Since the creation of the Ohio Supercomputer Center (OSC) in 1987, the center’s staff has provided the critical services that allow Ohio researchers, professors and students to achieve great new levels of success, from empowering amazing scientific discoveries to partnering on remarkable industrial innovations.
2015 Research Report
By Pankaj Shah, Executive Director, OSC and OARnet
In 2014, Ohio Supercomputer Center clients at Ohio’s public research universities accounted for $146 million—or nearly 19 percent—of the $780 million in active-award funding awarded to those universities from three of the largest federal research-funding agencies.
Plexins receive guidance cues from other proteins and transmit signals through the lipid membrane, regulating cell migration and targeting processes. However, if a signal is not transmitted correctly through plexin, studies have shown that this could result in serious neurological disorders.
Keith Marsolo and his team are developing novel techniques that could be used to more quickly identify patients whose bodies no longer respond to standard-use antibiotics. Sick children at CCHMC can develop this resistance after the many rounds of different antibiotics they receive to ward off infections from their weakened immune systems.
The oldest forms of life on Earth, bacteria and archaea, have managed to evolve and adapt to Earth’s changing environment over billions of years. As a result, bacteria and archaea could hold the answers to the persistence of complex life.
While virtual environments often are associated with gaming and entertainment, OSC’s Interface Lab has translated the technology into effective training and assessment tools for use by various sectors such as the health care, automotive and manufacturing industries.
Karen Tomko understands the challenges software developers face, having worked directly on development teams in the past. One of the main barriers is finding ways to make sure the applications that get developed are available and working in a given system.
It’s staggering to consider the myriad ways in which the Ohio Supercomputer Center and the AweSim industrial engagement program benefit a wide array of industries. It is also hard to conceive how few leaders in these industries know what they could be gaining from the innovative cloud-based simulation application platform.
Phonons — the elemental particles that transmit both heat and sound — have magnetic properties, according to a landmark study conducted by a research group from The Ohio State University and supported by the Ohio Supercomputer Center.
The compelling need for energy efficiency in the transportation industry provides a strong motivation for the increased use of lightweight engineering materials such as titanium and magnesium alloys that will lead to weight reduction.
The quest to understand the fundamental building blocks of nature and their interactions is one of the longest-running and most ambitious of human endeavors.
Several years ago, a Physics World article posed the question, “Why would anyone still want to study a physical phenomenon that was discovered in the 1930s, explained in the 1960s and has been the subject of numerous reviews since the 1970s?”
Water, water everywhere, but it’s all locked underground. Wendy Panero, Ph.D., and The Ohio State University Mineral Physics Research Group have found that minerals within the earth’s mantle potentially contain a vast amount of water.
Researchers who normally use high-resolution satellite imagery to study glaciers used their technology to help with disaster relief and longer-term stabilization planning efforts in Nepal.
The Department of Energy supports pilot projects and basic research that evaluate the feasibility of capturing carbon dioxide created by industrial processes and power plants and injecting it into deep geologic formations for permanent storage, known as geo-sequestration. This is part of evaluating strategies for reducing atmospheric emissions and mitigating accumulation of greenhouse gasses.
Compared to its centuries-old fossil fuel counterparts, nuclear power is a young player in today’s lineup of energy sources. Still, since the world’s first nuclear power plant became operational in 1954, there have been three marked advancement periods, or generations, of nuclear technology. Each new generation has improved upon the current safety and performance of the previous generation.
To begin understanding dark matter in astrophysics, one must first step into a world where galaxies are considered small. The is the world that Annika Peter, Ph.D., and graduate student Stacy Kim are discovering more fully at The Ohio State University’s Center for Cosmology and AstroParticle Physics.
In most of the standard equilibrium models used to explain equity market performance, the volatility of stock market returns is far too low. This muted volatility is closely related to the equity premium puzzle, a phenomenon whereby returns on “risky” stocks are historically much higher and more volatile than returns on “safer” government bonds.
For all the different moving parts that go into mechanical engineering systems, the gas turbine is a relatively simple design: a large rotor fitted with vanes is made to revolve by a fast-moving gas flow.
The noise from jet-engine exhausts can cause substantial hearing loss for crewmen and airport personnel and activate restrictive regulations and/or fees for airlines. The large turbulent eddies within the jet plume—also known as large-scale coherent structures—produce the majority of the noise in the aft angles of the engine.
Drive a car not originally built for racing around an oval track at about 200 miles per hour for a couple of hours and you should begin to understand why stock car drivers would want the latest and greatest information on things, such as how their car will handle in close traffic on a banked curve.
A $5 million gift from Honda R&D Americas Inc. prompted the April 2015 launch of a center for virtual simulation and modeling of product performance and manufacturing processes in the College of Engineering at The Ohio State University.
In the five years since inception, Rescale is making waves in the cloud-computing world.
As one of North America’s largest manufacturers of rigid metal and plastic containers, BWAY Corporation is a global market leader in packaging solutions for large and small manufacturers and container distributors. Traditionally, the company’s engineers and designers have relied on outsourcing the analysis and simulation of new product designs.
For those intimidated by the thought of “talking” with supercomputers, Basil Gohar wants to help. As the manager of the Web and Interface Applications group, Gohar and his team have a big goal in mind: Deliver the benefits of powerful computing to users without perceived or actual complexities.
Since the first meeting of the Statewide Users Group (SUG) in November 1986—almost a full year before the official 1987 establishment of the Ohio Supercomputer Center by the Ohio Board of Regents (now the Ohio Department of Higher Education)—Ohio research practitioner-advisors have been providing OSC’s leadership with sage program and policy advice.
Client Services is the entry point for our user community. We provide the connections to the services that OSC offers its clients, and we do that in a number of ways. We manage the administrative functions associated with research done here. We also provide the technical support through a recently expanded 24/7 help desk.
With the April dedication of OSC’s newest cluster, the Ohio Supercomputer Center currently is offering researchers three mid-sized high performance computing (HPC) systems: the HP/Intel Xeon Phi Ruby Cluster, the HP/Intel Xeon Oakley Cluster and the IBM/AMD Opteron Glenn Cluster.