: Install Python packages from source

Pages