Biological Sciences

Biological Sciences icon

Ohio’s bioscience researchers are leveraging the resources of the Ohio Supercomputer Center to gather and analyze massive amounts of genetic, molecular and environmental data to better understand human physiology, individualize diagnoses and treat diseases.

Multi-scale Loading

A Cleveland Clinic research team is developing virtual models of human knee joints to better understand how tissues and their individual cells react to heavy loads – virtual models that someday can be used tounderstand damage caused by the aging process or by debilitating diseases, such as osteoarthritis.

Low-light Detection

Human sight depends on an organized choreography of the retina with its cone and rods cells, the optic nerve, the brain’s visual cortex and light – be it a sunny day or a dark, star-studded night.

Remarkably, in extremely poor illumination conditions, the retina can still perceive intensities corresponding to only a few photons. Rod rhodopsins enable this high sensitivity.

Biomedical Visualization

Researchers at The Ohio State University’s Center for Clinical and Translational Science (CCTS) are using sophisticated scanners and powerful supercomputers to study how vitamin E can be used to reduce the extent of brain injury suffered by stroke patients.

Genetic Architecture

“When two genes interact to cause a clinically important phenotype, we can leverage genotypic information at one of the loci in order to improve our ability to detect the other,” said Veronica Vieland, Ph.D., vice president for computational research and director, Battelle Center for Mathematical Medicine.

Maritime Viruses

Matthew Sullivan, Ph.D., and the Ohio Supercomputer Center (OSC) have teamed up to give scientists insight into how to better study viruses found in a variety of communities. This information could prove invaluable to understanding everything from what’s going on inside our bodies to how we might combat climate change.

Fungi Genomics

Jason Slot, associate professor of fungal evolutionary genomics at The Ohio State University, is performing research to ensure the longevity of one of the world’s favorite crops: coffee. Specifically, Slot’s group studies the genomics of fungi that live in coffee plants to understand their function and relationship within the plant and to better understand the plant’s microbiome in general.

Biological Photoreceptors

In the emerging field of optogenetics, scientists are working to develop light-responsive proteins (photoreceptors) that will allow them to observe the nerve impulses in the brain or to control specific cellular features, such as metabolic pathways, gene expression and ion channels.

Biomolecular Machines

The cornerstone of an effective therapeutic drug development program is a rock-solid computational protocol that accurately and efficiently illustrates how molecules interact within the medicine and inside the human body. That information can be used to help fight and cure disease.

Toxin Diversity

The Ohio State University’s Marymegan Daly and her research partners probed the depths of Monterey Bay to collect samples of the tube-dwelling sea anemone, samples that are allowing the scientists to generate and analyze the transcriptomes of these ancient animals and reveal the diversity of toxins within their venom.

Pages