Search Documentation

Search Documentation

Owens, Pitzer

This page outlines ways to generate and view performance data for your program using tools available at OSC.

Intel Tools

This section describes how to use performance tools from Intel. Make sure that you have an Intel module loaded to use these tools.

Intel VTune

Intel VTune is a tool to generate profile data for your application. Generating profile data with Intel VTune typically involves three steps:

Pitzer

Condo model refers to that the participants (condo owners) lease one or more compute nodes for the shared cluster while OSC provides all infrastructure, as well as maintenance and services. The Honscheid Condo on the Pitzer cluster is owned by Klaus Honscheid from OSU Physics.

Hardware

Detailed system specifications:

  • 4 total nodes

    • 40 cores per node

    • 192 GB of memory per node

Pitzer

Condo model refers to that the participants (condo owners) lease one or more compute nodes for the shared cluster while OSC provides all infrastructure, as well as maintenance and services. CCAPP Condo on Pitzer cluster is owned by the Center for Cosmology and AstroParticle Physics, at OSU. Prof. Annika Peter has been heavily involved in specifying requirements.

Hardware

Detailed system specifications:

Pitzer

For more information about citations of OSC, visit https://www.osc.edu/citation.

To cite Pitzer, please use the following Archival Resource Key:

ark:/19495/hpc56htp

Please adjust this citation to fit the citation style guidelines required.

Ohio Supercomputer Center. 2018. Pitzer Supercomputer. Columbus, OH: Ohio Supercomputer Center. http://osc.edu/ark:19495/hpc56htp

Pitzer

These are the public key fingerprints for Pitzer:
pitzer: ssh_host_rsa_key.pub = 8c:8a:1f:67:a0:e8:77:d5:4e:3b:79:5e:e8:43:49:0e 
pitzer: ssh_host_ed25519_key.pub = 6d:19:73:8e:b4:61:09:a9:e6:0f:e5:0d:e5:cb:59:0b 
pitzer: ssh_host_ecdsa_key.pub = 6f:c7:d0:f9:08:78:97:b8:23:2e:0d:e2:63:e7:ac:93 

Pitzer

This page includes a summary of differences to keep in mind when migrating jobs from other clusters to Pitzer. 

Owens

Transmission3d is a 3-dimensional, multi-body gear contact analysis software capable of modeling complex gear systems developed by Ansol (Advanced Numeric Solutions). Multiple gear types, including: Helical, Straight Bevel, Spiral Bevel, Hypoids, Beveloids and Worms can be modeled. Multiple bearing types, as well as complex shafts, carriers and housings can also be modeled with the software. A variety of output data options including tooth bending stress, contact patterns, and displacement are also available.

NBO

Owens

The Natural Bond Orbital (NBO) program is a discovery tool for chemical insights from complex wavefunctions. NBO is a broad suite of 'natural' algorithms for optimally expressing numerical solutions of Schrödinger's wave equation in the chemically intuitive language of Lewis-like bonding patterns and associated resonance-type 'donor-acceptor' interactions.

Owens

Rosetta is a software suite that includes algorithms for computational modeling and analysis of protein structures. It has enabled notable scientific advances in computational biology, including de novo protein design, enzyme design, ligand docking, and structure prediction of biological macromolecules and macromolecular complexes.

 

Owens

Desmond is a software package that perform high-speed molecular dynamics simulations of biological systems on conventional commodity clusters, general-purpose supercomputers, and GPUs. The code uses novel parallel algorithms and numerical techniques to achieve high performance and accuracy on platforms containing a large number of processors, but may also be executed on a single computer. Desmond includes code optimized for machines with an NVIDIA GPU.

Pages